View metadata, citation and similar papers at core.ac.uk

Computer Technology and Application 4 (2013) 356-363

-
brought to you by i CORE

provided by CiteSeerX

D

~PUBLISHING

Evaluation of Program Code Caching for Mobile Agent

Migrations

Masayuki Higashino, Kenichi Takahashi, Takao Kawamura and Kazunori Sugahara
Department of Information and Electronics, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan

Received: May 27, 2013 / Accepted: June 27, 2013 / Published: July 25, 2013.

Abstract: Mobile agents are able to migrate among machines to achieve their tasks. This feature is attractive to design, implement, and
maintain distributed systems because we can implement both client-side and server-side programming in one mobile agent. However, it
involves the increase of data traffic for mobile agent migrations. In this paper, we propose program code caching to reduce the data
traffic caused by mobile agent migrations. A mobile agent consists of many program codes that define a task executed in each machine
they migrate; thus, the mobile agent migration involves the transfer of their program codes. Therefore, our method reduces the number
of the transfer of program codes by using program code cache. We have implemented our method on a mobile agent framework called

Maglog and conducted experiments on a meeting scheduling system.

Key words: Mobile agent, agent migration, cache.

1. Introduction

Advances of wireless connection technologies enable
us to connect to the Internet anywhere and anytime.
Nowadays, not only personal computers but also various
appliances, such as personal computers, mobile phones,
car navigation systems, and televisions, are connected to
the Internet. Thus, ubiquitous network environment
would be realized in near future. In a ubiquitous network
environment, their numerous appliances will
communicate and work together for providing helpful
services to us. Such an environment requires us to
implement complex network-based systems.

Socket programming and RPC (remote procedure
call) are most traditional ones to implement such a
network-based system. We, however, need to
implement two programs, client-side program and
server-side program. This complicates the maintenance
of the system because the modification of the system
involves the modification of both client-side and

Corresponding author: Masayuki Higashino, doctoral
student, research field: distributed computing. E-mail:
5032047 @ike.tottori-u.ac.jp.

server-side program. As the countermeasure of this
complication, many researchers pay attention to mobile
agent systems.

A mobile agent system is constructed from many
mobile agents. A mobile agent is able to migrate among
machines to achieve its tasks. We can use mobile agent
migration instead of communications between the
server and the client. Since the mobile agent can
continue its works over the machines, we do not need
to elaborate a client- and server-side program pair.
Thus, we can implement a server-side and client-side
program as one mobile agent. This enables us to
implement a network-based system in a ubiquitous
computing environment without being aware of
communications APIs and protocols. Such a mobile
agent system is attractive to design, implement and
maintain a distributed system; however, it involves the
increase of data traffic caused by mobile agent
migrations.

Therefore, many researchers have proposed to
mitigate data traffic caused by mobile agent migrations.
Ref. [1] proposes a method to select an efficiency

https://core.ac.uk/display/357268308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluation of Program Code Caching for Mobile Agent Migrations 357

migration route calculated from the round-trip time and
average packet loss rate of ping messages. Ref. [2]
proposes that a machine transfers program codes
before the migration of the agent happens actually. It s,
however, difficult for a machine to predict where the
agent migrates. Ref. [3] proposes to use a multicast
message to distribute a mobile agent. This enables to
use network bandwidth efficiently because the mobile
agent is distributed on some machines simultaneously.
However, the situation the multicast message enables
to be utilized is limited. Thus, these approaches restrict
situations to be applied within a specific situation
and/or network environment. Further, these approaches
require us to change the behaviors of each mobile
agent.

OMG (Object Management Group) [4], which is a
standards consortium of a mobile agent, mentions to
apply a cache mechanism to mobile agent migration.
Agent Space [5] also mentions a cache mechanism.
They, however, do not show the detail of the
mechanism and protocols. Further, the effectiveness of
a cache mechanism is not well-studied even if some
agent systems such as Refs. [6, 7] implement a cache
mechanism. Thus, in this paper, we discuss the details
of a cache mechanism and protocol.

Before we discuss a cache mechanism and protocol,
we should discuss mobile agent systems because the
cache mechanism and protocol are for mobile agent
migrations. Therefore, we define the internal structure
of a typical mobile agent in Section 2. After that, in
Section 3, we design the cache mechanism and
protocol for an effective mobile agent migration. We
implement our mechanism on a mobile agent
framework called Maglog, and we show its
effectiveness on various patterns of agent migrations
and a practical application in Section 4. Finally, we
conclude the paper in Section 5.

2. Mobile Agent System

A mobile agent system is usually structured from
mobile agents and Agent Runtime Environments AREs

(agent runtime environments), as shown in Fig. 1. This
structure is a typical structure mentioned in Ref. [8].

An ARE is installed in each machine distributed on a
network, and provides some functions to help the
executions of tasks of mobile agents. A mobile agent
migrates among the network by using the function of
the AREs, and accomplishes its task using resources
distributed on the network. For example, when a
mobile agent tries to make a plan of sightseeing, the
agent, firstly, goes on airline company site for the
reservation of an air ticket; and then, goes on hotel
reservation sites to reserve a room; finally, shows the
plan to a user.

As mentioned here, a mobile agent system consists
of AREs and mobile agents. Almost functions
implemented in AREs are prepared to help the
executions of tasks of mobile agents, thus, their
functions are almost same in each AREs. However,
tasks of each mobile agent are naturally different in
each. For example, a mobile agent mentioned above
would have a task to make a trip plan. A mobile agent
to adjust meeting schedules would have a task to adjust
schedules among attenders. Thus, the program codes
implementing in each mobile agent are different.

Considering the installation of a cache mechanism,
there are two candidates a cache mechanism to be
installed in, AREs and mobile agents. However, it is
unsuitable to install a cache mechanism in mobile
agents, because each mobile agent has different tasks.
It will involve the change of the implementation of
each mobile agent as same as approaches proposed in
Refs. [1-3]. On the other hand, when we consider the
installation of a cache mechanism into AREs, we do

s ™
; Agent
i
Agent Runtime Agent Runtime / (Runtime State Area)
Environment Environment / —
Application Area

000||00@
001000

(Network

Program Code Area

Program Code 1

Program Code 2

Program Code n

Migration |
gratio %

Fig. 1 Overview of a mobile agent system.

358 Evaluation of Program Code Caching for Mobile Agent Migrations

not need to pay attention to the difference of each
AREs because almost AREs are composed from
common functions. Therefore, we design a cache
mechanism to install in AREs. Thus, programmers of a
mobile agent application need not take care of a cache
mechanism because the cache mechanism is working
on the ARE layer.

2.1 Internal Model of a Mobile Agent

We propose to apply a cache mechanism for a
mobile agent migration. What enables to be cached? To
answer this question, we have to discuss the internal
model of a mobile agent. We can make the typical
model of a mobile agent from the discussion in Refs. [4,
8-10]. This model is much conformed to a lot of mobile
agent systems such as Ref. [11], Agent Space [5],
Aglets [12], and so on.

A mobile agent consists of a runtime state,
application data, and program codes. The runtime state
manages variables such as call stack pointers, program
counters, and so on. Data in the runtime state
constantly change while a mobile agent is working.
The application data are related to an application. For
example, in a meeting scheduling system, the
application data may include users’ preferences and
attenders’ list of meetings. These data depend on each
mobile agent. The program codes represent the tasks of
a mobile agent. The mobile agent proceeds with its
tasks by the execution of program codes.

When we try to apply a cache mechanism to mobile
agent migration, we have to classify them into
cacheable or un-cacheable data. A cache mechanism
stores the duplication of original data, the duplication
data are reused later instead of getting the original data.
If the duplication data change from the original data, its
duplication is useless anymore.

A runtime state is meaningless to be cached because
it constantly changes according to mobile agent’s
behavior. Thus, we conclude a runtime state is
un-cacheable. A program code is cacheable because it
does not change. However, we cannot conclude

application data is cacheable or un-cacheable because
it depends on an application. If we deal with the
application data as the object of a cache mechanism, we
have to entrust the classification of the application into
cacheable or un-cacheable to programmers of a mobile
agent application. This would not be preferred because
programmers want to devote only to the
implementation of an application. Thus, we focus on
only program codes as the object of a cache
mechanism.

2.2 Migration of a Mobile Agent

When an agent migrates from a source ARE to a
destination ARE, the source ARE has to transfer a
runtime state, application data and program codes to
the destination ARE. The steps for agent migration are
usually modeled as Fig. 2.

1. A source ARE connects a destination ARE, an
agent tries to migrate to the destination ARE.

2. The destination ARE responses whether it allows
the migration of the agent or not.

3. If the destination ARE allows the migration, the
source ARE stops the agent.

4. The source ARE transfers a runtime state,
application data and program codes to the destination
ARE.

5. The destination ARE reconstructs an agent from
program codes, a runtime state, application data
received from the source ARE.

6. The destination ARE activates the agent.

Source ARE Destination ARE

1) connects to the destination ARE

. 2) allows or not the migration

[if allow]
¢ 3) stops the agent

4) transfers a runtime state,
application data, and program codes

5) re-constructs the agent | I

6) activates the agent [:

T T
Fig. 2 Steps for mobile agent migration.

Evaluation of Program Code Caching for Mobile Agent Migrations 359

When we apply a cache mechanism to mobile agent
migration, we have to add steps for a cache mechanism
in these steps.

3. Cache Mechanism for Mobile Agent
Migration

A cache mechanism stores the duplication of
original data (cached data), and provides cached data to
a requester instead of getting the original data. A cache
mechanism is used as CPU (central processing unit)
cache, web cache, DNS (domain name server) cache,
and so on. These mechanisms cut the transfer of data
from a requester (e.g., web server in web cache) to a
requester (e.g., web browser); thus, cached data are
managed by the requester. On the contrary, data are
transferred from a requester to a requester in mobile
agent migration because a mobile agent migrates from
a source ARE (requester) to a destination ARE
(requester). When we apply a cache mechanism to
mobile agent migration, a source ARE, first, has to
check which data is cached. As discussed in Section 2.1,
the object of our cache mechanism is program codes.
Therefore, we need to identify each program code for
the check of a program code cached in a destination
ARE.

3.1 Identification of Program Code

One mobile agent usually consists of many program
codes. Some of these program codes are implemented
by the programmer of a mobile agent application, but
some may be OSS (open source software) downloaded
from the Internet. Further, different programmers may
use a same name in different program codes. If we
create the identifier of each program code from a name
such as a file name, a function name, and so on, it may
cause cache poisoning. If cache poisoning occurs, a
mobile agent migrated can not work well anymore. The
most important point is that anomaly can harm a
mobile agent easily by causing cache poisoning. Thus,
it is risky to identify program codes by a name. In order
to avoid cache poisoning, program code identifiers

must satisfy following conditions:

1. It is difficult to create same identifier from
different program codes.

2. ldentifiers of same program codes must be same.

In order to satisfy above conditions, we use a hash
value created from a content of program codes as a
program code identifier. Since the identifier is a hash
value created from a content of program code, the
identifier changes if a program code changes; the
identifiers are same whatever program codes are same.

We use the SHA-1 (secure hash algorithm 1) [13] as
a hash function. SHA-1 takes a program code less than
2% bits in length and can produce a 160-bit identifier.
The probability of that same hash value created from
different program codes is extremely small even when
anomaly tries to find it. Even if the collision of
identifiers occurs, it would throw an error. If an error
occurs, the identifier of the two collided program codes
is marked as pollution. A program code marked as
pollution is regarded as if it is not cached. This prevents
an anomaly from causing cache poisoning attacks.

3.2 Local Cache Table

We design a local cache table to store the pair of a
program code and its identifier. The local cache table is
prepared in each ARE. All program codes are stored in
the local cache table with their identifiers. An ARE
knows whether the program code corresponding to an
identifier is cached or not to see the local cache table,
and gets its program code.

3.3 Mobile Agent Migration with a Program Code Cache

In order to apply a cache mechanism to mobile agent
migration, we add steps to check program codes cached
in a destination ARE before the transfer of program
codes. Program codes are transferred with a runtime
state and application data at the Step 4 in the typical
model of mobile agent migration in Fig. 2. Therefore,
we extend the Step 4 as following:

(1) The source ARE transfers a runtime state,
application data, and the identifiers of program codes

360 Evaluation of Program Code Caching for Mobile Agent Migrations

to a destination ARE.

(2) The destination ARE refers its local cache table,
finds program code identifiers which are not listed in,
and requests their program codes to the source ARE.

(3) The source ARE finds requested program codes
from its local cache table, and transfers their program
codes to the destination ARE.

(4) The destination ARE receives the program codes
and stores them with their identifiers into the local
cache table.

The first migration would involve the transfer of
almost program codes because their program codes are
not listed in the local cache table of a destination ARE.
However, after that, the identifiers of their program
codes are listed in the local cache table. Therefore,
second migration does not involve their transfer. This
mitigates the increase of data traffic caused by mobile
agent migrations.

4. Evaluations
4.1 Experimental Environment

We have implemented our cache mechanism on
Maglog [11], which is a Java-based mobile agent
framework. ARE of Maglog has a Prolog-to-Java
source code translator and a Prolog interpreter. The
agent is implemented by Prolog language, and works
by using the Prolog interpreter. Therefore, ARE can
access the runtime state of an agent from a Prolog
interpreter’s internal states. Program codes are Java
byte codes translated from a program implemented by
Prolog. Application data are the serialized data of a
Java object by Java Object Serialization [14]. The
identifier of a program code is generated from Java
byte codes by using java security. Message Digest [15],
a local hash table, is implemented by
java.util.HashMap [16].

In experiments, we used a computer of Intel Core
i7-2600 Processor (8 MiB Cache, 3.40 GHz) and 32
GiB RAM. Each ARE of Maglog runs on JRE 6 [17]
on Debian GNU/Linux 6.0.4 (Kernel
2.6.32-5-686-bigmem) and is connected via a network.

The network is constructed by a physical NIC (network
interface card), which is assigned multiple IP addresses
by IP Aliasing of Linux, and each IP address is
connected by emulated Ethernet which can change the
speed to 10 BASE-T, 100 BASE-T, and 1000 BASE-T
by Dymmynet [18]. A mobile agent consists of 4,096
program codes, the size of each program code is 1,024
KiB, the size of a runtime state is 70 KiB, and the size
of application data is 0 KiB.

4.2 Overhead of Cache Mechanism

Our cache mechanism involves transferring of the
identifiers of program codes, and checking of a local
cache table. Firstly, we should clear the overhead of the
cache mechanism. Therefore, we measured the time
between an agent which tries to start migration and
finishes it.

The results are shown in Fig. 3. In this figure, with
cache represents the migration time in where the cache
mechanism is installed; without cache represents it is
not installed. The migration time of with cache at the
first migration is slower than without cache. This
difference means the overhead of the cache mechanism.
The overhead is only 8.5% in 10 BASE-T, 3.2% in 100
BASE-T, 8.1% in 1,000 BASE-T. Thus, the overhead
of the cache mechanism is relatively small. After the
second migration, the migration times is dramatically
improved in with cache. In 10 BASE-T, the migration
time of with cache is 7.4% of without cache; 8.4% in
100 BASE-T; 13.3% in 1,000 BASE-T.

4.3 Evaluations on Agent Migration Patterns

In order to clear the impact on various patterns of
mobile agent migration, we measured the time of agent
migrations on a shuttle, a round, and a star pattern as
shown in Fig. 4.

In the shuttle pattern, cache miss occurs at the
outward migration in the first trip, but it not occurs in
other trips. In the round pattern, cache miss occurs in all
the migrations of the first trip except the last migration,
but it not occurs in all the migration after the second trip.
The star pattern is repetition of a shuttle pattern.

Evaluation of Program Code Caching for Mobile Agent Migrations

—>— without cache —— with cache
1000

900

10000
9000

—>— without cache —6— with cache

361

—>— without cache —— with cache
1000
900

8000 § 800 & —X 800
7000 700 700
g 6000 7 60 E 600
‘g‘ 5000 :,Ej 500 g 500
e 4000 = 400 = 400
3000 300 300
2000 200 200

1000 100 100 TN
0 0 0

12 3 4 5 1 2 3 4 5 1 2 3 4 5
#-th trip #-th trip #-th trip
(a) 10 BASE-T (b) 100 BASE-T (c) 1000 BASE-T
Fig. 3 Times between an agent starts and finishes the migration.
oO———O)
(a) Shuttle (b) Round (c) Star

Fig. 4 Agent Migration Patterns.

The experimental results conducted on 100 BASE-T
are shown in Fig. 5. As shown in this figure, the
migrations of with cache finished faster than without
cache even in the first trip except the round pattern.
After the second trip, the migration time of with cache
is improved further in all patterns.

4.4 Evaluation on Random Agent Migration

We evaluate the agent migration time when an agent
migrates to somewhere randomly. In this experiment,
we prepared 10 AREs. The agent migrates other ARE
that is randomly selected from 9 AREs (10-current
ARE). Fig. 6 shows results of 100 migrations.

As shown in this figure, the migration times of
without cache are around 840 msec even if the number
of times of migrations increases. In contrary, the
migration time decreases in with cache. It is
approaching 126 msec.

4.5 Evaluation on a Meeting Scheduling System

We evaluate our mechanism on a meeting scheduling

system [19, 20]. The meeting scheduling system is
developed by Maglog and used in our university. In this
system, a user’s agent of an inviter migrates among
AREs to gather the schedules of invitees. If there is no
candidate day by a conflict with the schedules of invitees,
a user’s agent negotiates with invitees to decide the day
of a meeting. Thus, a user’s agent migrates over ARES to
gather the schedules of invitees, to negotiate with
invitees, and to decide the day of a meeting.

In this experiment, we prepared an automatic
manipulation program which substitutes for the
operations of a human being. The program selects
invitees randomly, tries to decide the day of a meeting
with the invitees, makes users’ schedule, replies its
schedule to an and sometime makes a
concession to the inviter, at a random time. We
conducted this experiment on 11 computers that are
installed Intel Pentium 4 processor (3.0 GHz) and 1
GiB RAM and are connected via 100 BASE-T Ethernet.
An ARE of Maglog runs on JRE 1.5 on Turbolinux 10
(Kernel 2.6.0) on this computer.

inviter,

362 Evaluation of Program Code Caching for Mobile Agent Migrations

—>— without cache —e— with cache

—>— without cache —— with cache

—>— without cache —e— with cache

2000 12000 20000
18000
1800 10000 16000
VA
1600 ye— > {
1400 8000 14000 T
’g\ 1200 ié: é 12000
= 1000 ~ 6000 » 10000
£ S £ s000
= 800 Z [
= = 4000
600 6000
400 2000 4000
200 2000
0 0 0
1 2 3 4 s 1 3 4 5 1 2 3 4 s
#-th trip #-th trip #-th trip
(a) Shuttle (b) Round (c) Star
Fig. 5 Results on each agent migration pattern.
—>¢— without cache = —e— with cache —»— without cache = —e— with cache
1200 30
1100
1000
900 %
= 800 O
£ 700 = 2
o 600 £
E 500 > 15 Y 2
~ 400 e o— © ©
300 F 10
200
100 5
0 ——m————————
0 10 20 30 40 50 60 70 80 90 100 0
1 2 3 4 5
#-th tri
ne Trials
Fig. 6 Results when mobile agents migrate randomly. . . .
Fig. 7 Result on a meeting scheduling system.

The experimental result is shown in Fig. 7. As
shown in figure, even in the decision of first meeting
day, the performance of the system of with cache is
almost same with without cache. From the second
decision, it is about 52% of without cache. This result
shows that the cache mechanism is efficient in not only
toy problems but also practical
applications.

mobile agent

5. Conclusions

In this paper, we discussed to apply a cache
mechanism to mobile agent migration. Our cache
mechanism does not influence on the implementation
of mobile agent applications because it works on an
agent runtime environment. We implemented the cache
mechanism on Maglog, which is a mobile agent

framework, and conduct experiments. The result on a
meeting scheduling system shows that the mechanism
of the cache enables to improve its performance by
52%.

References

[1] Y. Lee, K. Kim, Optimal migration path searching using
path adjustment and reassignment for mobile agent, in:
Proceedings of the 4th International Conference on
Networked Computing and Advanced Information
Management, 2008, pp. 564-569.

[2] G. Soares, L.M. Silva, Optimizing the migration of mobile
agents, in: Proceedings of the 1st International Workshop
on Mobile Agents for Telecommunication Applications,
1999, pp. 161-178.

[3] D. Gavalas, An experimental approach for optimising
mobile agent migrations, Mediterranean Journal of
Computers and Networks 1 (1) (2005) 47-56.

(4]
[5]

(6]

[7]

(8]

[°]
[10]

[11]

[12]
[13]

[14]

Evaluation of Program Code Caching for Mobile Agent Migrations

Mobile Agent System Interoperability Facilities
Specification, Object Management Group, Inc., 1997.

I. Satoh, Agent Space: A higher order mobile agent system,
The Special Interest Group Notes on Programming of
Information Processing Society of Japan 98 (30) (1998)
41-48.

P. Braun, I. Muller, R. Kowalczyk, S. Kern, Increasing the
migration efficiency of Java-based mobile agents, in:
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, 2005, pp. 508-511.

T. White, Mobile Code Toolkit v1.6.2 [Online],
http://www.sce.carleton.ca/netmanage/mctoolkit/mctoolki
t162/mct.html.

A. Fuggetta, G.P. Picco, G. Vigna, Understanding code
mobility, IEEE Transactions on Software Engineering 24
(5) (1998) 342-361.

FIPA Agent Management Specification (SC00023K),
Foundation for Intelligent Physical Agents, 2004.

FIPA Abstract Architecture Specification (SC00001L),
Foundation for Intelligent Physical Agents, 2002.

S. Motomura, T. Kawamura, K. Sugahara, Logic-Based
mobile agent framework with a concept of “Field”, IPSJ
Journal 47 (4) (2006) 1230-1238.

Aglets Homepage, http://aglets.sourceforge.net/.

D. Eastlake, P. Jones, US Secure Hash Algorithm 1
(SHA1), Request for Comments 3174, Internet
Engineering Task Force, 2001.

Oracle and/or its affiliates, Java Object Serialization

[15]

[16]

[17]

(18]

[19]

[20]

363

Specification [Online],
http://docs.oracle.com/javase/6/docs/platform/serializatio
n/spec/serial TOC.html.

Oracle and/or its affiliates, Message Digest (Java Platform
SE 6) [Online],
http://docs.oracle.com/javase/6/docs/api/java/security/Me
ssageDigest.html.

Oracle and/or its affiliates, Hash Map (Java Platform SE 6)
[Online],
http://docs.oracle.com/javase/6/docs/api/java/util/HashM
ap.html.

Oracle and/or its affiliates, Java SE 6 Documentation
[Online], http: //docs.oracle.com/javase/6/docs/.

L. Rizzo, Dummy net: A simple approach to the
evaluation of network protocols, ACM SIGCOMM
Computer Communication Review 27 (1) (1997) 31-41.
T. Kawamura, S. Motomura, K. Kagemoto, K. Sugahara,
Meeting arrangement system based on mobile agent
technology, in: Proceedings of the 2nd
International Conference on Web Information
Systems and Technologies, Setubal, Portugal, 2006, pp.
117-120.

T. Kawamura, Y. Hamada, K. Sugahara, K. Kagemoto, S.
Motomura, Multi-agent-based approach for meeting
scheduling system, in: Proceedings of IEEE International
Conference on Integration of Knowledge Intensive
Multi-Agent Systems, Waltham, Massachusetts, 2007, pp.
79-84.

