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The authors apply the generalized Minkowski formula to set up a spherical theorem. It is
shown that a compact connected hypersurface with positive constant higher-order mean
curvature Hr for some fixed r, 1≤ r ≤ n, immersed in the de Sitter space Sn+1

1 must be a
sphere.
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1. Introduction

The classical Liebmann theorem states that a connected compact surface with constant
Gauss curvature or constant mean curvature inR3 is a sphere. The natural generalizations
of the Gauss curvature and mean curvature are the rth mean curvature Hr , r = 1, . . . ,n,
which are defined as the rth elementary symmetric polynomial in the principal curva-
tures of M. Later many authors [1, 4, 5, 7, 8] have generalized Liebmann theorem to
the cases of hypersurfaces with constant higher-order mean curvature in the Euclidian
space, hyperbolic space, the sphere, and so on. A significant result due to Ros [8] is that
a compact hypersurface with the rth constant mean curvature Hr , for some r = 1, . . . ,n,
embedded into the Euclidian space must be a sphere.

The purpose of this note is to prove a spherical theorem of the Liebmann type for the
compact spacelike hypersurface immersed in the de Sitter space by setting up a general-
ized Minkowski formula. The main result is the following.

Theorem 1.1. Let M be a compact connected hypersurface immersed in the de Sitter space
Sn+1

1 . If for some fixed r, 1≤ r ≤ n, the rth mean curvature Hr is a positive constant on M,
then M is isometric to a sphere.

For the cases of the constant mean curvature and constant scalar curvature, that is,
r = 1,2, the theorem was founded by Montiel [4] and Cheng and Ishikawa [1], respec-
tively.
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2. Preliminaries

Let Rn+2
1 be the real vector space Rn+2 endowed with the Lorentzian metric 〈·,·〉 given by

〈x, y〉 = −x0y0 +
n+2∑

i=1

xi yi (2.1)

for x, y ∈Rn+2. The de Sitter space Sn+1
1 (c) can be defined as the following hyperquadratic:

Sn+1
1 (c)=

{
x ∈Rn+2

1 | |x|2 = 1
c

,
1
c
> 0
}
. (2.2)

In this way, the de Sitter space inherits from 〈·,·〉 a metric which makes it an indefinite
Riemannian manifold of constant sectional curvature c. If x ∈ Sn+1

1 (c), we can put

TxS
n+1
1 (c)= {v ∈Rn+2

1 | 〈v,x〉 = 0
}
. (2.3)

Let ψ : M → Sn+1
1 be a connected spacelike hypersurface immersed in the de Sitter space

with the sectional curvature 1. Following O’Neill [6], the unit normal vector field N for
ψ can be viewed as the Gauss map of M:

N :M −→ {x ∈Rn+2
1 | |x|2 =−1

}
. (2.4)

Let Sr : Rn → R, r = 1, . . . ,n, be the normalized rth elementary symmetric function in
the variables y1, . . . , yn. For r = 1, . . . ,n, we denote by Cr the connected component of
the set {y ∈ Rn | Sr(y) > 0} containing the vector y = (1, . . . ,1). Notice that every vec-
tor (y1, . . . , yn) with all its components greater than zero lies in each Cr . We derive the
following two lemmas, which will be needed for the proof of the theorem.

Lemma 2.1 [3]. (i) If r ≥ k, then Cr ⊂ Ck; (ii) for y ∈ Cr ,

S1/r
r ≤ S1/r−1

r−1 ≤ ··· ≤ S1/2
2 ≤ S1. (2.5)

Lemma 2.2 (Minkowski formula). Let ψ : M → Sn+1
1 ⊂ Rn+2

1 be a connected spacelike hy-
persurface immersed in de Sitter space Sn+1

1 . For the rth mean curvature Hr of ψ, r = 0,1, . . . ,
n− 1,

∫

M

(
Hr〈ψ,a〉+Hr+1〈N ,a〉)dV = 0, (2.6)

whereH0 = 1 and a∈Rn+1
1 is an arbitrary fixed vector andN is the unit normal vector ofM.

Proof. The argument is based on the approach of geodesic parallel hypersurfaces in [5].
Let kr and ei, i = 1, . . . ,n, be the principal curvatures and the principal directions at a
point p ∈M. The rth mean curvature of ψ is defined by the identity

Pn(t)= (1 + tk1
)···(1 + tkn

)= 1 +

(
n

1

)
H1t+ ···+

(
n

n

)
Hnt

n (2.7)
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for all t ∈ R. Thus H1 =H is the mean curvature, H2 = (n2H2 − S)/n(n− 1), where S is
the square length of the second fundamental form and Hn is the Gauss-Kronecker curva-
ture of M immersed in Sn+1

1 . Let us consider a family of geodesic parallel hypersurfaces ψt
given by

ψt(p)= expψ(p)

(− tN(p)
)= cosh t ·ψ(p) + sinh t ·N(p). (2.8)

Then the unit normal vector field of ψt with |Nt|2 =−1 can be written as

Nt(p)=−sinh t ·ψ(p)− cosh t ·N(p). (2.9)

Because we have

ψt∗
(
ei
)= (cosh t− ki sinh t

)(
ei
)
,

Nt∗
(
ei
)= (− sinh t+ ki cosh t

)(
ei
)
;

(2.10)

for the principal directions {ei}, i= 1, . . . ,n and |t| < ε, the second fundamental form of
ψt can be expressed as

σt
(
ψt∗
(
ei
)
,ψt∗

(
ej
))=−〈Nt∗

(
ei
)
,ψt∗

(
ej
)〉

= (sinh t− ki cosh t
)〈
ei,ψt∗

(
ej
)〉

= sinh t− ki cosh t
cosh t− ki sinh t

〈
ψt∗
(
ei
)
,ψt∗

(
ej
)〉
.

(2.11)

Then the mean curvature H(t) of ψ can be expressed as

H(t)= 1
n

n∑

i=1

ki(t)= 1
n

n∑

i=1

tanh t− ki
1− ki tanh t

= 1
nPn(− tanh t)

n∑

i=1

(
tanh t− ki

)∏

j 
=i

(
1− kj tanh t

)
.

(2.12)

But
∏

j 
=i

(
1− kj tanh t

)= nPn(− tanh t)− cosh t sinh t P
′
n(− tanh t). (2.13)

Then we get

H(t)= tanh t+
P
′
n(− tanh t)

nPn(− tanh t)
. (2.14)

By the way, we must point out that the formula (7′) in [5] is incorrect because the second
term in the right-hand side of the expression of H(t) should be P

′
n(tanh t)/nPn(tanh t).

The volume element dVt for immersion ψt can be given by

dVt =
(

cosh t− k1 sinh t
)···(conh t− kn sinh t

)
dV

=−conhn tPn(− tanh t)dV ,
(2.15)



4 Spacelike hypersurfaces in de Sitter space

where dV is the volume element of ψ. It is an easy computation that

�(〈ψ,a〉+H〈N ,a〉)= 0, (2.16)

where N is a unit normal field of ψ and a ∈ Rn+2
1 an arbitrary fixed vector (cf. [4, page

914]). Integrating both sides of (2.16) over the hypersurface M and applying Stoke’s the-
orem, we get

∫

M

(〈ψ,a〉+H1〈N ,a〉)dV = 0. (2.17)

For ψt,|t| < ε, we obtain
∫

M

(〈
ψt,a

〉
+H(t)

〈
Nt,a

〉)
dVt = 0. (2.18)

Substituting (2.14) and (2.15) into (2.18), we get
∫

M

〈
ψt,a

〉
+H(t)

〈
Nt,a

〉
dVt

= 1
n

coshn−1 t
∫

M

((
nPn(− tanh t)− sinh t cosh tP

′
n(− tanh t)

)〈ψ,a〉
− cosh2 tP

′
n(− tanh t)〈N ,a〉)dV = 0.

(2.19)

By using the expression

nPn(− tanh t)− sinh t cosh tP
′
n(− tanh t)

= n+ (n− 1)

(
n

1

)
H1(− tanh t) + ···+n

(
n

n− 1

)
Hn(− tanh t)n−1,

(2.20)

we obtain
∫

M

{(
nPn(− tanh t)− sinh t cosh t P

′
n(− tan t)

)〈ψ,a〉− conh2 tP
′
n(− tanh t)〈N ,a〉}dV

=
n∑

r=1

(n− r− 1)

(
n

r− 1

)
(− tanh t)r−1,

∫

M

(
Hr−1

〈
ψt,a

〉
+Hr

〈
Nt,a

〉)
dV = 0.

(2.21)

The left-hand side in the equality is a polynomial in the variable tanh t. Therefore, all its
coefficients are null. This completes the proof of Lemma 2.2. �

3. Proof of Theorem 1.1

Here we work for the immersed hypersurfaces in Sn+1
1 instead of embedded hypersurfaces

because we can only use algebraic inequalities and the integral formula above to com-
plete the proof. Let some Hr be a positive constant. Multiplying (2.17) by Hr and then
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abstracting from (2.6), we obtain that
∫

M

(
H1Hr −Hr+1

)〈N ,a〉dV = 0. (3.1)

We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2
r , where the equality implies

that k1 = ··· = kn. Hence

Hr−1
(
H1Hr −Hr+1

)≥Hr
(
H1Hr−1−Hr

)
. (3.2)

It derives from Lemma 2.1 that

0≤H1/r
r ≤H1/r−1

r−1 ≤ ··· ≤H1/2
2 ≤H1. (3.3)

Thus we conclude that

Hr−1
(
H1Hr −Hr+1

)≥Hr
(
H1Hr1 −Hr

)≥ 0, (3.4)

and if r ≥ 2, the equalities happen only at umbilical points of M. We choose a constant
vector a such that |a|2 =−1 and a0 ≤−1. Since the normal vector N satisfies |N|2 =−1,
we have 〈N ,a〉 ≥ 1 on M. It follows from (3.1) that

H1Hr −Hr+1 = 0. (3.5)

Thus, k1 = ··· = kn, M is totally umbilical, and M is isometric to a sphere. This ends the
proof of Theorem 1.1.

If there is a convex point on M, that is, a point at which ki > 0, for all i= 1, . . . ,n, then
the constant rth mean curvature Hr is positive. By means of the same argument as that of
Theorem 1.1, we derive the following.

Corollary 3.1. Let M be a compact connected hypersurface immersed in the de Sitter space
Sn+1

1 . If for some fixed r, 1 ≤ r ≤ n, the rth mean curvature Hr is constant, and there is a
convex point on M, then M is isometric to a sphere.
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