Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 9 (2) 77-85: summer 2012 (J. Phys. Theor. Chem. IAU Iran) ISSN 1735-2126

Density Functional Theory Study of B₆C₄Si Cluster as a Novel Drug Carrier

P. Ardalan¹, H. Aghaie^{2,*}, M. Monajjemi¹ and T. Ardalan¹

¹ Ph. D. Student, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran ² Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

Received October 2012; Accepted November 2012

ABSTRACT

The aim of the present study was to prepare new cluster (B₆C₄Si) as an antibiotic carrier. Density functional theory (DFT) method at the B3LYP level of theory in conjugate with the 6-311G** basis set was used to evaluate the interaction between B₆C₄Si cluster and Penicillin. Binding parameters, HOMO, LUMO and HOMO- LUMO GAP were calculated. Results show the B₆C₄Si HOMO-LUMO gap value of 0.13351 decreasing by attach of Penicillin. The negative values of ΔH_b , ΔE_b and ΔG_b indicate that B₆C₄Si /Penicillin are thermodynamically stable. From NMR shielding calculations, it can be seen that the penicillin connects stronger to B₆C₄Si cluster in positive charges than negative charge. Thus by creating positive field, penicillin can be connected to the B₆C₄Si cluster and delivered easily by using a negative filed.

Keywords: B₆C₄Si cluster, Drug carrier, Thermodynamic parameter, Penicillin

INTRODUCTION

Most studies have been performed on carbon nanotubes [1-3] and C_{60} [4], due to there have been discovered. Many novel structures such as carbon nanocones, and boron nitride nanocones have been viewed as intermediate between nanotubes and grapheme sheet [5, 6]. Because of their unique properties than those of carbon structure, more recently nanocones are more focused by scientist [7] and they believe these systems will revolutionized new future of nanoscience and technology and thus opening a very new and a vast filed of theoretical and experimental research. Studying the publications about nanocones beginning since 1994 [8], with

employing various theoretical and experimental techniques to investigate properties of nanocones [9, 10], but most of these studies have been performed experimentally [11]. The fascinating novel structures of boron nitride (BN) [8] have been intensively studied, since they have unique and interesting properties such as [12, 13] and electronic mechanical properties [14-15]. Boron nanocones (BNNCs) represent an important class of nanocnes; consist of B and N atoms. The number of electrons in combination of B and N atoms is the same as two carbon therefore they have atoms. similar properties and also in some cases, they are

^{*}Corresponding author: h.aghaie@srbiau.ac.ir

better candidates to predict properties compare to other composite materials. BNNCs have been investigated and synthesized [8] and they have very interesting properties when compared with similar carbon nanostructure [16].

We have proposed a B_6C_4Si cluster as new carrier to attach to Penicillin, trough Si terminated atoms to investigate NMR shielding and thermodynamic properties.

COMPUTATIONAL DETAIL

In this study, density functional theory (DFT) calculation was used to optimize the molecular geometries of B_6C_4Si cluster, Penicillin and B_6C_4Si /Penicillin. Geometrical parameters were established and optimized. The optimized B_6C_4Si cluster, Penicillin and B_6C_4Si /Penicillin structures obtained from the Density Functional Theory B3LYP/6-311G** method (Figure 1 and 2).

It is known that DFT methods give lower HOMO–LUMO gaps than HF methods, and that is why we use a hybrid method B3LYP for the calculation of the HOMO–LUMO gaps [17]. The HOMO– LUMO gaps were calculated using a hybrid DFT method (Table 1) that incorporates exact exchange using the GAUSSIAN 03 software [18]. The binding energies were calculated using the following equation [19]:

 $\Delta E_{b} = E (B_{6}C_{4}Si / Penicillin) - E (B_{6}C_{4}Si) - E (Penicillin)$

Where E (B_6C_4Si/X) is the total electronic energy of the B_6C_4Si cluster with the attached Penicillin, $E(B_6C_4Si)$ is the electronic energy of the B_6C_4Si cluster, and E(X) is the electronic energy of the Penicillin. Also binding enthalpy, entropy and free Gibbs energy were calculated (Table 2).

Also the NMR isotropic shielding constants were calculated using the

standard GIAO (Gauge-Independent Atomic Orbital) approach of Gaussian 03 program package. a) The isotropic value σ_{iso} of the shielding tensor which can be defined as:

$$\sigma_{iso} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$

b) The anisotropy parameter $(\Delta \sigma)$ can be defined as:

If

$$\sigma_{11} - \sigma_{iso} \geq |\sigma_{33} - \sigma_{iso}| \quad \Delta \sigma = \sigma_{11} - \frac{\sigma_{22} + \sigma_{33}}{2}$$

If

$$\left|\sigma_{11} - \sigma_{iso}\right| \leq \left|\sigma_{33} - \sigma_{iso}\right| \quad \Delta \sigma = \sigma_{33} - \frac{\sigma_{22} + \sigma_{11}}{2}$$

and

c) The asymmetry parameter (η) is given by:

If

$$|\sigma_{11} - \sigma_{iso}| \ge |\sigma_{33} - \sigma_{iso}| \quad \eta = \frac{\sigma_{22} - \sigma_{33}}{\delta}$$

If

$$|\sigma_{11} - \sigma_{iso}| \leq |\sigma_{33} - \sigma_{iso}| \quad \eta = \frac{\sigma_{22} - \sigma_{11}}{\delta}$$

RESULT AND DISCUSSION

The HOMO–LUMO gaps were calculated using a hybrid DFT method that incorporates with exact exchange using the GAUSSIAN 03 software [18].

Table 1 displays the values of the HOMO, LUMO, and HOMO–LUMO gap, for B_6C_4Si cluster, Penicillin and B_6C_4Si /Penicillin. The B_6C_4Si cluster HOMO– LUMO gap value of 0.13351 decreasing by connecting of Penicillin. Table 2 displays the values of the binding parameters calculated for B_6C_4Si cluster attached to antibiotic. The negative values of ΔH_b , ΔE_b and ΔG_b indicate that B₆C₄Si /Penicillin are thermodynamically stable.

Fig. 1. The optimized structure of B_6C_4Si cluster.

Fig. 2. The optimized B_6C_4Si cluster inside Penicillin.

Table 1.	HOMO,	LUMO and	HOMO	LUMO	gap er	nergy o	f Penicillin,	B ₆ C ₄ Si	and B ₆ C ₄ Si	Penicillir	1 at
				6.2	11C**	hooin (rat				

Descriptors	B ₆ C ₄ Si / Penicillin	B ₆ C ₄ Si	Penicillin	
HOMO(eV)	-0.26639	-0.24922	-0.23219	
LUMO(eV)	-0.0337	-0.11571	-0.10561	
HOMO-LUMO(eV)	0.23269	0.13351	0.12658	

Table2. Binding parameter calculated from B3LYP level and 6-311G** basis set

Binding Parameter	B ₆ C ₄ Si /Penicillin
$\Delta E_b(kcal/mol)$	-1521.761545
$\Delta H_{b}(\text{kcal/mol})$	-1523.538625
$\Delta G_b(\text{kcal/mol})$	-1516.751585
$\Delta S_{b}(kcal/Kmol)$	-0.022775302

We studied B_6C_4Si cluster as a Penicillin carrier (Figure 1). Before and after connecting the Penicillin to B_6C_4Si , NMR calculations were performed in electric field of charges. NMR parameters are listed in Tables 4 to 5 in B3LYP level and $6-311G^{**}$ basis set.

σiso, σaniso, $\Delta \sigma$, δ and η curves versus atomic charges for B₆C₄Si and B₆C₄Si /Penicillin are plotted in Figures 3 and 4. These curves are drawn for B3LYP level and 6-311G** set. These curves show that partial atomic charges have same behavior on the magnetic shielding of atoms and also show that the NMR System is very sensitive to partial atomic charges. Maximum points are around 0.4. So we can find that most chemical shielding is around 0.4. These curves show that the mechanism of positive charge is difference from negative charge. Positive and negative areas are different. Discussion on a σ_{aniso} and σ_{iso} curves are similar. There is a main different between σ_{aniso} and σ_{iso} curves. In a σ_{iso} curve minimum is around 0.4 but in σ_{aniso} curve maximum is around 0.4. This is also predictable and shows that these curves are very sensitive. δ and η are the results of σ_{iso} and σ_{aniso} . The minimum and maximum of σ_{iso} and σ_{aniso} curve shift to the 0.8 by connecting penicillin. Also δ and η curves have a similar behavior. The a)

results show that penicillin to connect stronger to B_6C_4Si cluster in positive charges than negative charge. Thus by creating positive field, penicillin can be connected to the B_6C_4Si cluster and delivered easily by using a negative filed. So B_6C_4Si is good carrier for penicillin.

CONCLUSION

The interaction between penicillin and B₆C₄Si cluster have been investigated with density functional theory using B3LYP method and 6-311G** basis set. We analyzed the electronic structure and charge Mulliken population for the energetically most favorable complexes. Our results indicated that penicillin can form stable bindings with B₆C₄Si via the Si active site. Binding parameters, HOMO, LUMO and HOMO- LUMO GAP were calculated. Also the NMR shielding tensors have been investigated. The results show that penicillin connects stronger to B₆C₄Si cluster in positive charges than negative charge. Thus by creating positive field, penicillin can be connected to the $B_6C_4S_1$ cluster and delivered easily by using a negative filed. Thus, we arrive at the prediction that the $B_6C_4S_1$ can be implemented as a novel material for drug delivery applications.

c)

d)

Fig. 3. Curve of a) σ_{iso} (ppm), b) σ_{aniso}(ppm), c) Δσ(ppm), d) δ(ppm) and e) η versus atomic charge for B₆C₄Si cluster.
 a)

Atomic Charge

P. Ardalan et al. /J. Phys. Theor. Chem. IAU Iran, 9(2): 77-85, Summer 2012

Atomic Charge

Fig. 4. Curve of a) $\sigma_{iso}(ppm)$, b) $\sigma_{aniso}(ppm)$, c) $\Delta\sigma(ppm)$, d) $\delta(ppm)$, and e) η versus atomic charge for B_6C_4Si /Penicillin.

Ρ.	Ardalan e	et al. /J	. Phys.	Theor.	Chem.	IAU Iran,	9(2):	77-85,	Summer 2012
----	-----------	-----------	---------	--------	-------	-----------	-------	--------	-------------

Atom	Detminan (NMR)	ΔE(J)	δ (ppm)	η	$\Delta \sigma(\text{ppm})$	Dipole Moment(D)	Atomic Charge
C (1)	324549.5925		-88.3601	-0.47	203.286		-0.215358
C (2)	91210.39027		-79.7009	-0.82	141.5942		-0.321866
B (3)	-297083.4761		-92.5767	0.92	-138.8651		-0.175145
B (4)	622371.3027		-85.1298	0.20	-127.6947		0.155613
C (5)	-31317.10107		-90.765	0.96	-136.14745		-0.130329
C (6)	-407968.0926	-1.5E+09	-99.1925	0.18	-148.78875	1.1104	0.092395
B (7)	766241.292		-64.5782	0.50	-96.86725		-0.181616
B (8)	-157207.8245		-72.671	0.67	-109.00645		0.211138
B (9)	384056.2708		-67.5724	0.97	-101.3585		0.053974
Si (10)	-16846750.47		-382.4966	0.95	-573.74485		0.501028
B (11)	-319285.5704		-95.1222	0.47	-142.6834		0.010166

Table 3. List of calculation NMR Parameters for B_6C_4Si by $B3LYP/6-311G^{**}$ method.

Table 4. List of calculation NMR Parameters for B_6C_4Si /Penicillin by B3LYP/6-311G** method.

Atom	Detminan (NMR)	ΔE	δ (ppm)	η	$\Delta \sigma$ (ppm)	Dipole Moment(D)	Atomic Charge
C (1)	3033368.717		-30.4481	-0.93	48.85		-0.397152
C (2)	422547.0239		-68.7821	-0.58	146.922		-0.690857
B (3)	-342258.4627		-93.1542	0.50	-139.73		0.143035
B (4)	426745.9574		-36.7699	-0.19	99.7747		0.144491
C (5)	2306111.88		-55.6915	0.60	-83.537		-0.424287
C (6)	2945357.158		-172.6675	-0.85	297.141		-0.186722
B (7)	159408.0577		-39.9708	-0.40	95.6749		-0.220684
B (8)	-30279.00586		-80.2989	-0.82	142.204		0.309268
B (9)	-157466.0201		-69.2395	0.18	-103.86	3.8485	0.036259
Si (10)	9143775.882		-151.6397	0.34	-227.46		0.978172
B (11)	684718.5983		-52.6498	0.27	-78.975		0.035222
C (12)	937514.2403		-48.3091	0.48	-72.464		-0.084408
N (13)	299703.0466		-80.5478	-1.00	121.224		-0.337054
C (14)	1361018.085	5E±00	-26.0177	0.36	-39.027		0.020314
C (15)	807184.7651	-3E+09	-54.4682	0.60	-81.702		-0.372228
S (16)	21847496.05 1281290.646 -405946.2365		-216.3163	-0.54	474.245		0.073878
C (17)			-30.9273	0.44	-46.391		-0.100247
C (18)			-104.5761	0.13	-156.86		0.413104
O (19)	19436180.09		-234.9577	-0.45	545.292		-0.320945
N (20)	12502.67526		-78.5841	0.42	-117.88		-0.627016
C (21)	3563100.941		-21.5198	-0.77	39.8308		-0.229279
C (22)	3265769.374		-22.2767	-0.71	43.1639		-0.219663
C (23)	-217654.8291	-217654.8291	-98.0186	0.56	-147.03		0.392063
C (24)	3779871.401		-21.3534	-0.75	40.1208		-0.340014
O (25)	42922219.32		-392.9545	-0.81	699.776		-0.335708
C (26)	-301614.5992		-100.5093	0.25	-150.76		0.377629
O (27)	20548744.43		-227.9737	-0.39	549.778		-0.32594
O (28)	-981550.5451		-158.249	0.75	-237.37		-0.341968

REFERENCES

- S. Iijima (1991). Helical microtubules of graphitic carbon. Nature (London)., 354: 56-58.
- [2] S. Iijima, T. Ichihashi (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature London., 363: 603-605.
- [3] D. S. Bethune, C. H. Klang, D.E. Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomiclayer walls. Nature London., 363: 605-607
- [4] H. W. Kroto, Heath JR, S. C. OBrien, R.
 F. Curl, R. E. Smalley (1985). C60: Buckminsterfullerene. Nature London. 318: 162-163.
- [5] K. Sattler (1995). Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon., 33: 915-920.
- [6] C. Zhi, Y. Bando, C. Tang, D.Golberg (2005). Electronic structure of boron nitride cone-shaped nanostructures. Phys. Rev. B., 72: 245419.
- S. Iijima, T. Ichihashi, Y. Ando (1992).
 Pentagons, heptagons and negative curvature in graphite microtubule growth.
 Nature (London)., 356 :776-778
- [8] Rubio, J. L. Corkill, M. L. Cohen (1994). Theory of graphitic boron nitride nanotubes. Phys. Rev. B., 49:5081-5084.
- [9] . Qu, L. Qiao, C. Wang, S. S. Yu, W. Zheng, Z. Fu, Q. Jiang (2008). Firstprinciples density-functional calculations on the field emission properties of BN nanocones.QSolid State Commun., 146:399-402.
- [10] H. Zhang, Q. Zhao, J. Yu, D. P. Yu, Y. Chen (2007). Field-emission

characteristics of conical boron nitride nanorods. J. Phys. D. Appl. Phys., 40:144-147.

- [11] L.Bourgeois, Y.Bando, W. Q. Han, T. Sato (2000). Structure of boron nitride nanoscale cones: Ordered stacking of 240 degrees and 300 degrees disclinations. Phys. Rev. B., 61: 7686-7691.
- [12] S. N. Song, X. K.Wang, R. Chang, J. B. Ketterson (1994). Electronic properties of graphite nanotubules from galvanomagnetic effects Phys. Rev. Lett., 72: 697-700.
- [13] B. I. Yakobson, R. E. Smalley (1997).
 Fullerene Nanotubes: C1,000,000 and Beyond. Am. Sci., 85:324-337.
- [14] J. Depres, E. Daguerre, K. Lafdi (1995). Flexibility of graphene layers in carbon nanotubes. Carbon., 33: 87-89.
- [15] S. Iijima, C. J. Brabec, A. Maiti, J. Bernholc (1996). Structural flexibility of carbon nanotubes. J. Chem. Phys., 104: 2089-2092.
- [16] M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura (2000). Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett., 324:359-364.
- [17] Jensen. F, Introduction to Computacional Chemistry, second edn., John Wiley and Sons, NJ, USA, 2007.
- [18] M. J. Frisch, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
- [19] M.V. Veloso, A.G. Souza Filho, J. Mendes Filho, S.B. Fagan, R. Mota, Chem. Phys. Lett. 430 (2006) 71.