
Computer Technology and Application 4 (2013) 356-363

Evaluation of Program Code Caching for Mobile Agent
Migrations

Masayuki Higashino, Kenichi Takahashi, Takao Kawamura and Kazunori Sugahara
Department of Information and Electronics, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan

Received: May 27, 2013 / Accepted: June 27, 2013 / Published: July 25, 2013.

Abstract: Mobile agents are able to migrate among machines to achieve their tasks. This feature is attractive to design, implement, and
maintain distributed systems because we can implement both client-side and server-side programming in one mobile agent. However, it
involves the increase of data traffic for mobile agent migrations. In this paper, we propose program code caching to reduce the data
traffic caused by mobile agent migrations. A mobile agent consists of many program codes that define a task executed in each machine
they migrate; thus, the mobile agent migration involves the transfer of their program codes. Therefore, our method reduces the number
of the transfer of program codes by using program code cache. We have implemented our method on a mobile agent framework called
Maglog and conducted experiments on a meeting scheduling system.

Key words: Mobile agent, agent migration, cache.

1. Introduction

Advances of wireless connection technologies enable
us to connect to the Internet anywhere and anytime.
Nowadays, not only personal computers but also various
appliances, such as personal computers, mobile phones,
car navigation systems, and televisions, are connected to
the Internet. Thus, ubiquitous network environment
would be realized in near future. In a ubiquitous network
environment, their numerous appliances will
communicate and work together for providing helpful
services to us. Such an environment requires us to
implement complex network-based systems.

Socket programming and RPC (remote procedure
call) are most traditional ones to implement such a
network-based system. We, however, need to
implement two programs, client-side program and
server-side program. This complicates the maintenance
of the system because the modification of the system
involves the modification of both client-side and

Corresponding author: Masayuki Higashino, doctoral

student, research field: distributed computing. E-mail:
s032047@ike.tottori-u.ac.jp.

server-side program. As the countermeasure of this
complication, many researchers pay attention to mobile
agent systems.

A mobile agent system is constructed from many
mobile agents. A mobile agent is able to migrate among
machines to achieve its tasks. We can use mobile agent
migration instead of communications between the
server and the client. Since the mobile agent can
continue its works over the machines, we do not need
to elaborate a client- and server-side program pair.
Thus, we can implement a server-side and client-side
program as one mobile agent. This enables us to
implement a network-based system in a ubiquitous
computing environment without being aware of
communications APIs and protocols. Such a mobile
agent system is attractive to design, implement and
maintain a distributed system; however, it involves the
increase of data traffic caused by mobile agent
migrations.

Therefore, many researchers have proposed to
mitigate data traffic caused by mobile agent migrations.
Ref. [1] proposes a method to select an efficiency

DAVID PUBLISHING

D

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357268308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

migration ro
average pac
proposes th
before the m
however, di
agent migra
message to
use network
agent is dist
However, th
to be utilized
situations to
and/or netwo
require us t
agent.

OMG (Ob
standards co
apply a cach
Agent Spac
They, howe
mechanism
a cache mec
agent system
mechanism.
of a cache m

Before we
we should d
cache mech
migrations.
of a typical
Section 3,
protocol for
implement
framework
effectivenes
and a practi
conclude the

2. Mobile

A mobile
mobile agen

E

oute calculate
cket loss rate
hat a machin

migration of th
fficult for a m

ates. Ref. [3]
distribute a m

k bandwidth e
ributed on so

he situation th
d is limited. T
o be applied
ork environm
to change th

bject Manage
onsortium of
he mechanism

ce [5] also m
ever, do no
and protocols
chanism is n

ms such as Re
Thus, in this

mechanism an
e discuss a ca
discuss mobi
hanism and p
Therefore, w
mobile agen
we design

r an effective
our mecha
called Ma

s on various
ical applicati
e paper in Sec

Agent Syst

e agent syste
nts and Agent

Evaluation of

d from the rou
e of ping me
ne transfers

he agent happ
machine to p
 proposes to
mobile agent
efficiently be
ome machines
he multicast
Thus, these ap
d within a s

ment. Further,
he behaviors

ement Group
f a mobile ag
m to mobile

mentions a ca
ot show the
s. Further, the

not well-studi
efs. [6，7] im
s paper, we d
nd protocol.
ache mechani
le agent syst

protocol are f
we define the
nt in Section

the cache
e mobile agen
anism on a
aglog, and

patterns of
ion in Sectio
ction 5.

tem

m is usually
Runtime Env

Program Cod

und-trip time
essages. Ref.

program co
ens actually.

predict where
o use a multi
t. This enable
ecause the mo
s simultaneou
message ena

pproaches res
specific situa
these approac
of each mo

p) [4], which
gent, mention

agent migrat
ache mechan
e detail of
e effectivenes
ied even if s
mplement a ca
discuss the de

ism and proto
tems because
for mobile a
internal struc
2. After tha
mechanism

nt migration.
a mobile a

we show
agent migrat

on 4. Finally,

y structured f
vironments A

de Caching fo

e and
. [2]
odes
It is,

e the
icast
es to
obile
usly.
ables
strict
ation
ches
obile

is a
ns to
tion.

nism.
the

ss of
ome
ache

etails

ocol,
e the
agent
cture
at, in

and
We

agent
its

tions
, we

from
AREs

(age
stru

A
netw
exe
mig
the
dist
mob
age
rese
rese
plan

A
of
imp
exe
fun
task
each
wou
to a
sch
imp

C
ther
inst
uns
age
It w
each
Ref
inst

Fig.

or Mobile Ag

ent runtime e
ucture is a typ
An ARE is ins
work, and p

ecutions of ta
grates among

AREs, and
tributed on
bile agent tri

ent, firstly, g
ervation of a
ervation sites
n to a user.
As mentioned

AREs and
plemented in
ecutions of t
ctions are al
ks of each m
h. For examp
uld have a tas
adjust meeting
edules amon

plementing in
Considering t
re are two c
talled in, AR
suitable to in
ents, because
will involve
h mobile age
fs. [1-3]. On
tallation of a

. 1 Overview

ent Migration

environments)
pical structure
stalled in each
provides som
asks of mobil
g the network
accomplishes
the network
ies to make a
goes on airlin
an air ticket;
s to reserve a

d here, a mob
mobile ag

n AREs are
tasks of mo
lmost same i

mobile agent
ple, a mobile
sk to make a
g schedules w

ng attenders.
n each mobile
the installatio
candidates a

REs and mobi
nstall a cach
each mobile
the change o

ent as same a
the other han
cache mech

of a mobile ag

ns

), as shown in
e mentioned i
h machine dis

me functions
le agents. A m
k by using the
s its task usi

k. For examp
a plan of sig
ne company
and then, g

a room; finall

bile agent sys
gents. Almo
e prepared
obile agents,
in each ARE
are naturally
e agent ment
trip plan. A

would have a
Thus, the pr

e agent are dif
on of a cache

cache mech
ile agents. H

he mechanism
agent has di

of the implem
as approaches
nd, when we
hanism into A

gent system.

357

n Fig. 1. This
in Ref. [8].
stributed on a

to help the
mobile agent
e function of
ing resources
ple, when a

ghtseeing, the
site for the

goes on hotel
ly, shows the

stem consists
st functions
to help the
, thus, their

Es. However,
y different in
tioned above
mobile agent
task to adjust

rogram codes
fferent.

e mechanism,
hanism to be

However, it is
m in mobile
fferent tasks.
mentation of
s proposed in

consider the
AREs, we do

7

s

a
e
t
f
s
a
e
e
l
e

s
s
e
r
,

n
e
t
t
s

,
e
s
e
.
f
n
e
o

358

not need to
AREs beca
common fu
mechanism t
mobile agen
mechanism
on the ARE

2.1 Internal

We propo
mobile agen
answer this
model of a
model of a m
8-10]. This m
agent system
Aglets [12],

A mobil
application d
manages var
counters, an
constantly c
The applicat
example, in
application
attenders’ li
mobile agen
a mobile ag
tasks by the

When we
agent migra
cacheable o
stores the du
data are reus
If the duplic
duplication i

A runtime
it constantly
behavior. T
un-cacheabl
does not c

E

o pay attentio
ause almost
unctions. The
to install in A

nt application
because the
layer.

Model of a M

ose to apply
nt migration. W

question, we
mobile agen

mobile agent f
model is much
ms such as
and so on.

le agent co
data, and prog
riables such a
nd so on.

change while
tion data are
n a meetin
data may inc
st of meeting

nt. The progra
gent. The mo
execution of
try to apply

ation, we h
r un-cacheab
uplication of
sed later inste
ation data cha
is useless any
e state is mea
y changes a

Thus, we co
e. A program

change. How

Evaluation of

on to the di
AREs are

erefore, we
AREs. Thus, p

need not tak
cache mecha

Mobile Agent

y a cache m
What enables
e have to dis
nt. We can m
from the discu
h conformed
Ref. [11], A

onsists of a
gram codes. T
as call stack p
Data in th

e a mobile a
related to an

ng schedulin
clude users’

gs. These data
am codes repr
obile agent p
f program cod
a cache mech

have to clas
ble data. A c
f original data
ead of getting
ange from the
ymore.
aningless to b
according to
onclude a r

m code is cach
wever, we c

Program Cod

fference of e
composed f
design a ca

programmers
ke care of a ca
anism is work

mechanism fo
 to be cached

scuss the inte
make the typ
ussion in Ref
to a lot of mo

Agent Space

a runtime s
The runtime s
pointers, prog
e runtime s

agent is work
n application.
ng system,

preferences
a depend on e
resent the task
proceeds with
des.
hanism to mo
ssify them

cache mechan
a, the duplica
the original d

e original data

e cached bec
mobile age

runtime state
heable becau
cannot conc

de Caching fo

each
from
ache
of a

ache
king

for a
? To
ernal
pical
fs. [4,
obile

[5],

state,
state
gram
state
king.
 For
the
and

each
ks of
h its

obile
into

nism
ation
data.
a, its

ause
ent’s
e is

use it
lude

app
it d
app
hav
cach
age
pro
imp
only
mec

2.2

W
dest
runt
the
usu

1
age

2
the

3
sou

4
app
AR

5
pro
rece

6

Fig.

or Mobile Ag

plication data
depends on
plication data
ve to entrust th
heable or un-

ent application
grammers

plementation
y program
chanism.

Migration of

When an age
tination ARE
time state, ap
destination A

ually modeled
1. A source
ent tries to mi
2. The destin
migration of

3. If the dest
urce ARE stop
4. The sour
plication data
RE.
5. The destin
gram codes,
eived from th
6. The destina

. 2 Steps for m

ent Migration

is cacheable
an applicatio
as the object
he classificat
-cacheable to
n. This would
want to
of an applic
codes as t

f a Mobile Ag

ent migrates
E, the source
pplication da

ARE. The step
d as Fig. 2.
ARE connec
grate to the d

nation ARE re
f the agent or
tination ARE
ps the agent.
rce ARE tra

and program

nation ARE r
, a runtime

he source ARE
ation ARE act

mobile agent m

ns

e or un-cache
on. If we de
of a cache me

tion of the app
programmer

d not be prefe
devote onl
ation. Thus,
the object

gent

from a sourc
e ARE has t
ata and progr
ps for agent m

ts a destinati
destination AR
esponses whe
not.

E allows the m

ansfers a ru
m codes to th

econstructs a
 state, appl
E.
tivates the ag

migration.

eable because
eal with the
echanism, we
plication into
rs of a mobile
erred because
ly to the
we focus on
of a cache

ce ARE to a
to transfer a
ram codes to
migration are

ion ARE, an
RE.
ether it allows

migration, the

untime state,
he destination

an agent from
lication data

gent.

e
e
e
o
e
e
e
n
e

a
a
o
e

s

e

,
n

m
a

Evaluation of Program Code Caching for Mobile Agent Migrations

359

When we apply a cache mechanism to mobile agent
migration, we have to add steps for a cache mechanism
in these steps.

3. Cache Mechanism for Mobile Agent
Migration

A cache mechanism stores the duplication of
original data (cached data), and provides cached data to
a requester instead of getting the original data. A cache
mechanism is used as CPU (central processing unit)
cache, web cache, DNS (domain name server) cache,
and so on. These mechanisms cut the transfer of data
from a requester (e.g., web server in web cache) to a
requester (e.g., web browser); thus, cached data are
managed by the requester. On the contrary, data are
transferred from a requester to a requester in mobile
agent migration because a mobile agent migrates from
a source ARE (requester) to a destination ARE
(requester). When we apply a cache mechanism to
mobile agent migration, a source ARE, first, has to
check which data is cached. As discussed in Section 2.1,
the object of our cache mechanism is program codes.
Therefore, we need to identify each program code for
the check of a program code cached in a destination
ARE.

3.1 Identification of Program Code

One mobile agent usually consists of many program
codes. Some of these program codes are implemented
by the programmer of a mobile agent application, but
some may be OSS (open source software) downloaded
from the Internet. Further, different programmers may
use a same name in different program codes. If we
create the identifier of each program code from a name
such as a file name, a function name, and so on, it may
cause cache poisoning. If cache poisoning occurs, a
mobile agent migrated can not work well anymore. The
most important point is that anomaly can harm a
mobile agent easily by causing cache poisoning. Thus,
it is risky to identify program codes by a name. In order
to avoid cache poisoning, program code identifiers

must satisfy following conditions:
1. It is difficult to create same identifier from

different program codes.
2. Identifiers of same program codes must be same.
In order to satisfy above conditions, we use a hash

value created from a content of program codes as a
program code identifier. Since the identifier is a hash
value created from a content of program code, the
identifier changes if a program code changes; the
identifiers are same whatever program codes are same.

We use the SHA-1 (secure hash algorithm 1) [13] as
a hash function. SHA-1 takes a program code less than

264 bits in length and can produce a 160-bit identifier.
The probability of that same hash value created from
different program codes is extremely small even when
anomaly tries to find it. Even if the collision of
identifiers occurs, it would throw an error. If an error
occurs, the identifier of the two collided program codes
is marked as pollution. A program code marked as
pollution is regarded as if it is not cached. This prevents
an anomaly from causing cache poisoning attacks.

3.2 Local Cache Table

We design a local cache table to store the pair of a
program code and its identifier. The local cache table is
prepared in each ARE. All program codes are stored in
the local cache table with their identifiers. An ARE
knows whether the program code corresponding to an
identifier is cached or not to see the local cache table,
and gets its program code.

3.3 Mobile Agent Migration with a Program Code Cache

In order to apply a cache mechanism to mobile agent
migration, we add steps to check program codes cached
in a destination ARE before the transfer of program
codes. Program codes are transferred with a runtime
state and application data at the Step 4 in the typical
model of mobile agent migration in Fig. 2. Therefore,
we extend the Step 4 as following:

(1) The source ARE transfers a runtime state,
application data, and the identifiers of program codes

Evaluation of Program Code Caching for Mobile Agent Migrations

360

to a destination ARE.
(2) The destination ARE refers its local cache table,

finds program code identifiers which are not listed in,
and requests their program codes to the source ARE.

(3) The source ARE finds requested program codes
from its local cache table, and transfers their program
codes to the destination ARE.

(4) The destination ARE receives the program codes
and stores them with their identifiers into the local
cache table.

The first migration would involve the transfer of
almost program codes because their program codes are
not listed in the local cache table of a destination ARE.
However, after that, the identifiers of their program
codes are listed in the local cache table. Therefore,
second migration does not involve their transfer. This
mitigates the increase of data traffic caused by mobile
agent migrations.

4. Evaluations

4.1 Experimental Environment

We have implemented our cache mechanism on
Maglog [11], which is a Java-based mobile agent
framework. ARE of Maglog has a Prolog-to-Java
source code translator and a Prolog interpreter. The
agent is implemented by Prolog language, and works
by using the Prolog interpreter. Therefore, ARE can
access the runtime state of an agent from a Prolog
interpreter’s internal states. Program codes are Java
byte codes translated from a program implemented by
Prolog. Application data are the serialized data of a
Java object by Java Object Serialization [14]. The
identifier of a program code is generated from Java
byte codes by using java security. Message Digest [15],
a local hash table, is implemented by
java.util.HashMap [16].

In experiments, we used a computer of Intel Core
i7-2600 Processor (8 MiB Cache, 3.40 GHz) and 32
GiB RAM. Each ARE of Maglog runs on JRE 6 [17]
on Debian GNU/Linux 6.0.4 (Kernel
2.6.32-5-686-bigmem) and is connected via a network.

The network is constructed by a physical NIC (network
interface card), which is assigned multiple IP addresses
by IP Aliasing of Linux, and each IP address is
connected by emulated Ethernet which can change the
speed to 10 BASE-T, 100 BASE-T, and 1000 BASE-T
by Dymmynet [18]. A mobile agent consists of 4,096
program codes, the size of each program code is 1,024
KiB, the size of a runtime state is 70 KiB, and the size
of application data is 0 KiB.

4.2 Overhead of Cache Mechanism

Our cache mechanism involves transferring of the
identifiers of program codes, and checking of a local
cache table. Firstly, we should clear the overhead of the
cache mechanism. Therefore, we measured the time
between an agent which tries to start migration and
finishes it.

The results are shown in Fig. 3. In this figure, with
cache represents the migration time in where the cache
mechanism is installed; without cache represents it is
not installed. The migration time of with cache at the
first migration is slower than without cache. This
difference means the overhead of the cache mechanism.
The overhead is only 8.5% in 10 BASE-T, 3.2% in 100
BASE-T, 8.1% in 1,000 BASE-T. Thus, the overhead
of the cache mechanism is relatively small. After the
second migration, the migration times is dramatically
improved in with cache. In 10 BASE-T, the migration
time of with cache is 7.4% of without cache; 8.4% in
100 BASE-T; 13.3% in 1,000 BASE-T.

4.3 Evaluations on Agent Migration Patterns

In order to clear the impact on various patterns of
mobile agent migration, we measured the time of agent
migrations on a shuttle, a round, and a star pattern as
shown in Fig. 4.

In the shuttle pattern, cache miss occurs at the
outward migration in the first trip, but it not occurs in
other trips. In the round pattern, cache miss occurs in all
the migrations of the first trip except the last migration,
but it not occurs in all the migration after the second trip.
The star pattern is repetition of a shuttle pattern.

Evaluation of Program Code Caching for Mobile Agent Migrations

361

 (a) 10 BASE-T (b) 100 BASE-T (c) 1000 BASE-T

Fig. 3 Times between an agent starts and finishes the migration.

(a) Shuttle (b) Round (c) Star

Fig. 4 Agent Migration Patterns.

The experimental results conducted on 100 BASE-T
are shown in Fig. 5. As shown in this figure, the
migrations of with cache finished faster than without
cache even in the first trip except the round pattern.
After the second trip, the migration time of with cache
is improved further in all patterns.

4.4 Evaluation on Random Agent Migration

We evaluate the agent migration time when an agent
migrates to somewhere randomly. In this experiment,
we prepared 10 AREs. The agent migrates other ARE
that is randomly selected from 9 AREs (10-current
ARE). Fig. 6 shows results of 100 migrations.

As shown in this figure, the migration times of
without cache are around 840 msec even if the number
of times of migrations increases. In contrary, the
migration time decreases in with cache. It is
approaching 126 msec.

4.5 Evaluation on a Meeting Scheduling System

We evaluate our mechanism on a meeting scheduling

system [19, 20]. The meeting scheduling system is
developed by Maglog and used in our university. In this
system, a user’s agent of an inviter migrates among
AREs to gather the schedules of invitees. If there is no
candidate day by a conflict with the schedules of invitees,
a user’s agent negotiates with invitees to decide the day
of a meeting. Thus, a user’s agent migrates over AREs to
gather the schedules of invitees, to negotiate with
invitees, and to decide the day of a meeting.

In this experiment, we prepared an automatic
manipulation program which substitutes for the
operations of a human being. The program selects
invitees randomly, tries to decide the day of a meeting
with the invitees, makes users’ schedule, replies its
schedule to an inviter, and sometime makes a
concession to the inviter, at a random time. We
conducted this experiment on 11 computers that are
installed Intel Pentium 4 processor (3.0 GHz) and 1
GiB RAM and are connected via 100 BASE-T Ethernet.
An ARE of Maglog runs on JRE 1.5 on Turbolinux 10
(Kernel 2.6.0) on this computer.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5

Ti
m
e
(m

s)

#‐th trip

without cache with cache

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5
Ti
m
e
(m

s)

#‐th trip

without cache with cache

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

Ti
m
e
(m

s)

#‐th trip

without cache with cache

Evaluation of Program Code Caching for Mobile Agent Migrations

362

(a) Shuttle (b) Round (c) Star

Fig. 5 Results on each agent migration pattern.

Fig. 6 Results when mobile agents migrate randomly.

The experimental result is shown in Fig. 7. As
shown in figure, even in the decision of first meeting
day, the performance of the system of with cache is
almost same with without cache. From the second
decision, it is about 52% of without cache. This result
shows that the cache mechanism is efficient in not only
toy problems but also practical mobile agent
applications.

5. Conclusions

In this paper, we discussed to apply a cache
mechanism to mobile agent migration. Our cache
mechanism does not influence on the implementation
of mobile agent applications because it works on an
agent runtime environment. We implemented the cache
mechanism on Maglog, which is a mobile agent

Fig. 7 Result on a meeting scheduling system.

framework, and conduct experiments. The result on a
meeting scheduling system shows that the mechanism
of the cache enables to improve its performance by
52%.

References
[1] Y. Lee, K. Kim, Optimal migration path searching using

path adjustment and reassignment for mobile agent, in:
Proceedings of the 4th International Conference on
Networked Computing and Advanced Information
Management, 2008, pp. 564-569.

[2] G. Soares, L.M. Silva, Optimizing the migration of mobile
agents, in: Proceedings of the 1st International Workshop
on Mobile Agents for Telecommunication Applications,
1999, pp. 161-178.

[3] D. Gavalas, An experimental approach for optimising
mobile agent migrations, Mediterranean Journal of
Computers and Networks 1 (1) (2005) 47-56.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

Ti
m

e
(m

s)

#‐th trip

without cache with cache

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5
Ti

m
e

(m
s)

#‐th trip

without cache with cache

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5

Ti
m

e
(m

s)

#‐th trip

without cache with cache

0
100
200
300
400
500
600
700
800
900
1000
1100
1200

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

s)

#‐th trip

without cache with cache

0

5

10

15

20

25

30

1 2 3 4 5

Ti
m

e
(m

s)

Trials

without cache with cache

Evaluation of Program Code Caching for Mobile Agent Migrations

363

[4] Mobile Agent System Interoperability Facilities
Specification, Object Management Group, Inc., 1997.

[5] I. Satoh, Agent Space: A higher order mobile agent system,
The Special Interest Group Notes on Programming of
Information Processing Society of Japan 98 (30) (1998)
41-48.

[6] P. Braun, I. Muller, R. Kowalczyk, S. Kern, Increasing the
migration efficiency of Java-based mobile agents, in:
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, 2005, pp. 508-511.

[7] T. White, Mobile Code Toolkit v1.6.2 [Online],
http://www.sce.carleton.ca/netmanage/mctoolkit/mctoolki
t162/mct.html.

[8] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code
mobility, IEEE Transactions on Software Engineering 24
(5) (1998) 342-361.

[9] FIPA Agent Management Specification (SC00023K),
Foundation for Intelligent Physical Agents, 2004.

[10] FIPA Abstract Architecture Specification (SC00001L),
Foundation for Intelligent Physical Agents, 2002.

[11] S. Motomura, T. Kawamura, K. Sugahara, Logic-Based
mobile agent framework with a concept of “Field”, IPSJ
Journal 47 (4) (2006) 1230-1238.

[12] Aglets Homepage, http://aglets.sourceforge.net/.
[13] D. Eastlake, P. Jones, US Secure Hash Algorithm 1

(SHA1), Request for Comments 3174, Internet
Engineering Task Force, 2001.

[14] Oracle and/or its affiliates, Java Object Serialization

Specification [Online],
http://docs.oracle.com/javase/6/docs/platform/serializatio
n/spec/serialTOC.html.

[15] Oracle and/or its affiliates, Message Digest (Java Platform
SE 6) [Online],
http://docs.oracle.com/javase/6/docs/api/java/security/Me
ssageDigest.html.

[16] Oracle and/or its affiliates, Hash Map (Java Platform SE 6)
[Online],
http://docs.oracle.com/javase/6/docs/api/java/util/HashM
ap.html.

[17] Oracle and/or its affiliates, Java SE 6 Documentation
[Online], http: //docs.oracle.com/javase/6/docs/.

[18] L. Rizzo, Dummy net: A simple approach to the
evaluation of network protocols, ACM SIGCOMM
Computer Communication Review 27 (1) (1997) 31-41.

[19] T. Kawamura, S. Motomura, K. Kagemoto, K. Sugahara,
Meeting arrangement system based on mobile agent
technology, in: Proceedings of the 2nd
International Conference on Web Information
Systems and Technologies, Setúbal, Portugal, 2006, pp.
117-120.

[20] T. Kawamura, Y. Hamada, K. Sugahara, K. Kagemoto, S.
Motomura, Multi-agent-based approach for meeting
scheduling system, in: Proceedings of IEEE International
Conference on Integration of Knowledge Intensive
Multi-Agent Systems, Waltham, Massachusetts, 2007, pp.
79-84.

