Mirages with atmospheric gravity waves

Waldemar H. Lehn, Wayne K. Silvester, and David M. Fraser

The temperature inversions that produce superior mirages are capable of supporting gravity (buoyancy)
waves of very low frequency and long wavelength. This paper describes the optics of single mode gravity
waves that propagate in a four-layer atmosphere. Images calculated by ray tracing show that (1)
relatively short waves add a fine structure to the basic static mirage, and (2) long waves produce cyclic
images, similar to those chserved in the field, that display significant variation from a base image.
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1. Introduction

Mirages observed over an interval of time occasion-
ally display slow variations that seem to be periodic.
This can be seen in Fig. 1, a sequence photographed at
Tuktoyaktuk, Northwest Territories, Canada, on 16
May 1979. The images show mirages of Whitefish
Summit, a low hill at a distance of 20 km, whose
normal appearance is shown in Fig. 2. The mirages
move through a sequence of shapes that roughly
repeats itself.

The time at which each photograph was made is
shown on the images; the time zone is Mountain
Daylight Time. At the time we did not suspect any
periodicity, hence the times are not at uniform inter-
vals. That is also why the sequence ends abruptly
(at 8:30 a.m.). Considering the similarity between
Figs. 1a and 1g, one could say that this interval of
~ 28 min is one period. Although the second cycle
does not duplicate the first, there are significant
points of similarity between the corresponding im-
ages of Figs. 1c and 1iin the top and the bottom thirds
of the mirage.

Another point of importance is the appearance of
repetitive fine structures in Figs. 1b and 1h, which
show up as jagged edges in Figs. 1fand 1i.

As the observer and the target object are both
stationary, the changing images imply some kind of
periodic motion in the atmosphere. A candidate for
this motion is the atmospheric gravity wave! (buoy-
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ancy wave), which can exist in stratified atmospheres
of the type that produces mirages. The frequencies
of gravity waves can be low enough to fit the observed
time scale (minutes to tens of minutes). Fraser?
uses them to explain sun images with jagged edges.
However, to our knowledge, no previous work has
been done to calculate and study such images. The
purpose of this paper is to investigate the nature of
image modifications produced by gravity waves and to
compare the computations with field observations.

2. Gravity Waves

Gossard and Hooke? derive the equations of motion
for gravity waves that are used here. This section
follows their development and notation.

Initially the atmosphere is considered stably strati-
fied and spherically symmetric, concentric with the
earth. Thetemperature profile is an inversion, which
is necessary for the superior mirage. Variations in
pressure, velocity, and temperature are considered
slow, as well as small, relative to their equilibrium
values. This permits the use of linearized equations.
If we further consider any waves to be propagating in
the x—z plane (by choice of coordinates: x along the
line of sight, z vertical) then the problem becomes two
dimensional. The differential equations for the mo-
tion are

ou 1
% e o
Po 0x
ow 1adp p
= g @)
at Po 92 Po
ap Ipo ou ow
ot 20 wt%=0 ®)

20 July 1994 / Vol. 33, No. 21 / APPLIED OPTICS 4639



"3:05:30~

Fig. 1. Mirages of Whitefish Summit, seen from Tuktoyaktuk,
Northwest Territories, Canada, on 16 May 1979. The numbers
indicate Mountain Daylight Time.

where 1, w are the x and z velocity perturbations from
equilibrium, p and p are density and pressure pertur-
bations, respectively, p, is the reference (equilibrium)
density, and g is the acceleration of gravity.

The equations of motion are satisfied by wave
solutions for u, w, and p. In particular, w = w,
expli(kx — wt)] and p = p, expli(kx — wt)], where w,
and p, (functions of z only) have the form exp(l402)
[A exp(imz) + B exp(—imz)]. The spatial frequency m
is related to the Vaisala—Brunt frequency N by

(5)

Fig. 2. Normal appearance of Whitefish Summit over the same
line of sight as in Fig. 1.
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The function I' is given by

I'=-N2/2g+ g/2c?. (8)
The parameter &, which is given by
1 9p,
o= — E’; o (7)

is assumed to be constant, i.e., the reference density
po is an exponential function of z, with scale height
1/a. As the atmosphere’s scale height is ~ 8000 m,
a is very small, and the exponential is nearly equal to
unity for z below 100 m. Further, ¢, is the speed of
sound, and c, is the specific heat of air at constant
pressure.

The model used here consists of four layers of
constant temperature gradient with no wind shear; it
is based on a three-layer case study by Gossard and
Hooke.* Four layers are sufficient to approximate
actual inversions quite well. Figure 3 shows the
four-layer approximation to a temperature profile
that was calculated to reproduce the mirage of Fig. le
under static conditions.® The dispersion equation
that relates %z and w (i.e., that identifies waves that the
system can support) is then found by the requirement
that all four layers have the same x,t dependence (the
complex exponential given above) and by application
of conditions of continuity on w, and dw,/dz at the
internal layer boundaries. At the ground (z = 0) and
at the atmosphere’s upper limit, w, is zero. The first
few solutions (the lowest-order modes) for the four-
layer model of Fig. 3 are shown in Fig. 4. Although
natural waves can consist of linear combinations of
several modes, this study considers only single mode
waves. Selection of a specific 2, w pair permits the
four amplitude functions w, to be found for the layers
to within a common multiplicative constant. These
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Fig. 8. Four-layer piecewise linear profile (solid curve) fitted to a

temperature profile (open circles) that produces the mirage of
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Fig. 4. Solutions to the dispersion equation for the four-layer
model of Fig. 3; the three lowest-order modes are shown.

solutions give the incremental vertical velocity compo-
nents at each elevation; integration of w with respect
to ¢ gives the vertical displacement from equilibrium.

The motion is considered to be adiabatic. The
isotherms of the undisturbed atmosphere, originally
at constant elevations above the Earth’s surface, now
take on the sinusoidal shapes given by the wave
solutions. The wave amplitude derived from the
four-layer model is applied to each corresponding
point of the actual profile. A typical wave plot is
shown below with the examples (Fig. 6).

3. Ray Tracing

We calculate mirage images by tracing a bundle of
light rays projected from the observer’s eye. The
atmosphere is modeled as a set of concentric spherical
shells. The temperature profile, required by the
program as input data, specifies a set of elevations
and their temperatures. These elevations define iso-
therms that form the boundaries between the spheri-
cal shells (layers). The temperature is continuous
and varies linearly within the layer; with a sufficient
number of points the piecewise linear profile approxi-
mates a smooth natural profile quite well.6

To calculate the waves, we fit a four-layer model to
the input temperature profile, as we did in Fig. 3.
An off-line Mathcad program is used to find m for each
layer and to solve the dispersion equation (input o,
find %2). Then the wave amplitudes are found, and
the appropriate four-layer solution is applied to each
elevation in the input profile. For the values used in
the calculations, wave amplitudes of a few meters and
wavelength of a few kilometers, the layer slopes are
sufficiently small that the normal to each layer can be
taken as vertical. Temperature between the (now
sinusoidal) isotherms is linearly interpolated in the
vertical direction. As pressure changes very little

over the wave amplitude, pressure values at the static
layer levels are used.
The general form? for local ray curvature k is

1
k= Vn, (8)

where n is the refractive index of air, and ¥ is the unit
normal to the ray path. It becomes

€p dT 9
K—nTgB+dzcos¢ (9)

when gradients are approximated as vertical. Here,
¢ is the ray slope angle, and € and B are constants
(226 x 107¢ and 3.48 x 1073, respectively). To sim-
plify the computation, we approximate the rays as
sequences of short parabolic arcs; the Earth’s surface
is similarly represented. Every time a ray intersects
an isotherm, parameters are recalculated, and a new
arcisbegun. The intersection of the ray bundle with
the target determines the nature of the image seen by
the observer, as the eye interprets the rays as straight.

4. Nature of the Images

The photographic subject of the two cases below is
Whitefish Summit. It is one of many low, rounded
hills, locally known as pingos, that rest upon rem-
nants of glacial ice. The map of Fig. 5 shows the
locations of Tuktoyaktuk and Whitefish Summit on
the shores of the Beaufort Sea. The 20-km line of
sight, from an observer elevation of 2.5 m, passes
entirely over sea ice. Aside from the pingos, the
landscape to the south is relatively flat; in this region
there is no elevation above 50 m within 15 km of the
coast. Various estimates exist for the peak elevation
of Whitefish Summit. For this analysis the value of
18.7 m, which is based on the average of numerous
theodolite measurements from Tuktoyaktuk, is used.
The exact value is not critical to the conclusions
because the atmospheric model can be suitably scaled.
At the time of the observations of Fig. 1 (case 2 below)
there was no noticeable wind. However, it seems
intuitive that a slow drift of air from the south over

69930°N

Beaufort Sea Tuktoyaktuk

Whitefish 20

Summit

133°W

Fig. 5. Map of the Tuktoyaktuk region.
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the slightly undulating landscape could be the source
of the gravity waves.

A. Casel

This example demonstrates the jagged-edge effect by
artificial application of a gravity wave to a static
mirage. As mentioned in Section 2, the static recon-
struction of Fig. le produced the atmosphere whose
temperature profile is shown in Fig. 3. Figure 3 also
shows the four-layer approximation used to generate
a gravity wave, which is assumed to travel along the
line of sight. The wave frequency w was arbitrarily
selected to be 0.004 s™!, for which the corresponding
period of 26 min roughly matches the observed period
of the Fig. 1 sequence. The corresponding lowest-
mode wave number, from Fig. 4, is 2 = 0.00139 m~};
the wavelength is 4530 m. It should be noted that
this wavelength is a lower bound for this mode: if
the wave vector were not parallel to the line of sight,
the apparent wavelength experienced by the light
rays would increase. This concept is applied in
case 2.

The vertical wave numbers () values) for the lowest
three layers, starting at the bottom, are 0.0174,
0.0324, and 0.0548 m~1, whereas in the top layer the
vertical wave decays as exp(—0.00171z). Wave am-
plitude at elevation 11.2 m is 2.0 m. To give an
impression of the ray paths through the waves, a few
rays and waves are shown in Fig. 6 (the observer is at
x = 0); the actual calculation uses a far larger number
of each. The wave has the given position at ¢ = 0; it
is advanced to the right by quarter wavelengths to
produce four different images. Each image is deter-
mined by its transfer characteristic (TC), which is a
mapping of apparent ray elevation versus actual ray
elevation in the target plane. Figure 7 shows the
four quarter-period TC’s, as well as the one for the
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Fig. 6. Selected waves and rays for the example of case 1. The
rays receive most of their deflection in the zones of highest
temperature gradients, which are shaded (see also Fig. 3). The
initial ray elevation angles span the range from 2 to 14 arcmin, in 2’
steps.
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Fig.7. Comparison of TC’s. The open circles show the TC in the
absence of waves; the remaining four curves correspond to wave
positions at successive quarter-periods.

static case (no waves). Although it is difficult to
isolate the TC for each wave, Fig. 7 shows the trend:
all four have the same overall shape, with small
differences in fine structure. The waves create these
fine irregularities; as the waves advance, the irregu-
larities shift around, but change little in size.
Further, the wave TC’s are similar to the static TC,
except at the top, where the waves permit light rays
with large initial angles (refracted downward by the
static atmosphere) to escape upward out of the inver-
sion. The four quarter-period images, which were
calculated by means of a mirage simulator program,?
are seen in Fig. 8; they should be compared with the
static equivalent, Fig. le. It can be seen that the
static and the wavy images have rather similar shapes;
however, the small ray deflections produced by the
waves create the jagged edges.

Fig. 8. Mirages calculated by application of the TC's of Fig. 7 to
the normal image of Whitefish Summit (Fig. 2).



Fig. 9. Reference image (without waves) for case 2.

B. Case?2

In this example, an attempt is made to reconstruct
the first period of the whole observed sequence of Fig.
1. This image sequence can be viewed as a set of
deviations from a base or average image that would be
seen in the static case. We create such an image,
shown in Fig. 9, by experimentally manipulating a TC
and running the mirage simulator. Next the corre-
sponding temperature profile is obtained, to which
the four-layer model is fitted; see Fig. 10. The same
frequency as in case 1 is used: « = 0.004s7!. But
now a k value lower than that given by the dispersion
equation is used: k2 = 0.0007 m~! (A = 9000 m).
To a first approximation this can be justified by con-
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Fig. 10. Four-layer fit (solid curve) to the temperature profile
(open circles) that generates the reference image.

Fig. 11. Mirage sequence that approximates the observed se-
quence of Fig. 1. The wave advances by one-eighth wavelength
between successive images.

sidering that the wave is propagating at an angle to
the line of sight, rather than alongit. Here the wave
vector would make an angle of 60° with the sight line.
For a wave amplitude of 2.5 m at 14 m, the images at
one-eighth wavelength intervals are shown in Fig. 11.
A more radical change of shape is observed because
the very long waves have a length and a shape rather
similar to the upper arcs of the rays and interact
strongly with them. The base mirage can be seen to
grow and shrink as the wave passes. The calculated
sequence bears reasonable resemblance to Fig. 1.

5. Conclusion

The gravity wave mirage model produces images very
similar to those observed in the field. For waves of
relatively short wavelength, for which many cycles
exist in the optical path, the waves produce a spatially
repetitive fine structure most often seen as jagged
edges. For longer wavelengths, with only one or two
cycles in the line of sight, significant periodic changes
occur in the images, which can be interpreted as
deviations from an average image that would be seen
in the static case. The calculated shape varies in a
manner similar to that observed in nature.

This research was supported in part by the Natural
Sciences and Engineering Research Council of Canada.

References

1. J. Lighthill, Waves in Fluids (Cambridge U. Press, Cambridge,
1978), Chap. 4, pp. 284-316.

2. A. B. Fraser, ‘“The green flash and clear air turbulence,”
Atmosphere 13, 1-10 (1975).

3. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere
(Elsevier, New York, 1975), Chap. 2, pp. 75--77.

4. Ref. 3, Chap. 5, pp. 150-156.

5. W. H. Lehn, “Inversion of superior mirage data to compute
temperature profiles,” J. Opt. Soc. Am. 73, 1622-1625 (1983).

6. W. H. Lehn, “A simple parabolic model for the optics of the
atmospheric surface layer,” Appl. Math. Model. 9, 447-453
(1985).

7. O.N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics
(Academic, New York, 1972), Chap. I1I, p. 38; curvature is found
by taking the dot product of Eq. (III-10) with the unit normal 5.

8. W. H. Lehn and W. Friesen, “Simulation of mirages,” Appl.
Opt. 31, 1267-1273 (1992).

20 July 1994 / Vol. 33, No. 21 / APPLIED OPTICS 4643



