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Abstract: Mobile agents are able to migrate among machines to achieve their tasks. This feature is attractive to design, implement, and 
maintain distributed systems because we can implement both client-side and server-side programming in one mobile agent. However, it 
involves the increase of data traffic for mobile agent migrations. In this paper, we propose program code caching to reduce the data 
traffic caused by mobile agent migrations. A mobile agent consists of many program codes that define a task executed in each machine 
they migrate; thus, the mobile agent migration involves the transfer of their program codes. Therefore, our method reduces the number 
of the transfer of program codes by using program code cache. We have implemented our method on a mobile agent framework called 
Maglog and conducted experiments on a meeting scheduling system. 
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1. Introduction  

Advances of wireless connection technologies enable 
us to connect to the Internet anywhere and anytime. 
Nowadays, not only personal computers but also various 
appliances, such as personal computers, mobile phones, 
car navigation systems, and televisions, are connected to 
the Internet. Thus, ubiquitous network environment 
would be realized in near future. In a ubiquitous network 
environment, their numerous appliances will 
communicate and work together for providing helpful 
services to us. Such an environment requires us to 
implement complex network-based systems. 

Socket programming and RPC (remote procedure 
call) are most traditional ones to implement such a 
network-based system. We, however, need to 
implement two programs, client-side program and 
server-side program. This complicates the maintenance 
of the system because the modification of the system 
involves the modification of both client-side and 
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server-side program. As the countermeasure of this 
complication, many researchers pay attention to mobile 
agent systems. 

A mobile agent system is constructed from many 
mobile agents. A mobile agent is able to migrate among 
machines to achieve its tasks. We can use mobile agent 
migration instead of communications between the 
server and the client. Since the mobile agent can 
continue its works over the machines, we do not need 
to elaborate a client- and server-side program pair. 
Thus, we can implement a server-side and client-side 
program as one mobile agent. This enables us to 
implement a network-based system in a ubiquitous 
computing environment without being aware of 
communications APIs and protocols. Such a mobile 
agent system is attractive to design, implement and 
maintain a distributed system; however, it involves the 
increase of data traffic caused by mobile agent 
migrations. 

Therefore, many researchers have proposed to 
mitigate data traffic caused by mobile agent migrations. 
Ref. [1] proposes a method to select an efficiency 
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When we apply a cache mechanism to mobile agent 
migration, we have to add steps for a cache mechanism 
in these steps. 

3. Cache Mechanism for Mobile Agent 
Migration 

A cache mechanism stores the duplication of 
original data (cached data), and provides cached data to 
a requester instead of getting the original data. A cache 
mechanism is used as CPU (central processing unit) 
cache, web cache, DNS (domain name server) cache, 
and so on. These mechanisms cut the transfer of data 
from a requester (e.g., web server in web cache) to a 
requester (e.g., web browser); thus, cached data are 
managed by the requester. On the contrary, data are 
transferred from a requester to a requester in mobile 
agent migration because a mobile agent migrates from 
a source ARE (requester) to a destination ARE 
(requester). When we apply a cache mechanism to 
mobile agent migration, a source ARE, first, has to 
check which data is cached. As discussed in Section 2.1, 
the object of our cache mechanism is program codes. 
Therefore, we need to identify each program code for 
the check of a program code cached in a destination 
ARE. 

3.1 Identification of Program Code 

One mobile agent usually consists of many program 
codes. Some of these program codes are implemented 
by the programmer of a mobile agent application, but 
some may be OSS (open source software) downloaded 
from the Internet. Further, different programmers may 
use a same name in different program codes. If we 
create the identifier of each program code from a name 
such as a file name, a function name, and so on, it may 
cause cache poisoning. If cache poisoning occurs, a 
mobile agent migrated can not work well anymore. The 
most important point is that anomaly can harm a 
mobile agent easily by causing cache poisoning. Thus, 
it is risky to identify program codes by a name. In order 
to avoid cache poisoning, program code identifiers 

must satisfy following conditions: 
1.  It is difficult to create same identifier from 

different program codes. 
2.  Identifiers of same program codes must be same. 
In order to satisfy above conditions, we use a hash 

value created from a content of program codes as a 
program code identifier. Since the identifier is a hash 
value created from a content of program code, the 
identifier changes if a program code changes; the 
identifiers are same whatever program codes are same. 

We use the SHA-1 (secure hash algorithm 1) [13] as 
a hash function. SHA-1 takes a program code less than 

264  bits in length and can produce a 160-bit identifier. 
The probability of that same hash value created from 
different program codes is extremely small even when 
anomaly tries to find it. Even if the collision of 
identifiers occurs, it would throw an error. If an error 
occurs, the identifier of the two collided program codes 
is marked as pollution. A program code marked as 
pollution is regarded as if it is not cached. This prevents 
an anomaly from causing cache poisoning attacks. 

3.2 Local Cache Table 

We design a local cache table to store the pair of a 
program code and its identifier. The local cache table is 
prepared in each ARE. All program codes are stored in 
the local cache table with their identifiers. An ARE 
knows whether the program code corresponding to an 
identifier is cached or not to see the local cache table, 
and gets its program code. 

3.3 Mobile Agent Migration with a Program Code Cache 

In order to apply a cache mechanism to mobile agent 
migration, we add steps to check program codes cached 
in a destination ARE before the transfer of program 
codes. Program codes are transferred with a runtime 
state and application data at the Step 4 in the typical 
model of mobile agent migration in Fig. 2. Therefore, 
we extend the Step 4 as following: 

(1) The source ARE transfers a runtime state, 
application data, and the identifiers of program codes 
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to a destination ARE. 
(2) The destination ARE refers its local cache table, 

finds program code identifiers which are not listed in, 
and requests their program codes to the source ARE. 

(3) The source ARE finds requested program codes 
from its local cache table, and transfers their program 
codes to the destination ARE. 

(4) The destination ARE receives the program codes 
and stores them with their identifiers into the local 
cache table. 

The first migration would involve the transfer of 
almost program codes because their program codes are 
not listed in the local cache table of a destination ARE. 
However, after that, the identifiers of their program 
codes are listed in the local cache table. Therefore, 
second migration does not involve their transfer. This 
mitigates the increase of data traffic caused by mobile 
agent migrations. 

4. Evaluations 

4.1 Experimental Environment 

We have implemented our cache mechanism on 
Maglog [11], which is a Java-based mobile agent 
framework. ARE of Maglog has a Prolog-to-Java 
source code translator and a Prolog interpreter. The 
agent is implemented by Prolog language, and works 
by using the Prolog interpreter. Therefore, ARE can 
access the runtime state of an agent from a Prolog 
interpreter’s internal states. Program codes are Java 
byte codes translated from a program implemented by 
Prolog. Application data are the serialized data of a 
Java object by Java Object Serialization [14]. The 
identifier of a program code is generated from Java 
byte codes by using java security. Message Digest [15], 
a local hash table, is implemented by 
java.util.HashMap [16]. 

In experiments, we used a computer of Intel Core 
i7-2600 Processor (8 MiB Cache, 3.40 GHz) and 32 
GiB RAM. Each ARE of Maglog runs on JRE 6 [17] 
on Debian GNU/Linux 6.0.4 (Kernel 
2.6.32-5-686-bigmem) and is connected via a network. 

The network is constructed by a physical NIC (network 
interface card), which is assigned multiple IP addresses 
by IP Aliasing of Linux, and each IP address is 
connected by emulated Ethernet which can change the 
speed to 10 BASE-T, 100 BASE-T, and 1000 BASE-T 
by Dymmynet [18]. A mobile agent consists of 4,096 
program codes, the size of each program code is 1,024 
KiB, the size of a runtime state is 70 KiB, and the size 
of application data is 0 KiB. 

4.2 Overhead of Cache Mechanism 

Our cache mechanism involves transferring of the 
identifiers of program codes, and checking of a local 
cache table. Firstly, we should clear the overhead of the 
cache mechanism. Therefore, we measured the time 
between an agent which tries to start migration and 
finishes it. 

The results are shown in Fig. 3. In this figure, with 
cache represents the migration time in where the cache 
mechanism is installed; without cache represents it is 
not installed. The migration time of with cache at the 
first migration is slower than without cache. This 
difference means the overhead of the cache mechanism. 
The overhead is only 8.5% in 10 BASE-T, 3.2% in 100 
BASE-T, 8.1% in 1,000 BASE-T. Thus, the overhead 
of the cache mechanism is relatively small. After the 
second migration, the migration times is dramatically 
improved in with cache. In 10 BASE-T, the migration 
time of with cache is 7.4% of without cache; 8.4% in 
100 BASE-T; 13.3% in 1,000 BASE-T. 

4.3 Evaluations on Agent Migration Patterns 

In order to clear the impact on various patterns of 
mobile agent migration, we measured the time of agent 
migrations on a shuttle, a round, and a star pattern as 
shown in Fig. 4. 

In the shuttle pattern, cache miss occurs at the 
outward migration in the first trip, but it not occurs in 
other trips. In the round pattern, cache miss occurs in all 
the migrations of the first trip except the last migration, 
but it not occurs in all the migration after the second trip. 
The star pattern is repetition of a shuttle pattern. 
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       (a) 10 BASE-T                   (b) 100 BASE-T                   (c) 1000 BASE-T 

Fig. 3  Times between an agent starts and finishes the migration. 
 

 
(a) Shuttle         (b) Round             (c) Star 

Fig. 4  Agent Migration Patterns. 
 

The experimental results conducted on 100 BASE-T 
are shown in Fig. 5. As shown in this figure, the 
migrations of with cache finished faster than without 
cache even in the first trip except the round pattern. 
After the second trip, the migration time of with cache 
is improved further in all patterns. 

4.4 Evaluation on Random Agent Migration 

We evaluate the agent migration time when an agent 
migrates to somewhere randomly. In this experiment, 
we prepared 10 AREs. The agent migrates other ARE 
that is randomly selected from 9 AREs (10-current 
ARE). Fig. 6 shows results of 100 migrations. 

As shown in this figure, the migration times of 
without cache are around 840 msec even if the number 
of times of migrations increases. In contrary, the 
migration time decreases in with cache. It is 
approaching 126 msec. 

4.5 Evaluation on a Meeting Scheduling System 

We evaluate our mechanism on a meeting scheduling 

system [19, 20]. The meeting scheduling system is 
developed by Maglog and used in our university. In this 
system, a user’s agent of an inviter migrates among 
AREs to gather the schedules of invitees. If there is no 
candidate day by a conflict with the schedules of invitees, 
a user’s agent negotiates with invitees to decide the day 
of a meeting. Thus, a user’s agent migrates over AREs to 
gather the schedules of invitees, to negotiate with 
invitees, and to decide the day of a meeting. 

In this experiment, we prepared an automatic 
manipulation program which substitutes for the 
operations of a human being. The program selects 
invitees randomly, tries to decide the day of a meeting 
with the invitees, makes users’ schedule, replies its 
schedule to an inviter, and sometime makes a 
concession to the inviter, at a random time. We 
conducted this experiment on 11 computers that are 
installed Intel Pentium 4 processor (3.0 GHz) and 1 
GiB RAM and are connected via 100 BASE-T Ethernet. 
An ARE of Maglog runs on JRE 1.5 on Turbolinux 10 
(Kernel 2.6.0) on this computer. 
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(a) Shuttle                       (b) Round                      (c) Star 

Fig. 5  Results on each agent migration pattern. 
 

 
Fig. 6  Results when mobile agents migrate randomly. 
 

The experimental result is shown in Fig. 7. As 
shown in figure, even in the decision of first meeting 
day, the performance of the system of with cache is 
almost same with without cache. From the second 
decision, it is about 52% of without cache. This result 
shows that the cache mechanism is efficient in not only 
toy problems but also practical mobile agent 
applications. 

5. Conclusions 

In this paper, we discussed to apply a cache 
mechanism to mobile agent migration. Our cache 
mechanism does not influence on the implementation 
of mobile agent applications because it works on an 
agent runtime environment. We implemented the cache 
mechanism on Maglog, which is a mobile agent  

 
Fig. 7  Result on a meeting scheduling system. 
 

framework, and conduct experiments. The result on a 
meeting scheduling system shows that the mechanism 
of the cache enables to improve its performance by 
52%. 
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