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ABSTRACT

We study the distribution of resistance fluctuations of conducting thin films with different levels of internal
disorder. The film is modeled as a resistor network in a steady state determined by the competition between
two biased processes, breaking and recovery of the elementary resistors. The fluctuations of the film resistance
are calculated by Monte Carlo simulations which are performed under different bias conditions, from the linear
regime up to the threshold for electrical breakdown. Depending on the value of the external current, on the level
of disorder and on the size of the system, the distribution of the resistance fluctuations can exhibit significant
deviations from Gaussianity. As a general trend, a size dependent, non universal distribution is found for systems
with low and intermediate disorder. However, for strongly disordered systems, close to the critical point of the
conductor-insulator transition, the non-Gaussianity persists when the size is increased and the distribution of
resistance fluctuations is well described by the universal Bramwell-Holdsworth-Pinton distribution.

Keywords: Non-Gaussian distributions, Disordered materials, Non-equilibrium steady states, Electrical break-
down

1. INTRODUCTION

In a macroscopic system, the fluctuations of a global quantity are generally expected to follow a Gaussian
distribution around the average value. This expectation relies on the assumption, frequently true, that the
system can be divided into statistically independent microscopic or mesoscopic elements. For such a system, the
conditions of validity of the central-limit theorem are in fact satisfied and, consequently, Gaussian distributions
of fluctuations are actually observed. On the other hand, when the correlations between the different elements
of the system are significant, the central-limit theorem is no longer valid and a non-Gaussian distribution of
fluctuations is expected. Therefore, non-Gaussian fluctuation distributions of global quantities are the signature
of a correlated system. As correlations become important near the critical points of phase transitions, non-
Gaussian distributions are usually observed near criticality.1–7 In these conditions, the self-similarity of the
system over all the scales, from a characteristic microscopic length up to the size of the system (which for a
system of finite size sets the cut-off for the correlation length), has important implications on the fluctuation
distribution.1–9 Recently, new light has been shed on this subject by the remarkable discovery made by
Bramwell, Holdsworth and Pinton (BHP)3 of a common behavior of the distribution of fluctuations of two quite
different systems. Namely, the distribution of the fluctuations of the power consumption measured in confined
turbulent-flow experiments and the distribution of magnetization fluctuations in a two-dimensional XY model
in the spin-wave regime at low temperature.3 Since these two systems appear to have very little in common,
BHP advanced the reasonable suggestion that the origin of this common distribution should be attributed to
scale invariance, the only property apparently shared by the two systems.3 This suggestion has been supported
by the subsequent finding that many scale invariant systems, in both equilibrium and non-equilibrium steady
states, display the same functional form for the distribution of fluctuations.4, 5, 8, 10, 11 Concerning this point,
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it must be noted that the probability density function (PDF) of the distribution of fluctuations of a critical
system can be considered as universal, in the sense that, when properly normalized, it depends on very few basic
symmetries that define the universality class of the system.8 Thus, the BHP distribution describes a universal
behavior of the fluctuations of a critical system. In any case, it must be remarked that not all critical systems
fluctuate according to this distribution.5–7, 11 On the other hand, far from criticality, the correlations between
different elements of the systems can also be important. This is particularly true for systems in non-equilibrium
steady-states, where non-Gaussian fluctuations are frequently observed.1, 2, 7, 12 Therefore the study of non-
Gaussian fluctuations and the understanding of their link with other features of the system can provide new
insights on some basic properties of complex systems.1, 2, 4–7, 9, 11

Here, we study the distribution of resistance fluctuations of conducting thin films of different size and with
different levels of internal disorder. The resistance fluctuations are investigated under different bias conditions,
from the linear response regime up to the threshold for electrical breakdown. This last phenomenon, which
consists of an irreversible increase of the resistance, is thus associated with a conductor-insulator transition and it
occurs in conducting materials stressed by high current densities.13–19 In our study we make use of the Stationary
and Biased Resistor Network (SBRN) model.20–22 This model provides a good description of many features
associated with the electrical instability of composites materials17, 18 and with the electromigration damage of
metal lines,19, 23 two important classes of breakdown phenomena. The film is modeled as a resistor network
which reaches a steady state determined by the competition between two biased stochastic processes, breaking
and recovery of the elementary resistors. The resistance and its fluctuations are then calculated by Monte
Carlo simulations. Resistance fluctuations are found to deviate from Gaussianity near electrical breakdown.
As a general trend, a non universal distribution of fluctuations is found for systems with low and intermediate
disorder, where the deviations from Gaussianity vanish in the large size limit. However, for highly disordered
systems, close to the critical point of the conductor-insulator transition, these deviations from Gaussianity persist
when the size is increased and the distribution of resistance fluctuations is well described by the universal BHP
distribution.3, 4

2. MODEL

We describe a conducting film with granular structure as a two-dimensional resistor network. Precisely, we
consider a square-lattice of N ×N resistors, where N determines the linear size of the network. This lattice lies
on an insulating substrate at a given temperature T0, which acts as a thermal bath. Each resistor can be in
two different states13, 19, 24: (i) regular, corresponding to a resistance rn = r0[1 + α(Tn − T0)], and (ii) broken,
corresponding to an effectively “infinite” resistance, rOP = 109rn (resistors in this state will be called defects).
In the previous expression of rn, α is the temperature coefficient of the resistance and Tn the local temperature.
This latter is determined by Joule heating effects13, 19, 24 and thermal exchanges between neighbor resistors19:

Tn = T0 + A[rni2n + (3/4Nneig)
Nneig∑

m=1

(rli
2
l − rni2n)] (1)

where, in is the current flowing in the nth resistor and Nneig the number of nearest neighbors over which the
summation is performed. The parameter A represents the thermal resistance of each resistor and sets the
importance of Joule heating effects. By taking the above expression for Tn we are assuming an instantaneous
thermalization19 of each resistor at the value Tn. The external bias consists of a constant current I applied
through perfectly conducting bars at the left and right sides of the network. In the initial state of the network
(no external bias) all the resistors are identical: rn ≡ r0.

We assume that two competing biased processes act to determine the evolution of the network.20–22 These
two processes consist of stochastic transitions between the two possible states of each resistor and they are taken
to occur through thermal activation, with probabilities24: WDn = exp[−ED/kBTn] and WRn = exp[−ER/kBTn],
characterized by the two activation energies, ED and ER (kB being the Boltzmann constant). The time evolution
of the network is obtained by Monte Carlo simulations which update the network resistance after breaking and
recovery processes, according to an iterative procedure described in details in Ref.21 The sequence of successive
configurations provides a resistance signal, R(t), after an appropriate calibration of the time scale. Then,



depending on the stress conditions (I and T0) and on the network parameters (size, activation energies and
other parameters related to the material like r0 and α), the network either reaches a steady state or undergoes
an irreversible electrical failure.21, 22 This latter possibility is associated with the achievement of the percolation
threshold, pc, for the fraction of broken resistors.25 Therefore, for a given network at a given temperature, a
threshold current value, IB, exists above which electrical breakdown occurs.21 For values of the current below
this threshold, the steady state of the network is characterized by fluctuations of the fraction of broken resistors,
δp, and of the resistance, δR, around their respective average values < p > and < R >. In particular, we
underline that in the vanishing current limit (random percolation),26 the ratio (ED − ER)/kBT0 determines
the average fraction of defects and thus the level of disorder inside the network. In the following we analyze the
results of simulations performed by considering networks of different sizes, with different levels of disorder and
stressed by different currents at room temperature, T0 = 300 (K). In all the cases we take ED = 0.170 (eV),
r0 = 1 (Ω), α = 10−3 (K−1), A = 5× 105 (K/W) (these values are chosen as physically reasonable). The values
of N range between 100 ÷ 150, while ER between 0.026÷ 0.164 (eV).

3. RESULTS

The resistance of a 100×100 network is reported as a function of the time in Fig. 1. The different curves, starting
from the bottom, are obtained for increasing values of the external current. In particular, all the evolutions in
Fig. 1 are obtained by taking the activation energy of the recovery process equal to ER = 0.103 eV, a value which
leads to a network with an intermediate level of disorder. The first three curves are associated with steady states
of the network. More precisely, the lowest curve corresponds to the linear response regime and it is obtained
for I = 0.0013A < I0, where I0 is the current value associated with the onset of the nonlinearity of the I-V
characteristic.21 The second curve corresponds to the nonlinear regime and it is obtained for I = 0.70 A. The
third corresponds to the threshold for electrical breakdown which occurs for I > IB = 0.95(A). By contrast, the
highest curve displays the resistance evolution of a network undergoing electrical breakdown and it is obtained
for a current I = 1.05(A). Overall, Fig. 1 illustrates qualitatively two important features of the electrical
response of a conducting film. First, it evidences that the linear regime occurring for I < I0 is followed by a
nonlinear regime where the average resistance increases significantly at increasing current.17, 21 Second, it shows
that the amplitude of the resistance fluctuations increases strongly with the external bias. This amplification
of the fluctuations becomes particularly important when the current reaches the threshold for breakdown (third
curve from the bottom in Fig. 1). A detailed analysis of the behavior of the average resistance and of the relative
variance of resistance fluctuations as a function of the current can be found in Refs.21, 22

The distributions of the resistance fluctuations, δR, for the three steady state signals in Fig. 1 are reported
in Fig. 2. Precisely, by denoting with Φ the PDF of the δR distribution and with σ the root mean square
deviation from the average resistance value, we plot in Fig. 2 on a lin-log scale the product σΦ as a function
of (< R > −R)/σ. This normalized representation, by making the distribution independent of its first and
second moments, is particularly convenient to explore the functional form of any distribution.3, 4 Here the
PDFs have been calculated by considering time series containing about 1.2×106 resistance values. In this figure,
the data represented by crosses, small circles and up triangles are obtained respectively for I = 0.0013, 0.70, 0.95
A (i.e. linear regime, nonlinear regime and threshold for breakdown). For comparison, in this figure we also
report with a dashed curve the Gaussian distribution (which in this normalized representation has zero mean
and unit variance) and, with a continuous curve, the BHP distribution.3, 4 By defining the normalized variable,
y ≡ (R− < R >)/σ, the normalized PDF, Π(y) ≡ σΦ(y) and x ≡ b(y − s), the BHP distribution has the
following functional form4:

Π(y) = K[ex−ex

]a (2)

where a = π/2, b = 0.936±0.002, s = 0.374±0.001 and K = 2.15±0.01.4 This expression can be considered as a
generalization of the Gumbel distribution, which is often associated with the occurrence of rare events. Figure 2
shows a remarkable deviation from the Gaussian behavior when the network is stressed by the threshold current
IB . We have found that in this case the PDF is well fitted by the Eq. (2), once the parameters a, b, s and K are
taken as fitting parameters27 In any case, we emphasize the fact that, at least for a network with intermediate
level of disorder, such as that considered in Figs. 1 and 2, the deviations from Gaussianity remain weak even
for current values in the nonlinear regime and become important only close to the electrical breakdown.
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Figure 1. Resistance evolutions of a 100× 100 network stressed by increasing current values. Starting from the bottom:
I = 0.0013 A (linear regime), I = 0.70 A (nonlinear regime), I = 0.95 A (threshold current), I = 1.05 A (breakdown).
The recovery energy is ER = 0.103 eV and corresponds to an intermediate level of disorder.
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Figure 2. Normalized PDF of resistance fluctuations for a network of size 100 × 100 biased by I = 0.0013 A (crosses,
linear regime), I = 0.70 A (small circles, nonlinear regime), I = 0.95 A (up triangles, threshold current). The recovery
energy is the same of Fig. 1. The thick solid curve and the dashed one correspond to the BHP and Gaussian distributions,
respectively.
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Figure 3. Normalized PDF of resistance fluctuations for networks of size 100 × 100 (crosses) and 125 × 125 (diamonds).
The networks are biased by currents in the linear regime. The recovery energy is the same of Fig. 1. The thick solid
curve and the dashed one correspond to the BHP and Gaussian distributions, respectively.

The effect of the size of the network on the distribution of resistance fluctuations, is analyzed in Figs. 3 and
4. Figure 3 compares the PDF obtained for a current in the linear regime and applied to a network 100 × 100
(the data, reported by crosses, are the same of Fig. 2) with the PDF obtained for a current in the same regime
applied to a network 125× 125 (diamonds). The two networks have the same parameters and differ only for the
size, thus they share the same level of internal disorder. Figure 3 shows that in the linear regime the distribution
of δR is Gaussian for all system sizes. In case, a weak non-Gaussian tail appears for very small systems that
vanishes for systems of larger size.

Figure 4 displays a comparison similar to that in Fig. 3 for two networks of size 100 × 100 (up triangles,
same data of Fig. 2) and 125 × 125 (down triangles), stressed by currents corresponding to the threshold for
breakdown. The current values are I = 0.95, 1.15 A, respectively for the networks with N = 100 and N = 125.
We can see that in both cases the PDFs exhibit non-Gaussian tails. However, the same figure shows that the
non-Gaussianity is weaker for the system of larger size. By performing a detailed investigation on systems of
different sizes we have found that this trend is systematic.28 Therefore, we conclude that, at least when networks
with intermediate level of disorder are considered, as in the case of Figs. 1-4, the deviations from Gaussianity
are related to the finite size of the system.

Now, before discussing the role of disorder in the breakdown process, it is convenient to distinguish between
the intrinsic disorder and the disorder driven by the external bias. For given values of T0 and ED, the average
fraction of broken resistors in the vanishing current limit, < p >0, is only determined by the recovery energy
ER.26 This average fraction of defects represents an intrinsic property of the system, which characterizes the
conducting material and sets the level of disorder inside the network in absence of an external bias. We note
nate the steady state of a network in this vanishing current limit is determined by the competition between two
random percolations.26 On the other hand, for I > I0, there is also an additional component of disorder due
to the defects generated by the external current.21 Therefore, the average fraction of defects < p > becomes
dependent on the current and its relative variation, [< p > − < p >0]/ < p >0, scales as21 (I/I0)2. Of course,
this dependence of < p > on I is important because it actually drives the system towards the breakdown.
However, it is also crucial to point out the role of the intrinsic disorder on the breakdown process and its effect
on the distribution of resistance fluctuations. Therefore, in the following we will consider networks with different
values of the recovery activation energy ER. In a previous work29 we have shown that for an arbitrary value of
ER satisfing the stability condition,22, 26 i.e. providing a steady state of the network, the electrical breakdown
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Figure 4. Normalized PDF of resistance fluctuations for networks of size 100 × 100 (up triangles) and 125 × 125 (down
triangles). The networks are biased by I = 0.95 A and I = 1.15 A which correspond to their respective threshold for
breakdown. The recovery energy ER is the same of the previous figures and the thick solid and the dashed curves have
the same meaning of Fig. 3.
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Figure 5. Normalized PDF of resistance fluctuations of 100 × 100 networks at increasing ER values (level of disorder).
In all the cases the current value corresponds to the respective threshold for breakdown. Precisely, squares: ER = 0.026,
IB = 3.5; up triangles: ER = 0.103, IB = 0.95; stars: ER = 0.155, IB = 0.11, left triangles: ER = 0.164, IB = 0.009
(energies in eV, currents in A).
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Figure 6. Normalized PDF of resistance fluctuations for networks of increasing size and close to the critical conditions:
the recovery energy is ER = 0.164 eV and the bias current corresponds to the threshold for breakdown. Precisely, left
triangles refer to a network 100× 100 biased by I = 0.0090 A, circles to a network 125 × 125 biased by I = 0.0011 A and
right triangles to a network 150 × 150 and I = 0.0013 A.
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Figure 7. Power spectral density of resistance fluctuations of 125 × 125 networks for increasing ER values. Precisely,
starting from the bottom: ER = 0.026, 0.103, 0.155, 0.164 eV. In all cases the current corresponds to the respective
threshold for breakdown (respectively: I = 4.4, 1.15, 0.14, 0.011 A). For visual reasons the lowest spectrum has been
shifted down by multipling it by a factor 5×10−3. The gray lines represent the best-fit with a Lorentzian spectral density.



is associated with a first order phase transition. This result agrees with the behavior observed in electrical
breakdown experiments, performed in the Joule regime of composites.17, 18 Nevertheless, it can be shown30

that when ER reaches its maximum value compatible with a steady state, ER,MAX , the conductor-insulator
transition becomes of the second order. This change in the order of the transition, when going from low to high
disordered systems, has been also predicted by Andersen et al.14

Therefore, we report in Fig. 5 the PDFs of resistance fluctuations of 100 × 100 networks characterized by
different values of ER. The PDFs have been calculated for current values corresponding to the breakdown
threshold. We can see that the non-Gaussianity of the distribution at I = IB increases systematically at
increasing values of ER (i.e. at increasing level of the intrinsic disorder). In particular, Fig. 5 shows that when
the value of ER is very close to ER,MAX , and thus the system approaches the critical point, the PDF achieves
(left triangles) the BHP form. In these conditions, the PDF should become independent of the system size.3, 4

Indeed, Fig. 6 confirms this behavior. In this figure we report the PDFs calculated for the three networks of
size 100× 100 (left triangles, same data of Fig. 5), 125× 125 (circles) and 150× 150 (right triangles). In all the
cases the recovery energy is ER = 0.164eV ≈ ER,MAX and the external current corresponds to the threshold
value for breakdown (IB = 0.0090, 0.011, 0.013 A, respectively). The data in Fig. 6 shows that, when ER is very
close to ER,MAX and thus the system approaches the critical point, the PDFs of resistance fluctuations become
independent of the system size and they are well described by the BHP distribution.

Other interesting information about the system can be extracted from the spectral analysis of resistance
fluctuations.2, 6, 9 Hence we report in Fig. 7 the power spectral density of resistance fluctuations of 125 ×
125 networks at increasing values of ER. All the spectra are calculated for networks stressed by currents
corresponding to the threshold for electrical breakdown. Starting from the bottom, the curves are obtained
respectively for ER = 0.026, 0.103, 0.155 and 0.164 eV (the same values of ER considered in Fig. 5). Basically all
the spectra display a Lorentzian behavior which witnesses an exponential decay of the auto-correlation function
of resistance fluctuations2 (the gray curves in this figure represent the best-fit with a Lorentzian distribution).
Moreover, we can see that for increasing values of ER, i.e. for increasing level of intrinsic disorder, the corner
frequency of the spectra is systematically shifted towards lower values. This occurs because, at increasing
values of < p >, the network approaches the percolation threshold, thus the correlation length increases as
ξ ∼ | < p > −pc|−ν (where ν is the correlation length exponent)25 and the same occurs for the correlation time
of resistance fluctuations. However, we note that for the two upper spectra in Fig. 7 the fit with a Lorentzian
curve appears progressively less satisfactory in the low frequency region. On the other hand, these spectra are
obtained by taking the value of ER near or very near to ER,MAX and thus correspond to networks progressively
closer to the critical conditions. This anomalous behavior in the low frequency region of the power specral
density of resistance fluctuations in the case of networks close to criticality, could even suggest the emergence of
a 1/f behavior. Longer time series are required to point out the behavior of the spectra in this frequency region.

4. CONCLUSIONS

We have studied the distribution of the resistance fluctuations of conducting thin films with different levels of
internal disorder. The study has been performed by describing the film as a resistor network in a steady state
determined by the competition of two biased stochastic processes, according to the SBRN model.20–22 We have
considered systems of different sizes and under different stress conditions, from the linear response regime up to
the threshold for electrical breakdown. A remarkable non-Gaussianity of the fluctuation distribution is found
near breakdown. This non-Gaussianity becomes more evident at increasing the degree of disorder of the network.
As a general trend, these deviations from Gaussianity are related to the finite size of the system and they are
found to vanish in the large size limit. However, near the critical point of the conductor-insulator transition,
the non-Gaussianity is found to persist in the large size limit and is well fitted by the universal Bramwell-
Holdsworth-Pinton distribution.3, 4 Furthermore, in the last case, the non-Gaussianity seems to be associated
with an anomalous behavior in the low frequency region of the specral density of resistance fluctuations.
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