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We discuss a mortar-type PNC
1 /P0 element method for the incompressible Stokes problem. We

prove the inf-sup condition and obtain the optimal error estimate. Meanwhile, we propose a
W-cycle multigrid for solving this discrete problem and prove the optimal convergence of the
multigrid method, that is, the convergence rate is independent of the mesh size and mesh level.
Finally, numerical experiments are presented to confirm our theoretical results.

1. Introduction

Aswe all know, the application of viscous incompressible flows is of considerable interest. For
example, the design of hydraulic turbines, or rheologically complex flows appears in many
processes which are involved in plastics and molten metals. Therefore, in recent decades,
many engineers and mathematicians have concentrated their efforts on the Stokes problem,
especially the problem that can be handled by the finite element methods. In [1], Girault
and Raviart provided a fairly comprehensive treatment of the most recent development
in the finite-element method. Some new divergence-free elements were proposed to solve
Stokes problem recently (see [2, 3] and others). Due to this development in the finite-element
theory, many numerical algorithms were established to solve the Stokes equations. Among
these algorithms, multigrid methods and domain decomposition methods for the Stokes
equations are very prevalent. In [4], the authors constructed an efficient smoother. Based on
the smoother, the multigrid methods have been greatly developed (see [5, 6]). Meanwhile,
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a FETI-DP method was extended to the incompressible Stokes equations in [7, 8], a BDDC
algorithm for this problem was developed too in [9] and others.

In the last twenty years, mortar element methods have attracted much attention and it
was first introduced in [10]. This method is a nonconforming domain decomposition method
with nonoverlapping subdomains. In mortar finite-element methods, the meshes on adjacent
subdomains may not match with each other across the interfaces of the subdomains. The
coupling of the finite-element functions on adjacent meshes is done by enforcing the so-called
mortar condition across the interfaces ( see [10] for details). There have been considerable
researches on the mortar element methods (see [11–13] and others).

In [12], the author discussed the mortar-type conforming element (P2/P1 element)
method for the Stokes problem, and then Chen and Huang proposed the mortar-type
nonconforming element (Qrot

1 /Q0 element) method for the problem in [5]. It is well known
that the rotated Q1 element is a rectangle element, and it is not a flexible finite element
since it is only suitable for the rectangular or L-shape-bounded domain. Moreover, the
rotated Q1 element is a quadratic element and is not as convenient as the linear elements in
calculating.

In this paper, we apply the mortar element method coupling with P1 nonconforming
finite element to the incompressible Stokes problem. The P1 nonconforming finite element is
a triangular element and it is suitable for more extensive polygonal domain than the rotated
Q1 element. Moreover, owing to its linearity, the computational work is less than the rotated
Q1 element. We prove the so-called inf-sup condition and obtain the optimal error estimate.
When solving the discrete problem, we also present a W-cycle multigrid algorithm, but the
analysis about the convergence of the multigrid is different from [5]. We only prove that the
prolong operator satisfies the criterion which proposed in [14] and we obtain the optional
convergence with simpler analysis than that in [5]. Meanwhile, we do some numerical
experiments which were realized in [5]. From numerical results, we note that the number
of iterations is less than the rotated Q1 element method when achieving the same relative
error.

The rest of this paper is organized as follows. In Section 2, we review the Stokes
problem and introduce the mortar element method for P1 nonconforming element. Section
3 gives verification of the inf-sup condition and error estimate. The multigrid algorithm and
the convergence analysis are given in Sections 4 and 5, respectively. The last section presents
some numerical experiments. Throughout this paper, we denote by “C” a universal constant
which is independent from the mesh size and level, whose values can differ from place to
place.

2. Preliminaries

We only consider the incompressible flow problem, the steady-state Stokes problem, so that
we can compare the results with those in [5].

The partial differential equations of the model problem is

−Δu +∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

(2.1)
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where Ω is bounded convex polygonal domain in R2, u represents the velocity of fluid, p is
pressure, and f is external force. Define

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω
q dx = 0

}
. (2.2)

The mixed variational formulation of problem (2.1) is to find (u, p) ∈ (H1
0(Ω))2 × L2

0(Ω) such
that

a(u,v) + b
(
v, p
)
= 〈f,v〉, ∀v ∈

(
H1

0(Ω)
)2
,

b
(
u, q
)
= 0, ∀q ∈ L2

0(Ω),
(2.3)

where the bilinear formulations a(·, ·) on (H1
0(Ω))2 × (H1

0(Ω))2, b(·, ·) on (H1
0(Ω))2 × L2

0(Ω)
and the dual parity 〈·, ·〉 on (L2(Ω))2 × (L2(Ω))2 are given, respectively, by

a(u,v) =
∫
Ω
∇u · ∇vdx, b

(
v, q
)
= −
∫
Ω
div vq dx, 〈f,v〉 =

∫
Ω
f · vdx. (2.4)

It is well known that the bilinear form b(·, ·) satisfies the inf-sup condition, that is, there exists
a positive constant β for any q ∈ L2

0(Ω) such that

sup
v∈(H1

0 (Ω))2

b
(
v, q
)

‖v‖(H1(Ω))2
≥ β
∥∥q∥∥L2(Ω). (2.5)

According to the assumption on Ω and the saddle point theory in [15], we know that if f ∈
(L2(Ω))2, then there exists a unique solution (u, p) ∈ (H1

0(Ω)
⋂
H2(Ω))2 × (L2

0(Ω)
⋂
H1(Ω))

satisfying

‖u‖(H2(Ω))2 +
∥∥p∥∥H1(Ω) ≤ C‖f‖(L2(Ω))2 . (2.6)

We now introduce a mortar finite-element method for solving problem (2.3). First, we
partition Ω into nonoverlapping polygonal subdomains such that

Ω =
N⋃
i=1

Ωi, Ωi

⋂
Ωj = φ if i /= j. (2.7)

They are arranged, so that the intersection of Ωi
⋂
Ωj for i /= j is an empty set or an edge, or

a vertex; that is, the partition is geometrically conforming. Denote by γm the common open
edge to Ωi and Ωj , then the interface Γ =

⋃N
i=1 ∂Ωi \ ∂Ω is broken into a set of disjoint open

straight segments γm (1 ≤ m ≤M), that is,

Γ =
M⋃
m=1

γm, γm
⋂
γn = φ if m/=n. (2.8)
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By γm(i) we denote an edge of Ωi called mortar and by δm(j) an edge of Ωj that geometrically
occupies the same place called nonmortar.

With each Ωi, we associate a quasiuniform triangulation Th(Ωi) made of elements
that are triangles. The mesh size hi is the diameter of largest element in Th(Ωi). We define
h = max1≤i≤N hi, Th =

⋃N
i=1 Th(Ωi). Let CR nodal points be the nonconforming nodal points,

that is, the midpoints of the edges of the elements in Th(Ωi). Denote the set of CR nodal
points belonging to Ωi, ∂Ωi and ∂Ω by ΩCR

ih , ∂ΩCR
ih and ∂ΩCR

h , respectively.
For each triangulationTh(Ωi) onΩi, the P1 nonconforming element velocity space and

piecewise constant pressure space are defined, respectively, as follows:

Xh(Ωi) =
{
vi ∈
(
L2(Ωi)

)2
|vi|τ is linear ∀τ ∈ Th(Ωi),

vi is continuous at midpoint of τ,v(mi) = 0 ∀mi ∈ ∂ΩCR
h

}
,

Qh(Ωi) =
{
qi ∈ L2(Ωi)

∣∣qi∣∣τ is a constant for τ ∈ Th(Ωi)
}
.

(2.9)

Then the product space X̃h(Ω) =
∏N

i=1Xh(Ωi) is a global P1 nonconforming element space for
Th on Ω.

For any interface γm = γm(i) = δm(j) (1 ≤ m ≤ M), there are two different and
independent triangulations Th(γm(i)) and Th(δm(j)), which produce two sets of CR nodes
belonging to γm: the midpoints of the elements belonging to Th(γm(i)) and Th(δm(j)) denoted
by γCR

m(i) and δ
CR
m(j), respectively.

In order to introduce the mortar condition across the interfaces γm, we need the
auxiliary test space Sh(δm(j))which is defined by

Sh
(
δm(j)
)

=
{
v ∈
(
L2(δm(j)

))2
|v is piecewise constant on elements of triangulation Th

(
δm(j)
)}
.

(2.10)

For each nonmortar edge δm(j), define the L2-projection operator: Qh,δm(j) : (L2(γm))
2 →

Sh(δm(j)) by

(
Qh,δm(j)v,w

)
L2(δm(j))

= (v,w)L2(δm(j)), ∀w ∈ Sh
(
δm(j)
)
. (2.11)

Now we can define the mortar-type P1 nonconforming element space as follows:

Xh(Ω) =
{
v ∈ X̃h(Ω) | v|Ωi

∈ Xh(Ωi), Qh,δm(j)

(
v|δm(j)

)
= Qh,δm(j)

(
v|γm(i)

)
,

∀γm = γm(i) = δm(j) ⊂ Γ
}
,

(2.12)

the condition of the equality in (2.12) which the velocity function v satisfies is called mortar
condition.
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The global P0 element pressure space on Ω is defined by

Qh(Ω) =
{
q ∈ L2

0(Ω) | q
∣∣
Ωi

∈ Qh(Ωi)
}
. (2.13)

We now establish the discrete system for problem (2.3) based on the mixed finite-
element spaces Xh(Ω) ×Qh(Ω).

We first define the following formulations:

ahi

(
uih,v

i
h

)
=
∑

τ∈Th(Ωi)

∫
τ

∇uih · ∇vih dx, ∀uih,v
i
h ∈ Xh(Ωi),

bhi

(
vih, p

i
h

)
= −

∑
τ∈Th(Ωi)

∫
τ

div vih · p
i
h dx, ∀vih ∈ Xh(Ωi), ∀pih ∈ Qh(Ωi).

(2.14)

Let

ah(uh,vh) =
N∑
i=1

ahi(uh,vh), bh
(
vh, ph

)
=

N∑
i=1

bhi
(
vh, ph

)
. (2.15)

Then the discrete approximation of problem (2.3) is to find (uh, ph) ∈ Xh(Ω) × Qh(Ω) such
that

ah(uh,vh) + bh
(
vh, ph

)
= 〈f,vh〉, ∀vh ∈ Xh(Ω),

bh
(
uh, qh

)
= 0, ∀qh ∈ Qh(Ω).

(2.16)

In the next section, we prove that the discrete problem (2.16) has a unique solution and we
obtain error estimate.

3. Existence, Uniqueness, and Error Estimate of the Discrete Solution

According to the Brezzi theory, the well-posedness of problem (2.16) depends closely on the
characteristics of both bilinear forms ah(·, ·) and bh(·, ·). We equip the space Xh(Ω) with the
following norm:

‖v‖2h :=
N∑
i=1

‖v‖2h,i, ‖v‖2h,i := ahi(v,v). (3.1)
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We can find in [1] that the local space family {X0
h(Ωi), Q0

h(Ωi)} is div-stable; that is,
there exists a constant β̃ independent of hi such that

sup
ṽh∈X0

h(Ωi)

bh
(
ṽh, q̃h

)
‖ṽh‖h,i

≥ β̃‖q̃h‖L2(Ωi), ∀q̃h ∈ Q0
h(Ωi), (3.2)

where X0
h(Ωi) = {v ∈ Xh(Ωi) | v(mi) = 0, ∀mi ∈ ∂ΩCR

i,h }, Q
0
h(Ωi) = Qh(Ωi)

⋂
L2
0(Ωi).

In order to prove that the global space family Xh(Ω) × Qh(Ω) is div-stable, it is
necessary to define the global spaces as

Q̆h(Ω) =

{
q̆ =

N∏
i=1

q̆i ∈ RN,
(
q̌, 1
)
=

N∑
i=1

q̌i|Ωi| = 0

}
. (3.3)

We first prove that the family {Xh(Ω), Q̌h(Ω)} is div-stable.

Lemma 3.1. The following inf-sup condition holds:

sup
vh∈Xh(Ω)

bh
(
vh, q̌
)

‖vh‖h
≥ β̌
∥∥q̌∥∥L2(Ω) ∀q̌ ∈ Q̌h(Ω), (3.4)

where the constant β̌ does not depend on h.

Proof. We decompose the space (H1
0(Ω))2 by (H1

0(Ω))2 =
∏N

i=1V (Ωi)(V (Ωi) = (H1
0(Ω))2|Ωi)

and define a local interpolation operator πi: V (Ωi) → Xh(Ωi) as

πiv(mi) =
1
|ei|

∫
ei

vds, (3.5)

where ei is an edge of τ ∈ Th(Ωi), mi is the midpoint of ei. Then we can define a global
interpolation operator π : (H1

0(Ω))2 → X̃h(Ω) as follows:

πv = (π1v1, π2v2, . . . , πNvN), vi = v|Ωi
, ∀v ∈

(
H1

0(Ω)
)2
. (3.6)

Define the operator Ξh,δm(j) : X̃h(Ω) → X̃h(Ω) by

(
Ξh,δm(j)v

)
(mi) =

⎧⎨
⎩
Qh,δm(j)

(
v|γm(i)

− v|δm(j)

)
(mi), mi ∈ δCRm(j),

0, otherwise.
(3.7)
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We can deduce that for any v ∈ (H1
0(Ω))2, there exists a v∗h ∈ Xh(Ω) satisfying

b
(
v − v∗h, q̌

)
= 0. (3.8)

In fact, we can set v∗
h
= πv +

∑M
m=1 Ξh,δm(j) (πv). Obviously v∗

h
∈ Xh(Ω) and

b
(
v − v∗h, q̌

)
= −

N∑
i=1

∑
τ∈Th(Ωi)

∫
τ

div
(
v − v∗h

)
q̌ dx = −

N∑
i=1

∑
τ∈Th(Ωi)

∫
∂τ

(
v − v∗h

)
· nq̌ ds

= −
∑
τ∈Th

∫
∂τ

(v − πv) · nq̌ds +
∑
τ∈Th

∫
∂τ

M∑
m=1

Ξh,δm(j) (πv) · nq̌ ds

=
M∑
j=1

∫
δm(j)

Qh,δm(j)

(
(πv)|γm(i)

− (πv)|δm(j)

)
· n q̌j ds

=
M∑
j=1

∫
δm(j)

(
(πv)|γm(i)

− (πv)|δm(j)

)
· nq̌j ds

=
M∑
j=1

∫
δm(j)

(
v|γm(i)

− v|δm(j)

)
· nq̌j ds

= 0.

(3.9)

On the other hand

‖v∗‖h ≤ ‖πv‖h +
∥∥∥Ξh,δm(j)πv

∥∥∥
h
, (3.10)

by norm equivalence we have

‖πv‖2h =
∑
τ

|πv|2H1(τ) ≤ C
∑
τ

(
πv(mi) − πv

(
mj

))2

= C
∑
τ

(
1
|ei|

∫
ei

vds − 1∣∣ej∣∣
∫
ej

vds

)2

= C
∑
τ

(
1
|ei|

∫
ei

(v − v)ds − 1∣∣ej∣∣
∫
ej

(v − v)ds

)2

≤ C
∑
τ

⎛
⎝ 1

|ei|2

(∫
ei

(v − v)ds

)2

+
1∣∣ej∣∣2
(∫

ej

(v − v)ds

)2
⎞
⎠,

(3.11)
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where mi,mj are the midpoints of the edges of τ , and v is the integral average of v in τ , by
Hölder inequality, trace theorem, and Friedrichs’ inequality we can get

1

|ei|2

(∫
ei

(v − v)ds

)2

≤ 1
|ei|

∫
ei

(v − v)2ds ≤ Ch−1
∫
∂τ

(v − v)2ds

≤ C
(
h−2
∫
τ

(v − v)2dx + |v − v|2H1(τ)

)

≤ C|v|2H1(τ),

(3.12)

and combining (3.11), we obtain

‖πv‖h ≤ C‖v‖h. (3.13)

Using norm equivalence we derive

∥∥∥Ξh,δm(j)πv
∥∥∥2
h
≤ C

∑
mi∈δCRm(j)

(
Ξh,δm(j)πv(mi)

)2

= C
∑

mi∈δCRm(j)

(
Qh,δm(j)

(
(πv)|γm(i)

− (πv)|δm(j)

)
(mi)
)2

≤ Ch−1
∥∥∥Qh,δm(j)

(
(πv)|γm(i)

− (πv)|δm(j)

)
(mi)
∥∥∥2
0,γm

≤ Ch−1
∥∥∥(πv)|γm(i)

− (πv)|δm(j)

∥∥∥2
0,γm

≤ Ch−1
(∥∥∥(πv)|γm(i)

− v|δm(j)

∥∥∥2
0,γm

+
∥∥∥v|δm(j)

− (πv)|δm(j)

∥∥∥2
0,γm

)

:= Ch−1(K1 +K2).

(3.14)

From trace theorem and (3.13), it follows that

K2 ≤ Ch‖v‖2h,j . (3.15)

So we only need to estimate K1. Owing to v ∈ (H1
0(Ω))2, we then obtain

∥∥∥(πv)|γm(i)
− v|δm(j)

∥∥∥2
0,γm

=
∥∥∥(πv)|γm(i)

− v|γm(i)

∥∥∥2
0,γm

≤ Ch‖v‖2h,i. (3.16)

The bounds in (3.15) and (3.16) lead to

∥∥∥Ξh,δm(j)πv
∥∥∥2
h
≤ C
(
‖v‖2h,i + ‖v‖2h,j

)
, (3.17)
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which together with (3.13) and (3.17) give

‖v∗‖h ≤ C‖v‖(H1(Ω))2 . (3.18)

Since {(H1
0(Ω))2, L2

0(Ω)} is div-stable, following (3.8) and (3.18), by Fortin rules, we have
completed the proof of Lemma 3.1

Now we recall the following Brezzi theory about the existence, uniqueness, and error
estimate for the discrete solution.

Theorem 3.2. The bilinear forms ah(·, ·) and bh(·, ·) have the following properties:

(i) ah(·, ·) is continuous and uniformly elliptic on the mortar-type P1 nonconforming space
Xh(Ω), that is,

ah(uh,vh) ≤ ‖uh‖h‖vh‖h, ∀uh,vh ∈ Xh(Ω),

ah(vh,vh) ≥ C‖vh‖2h, ∀vh ∈ Xh(Ω);
(3.19)

(ii) bh(·, ·) is also continuous on the space family Xh(Ω) ×Qh(Ω), that is,

bh
(
vh, q
)
≤ ‖vh‖h

∥∥q∥∥L2(Ω), ∀vh ∈ Xh(Ω), q ∈ Qh(Ω); (3.20)

(iii) the family {Xh(Ω), Qh(Ω)} satisfies the inf-sup condition, that is, there exists a constant β
that does not depend on h of triangulation such that

sup
v∈Xh(Ω)

bh
(
v, q
)

‖v‖h
≥ β
∥∥q∥∥L2(Ω), ∀q ∈ Qh(Ω), (3.21)

so the problem (2.16) has a unique solution, and if one lets (u, p), (uh, ph) be the solution of (2.3) and
(2.16), respectively, where (u, p) ∈ (H1

0(Ω))2 × L2
0(Ω), u|Ωk ∈ (H2(Ωk))

2, p|Ωk ∈ H1(Ωk), then

‖u − uh‖h +
∥∥p − ph∥∥L2(Ω) ≤ C

N∑
k=1

hk
(
‖u‖(H2(Ωk))

2 +
∥∥p∥∥H1(Ωk)

)
. (3.22)

Proof. The statements of Brezzi theory are that the properties (3.19)–(3.21) lead to the
existence, uniqueness, and error estimate of the discrete solution. In [16], it is proven
that ah(·, ·) is continuous on Xh(Ω) and is elliptic with a constant uniformly bounded.
Furthermore, it is straightforward that bh(·, ·) is continuous on Xh(Ω) × Qh(Ω). The point
that needs verification is a uniform inf-sup condition (3.21), or equivalently that the family
{Xh(Ω) ×Qh(Ω)} is div-stable.

Using local inf-sup condition (3.2) and the above lemma, arguing as the proof in
Proposition 5.1 of [12], we have the global inf-sup condition (3.21).
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4. Numerical Algorithm

In this section, we present a numerical algorithm, that is, the W-cycle multigrid method for
the discrete system (2.16), and we prove the optional convergence of the multigrid method.
We use a simpler and more convenient analysis method than that in [5].

In order to set the multigrid algorithm, we need only to change the index h of the
partition Th in Section 2 to be k, and let T1 be the coarsest partition. By connecting the
opposite midpoints of the edges of the triangle, we split each triangle ofT1 into four triangles
and we refine the partition T1 into T2. The partition T2 is quasi-uniform of size h2 = h1/2.
Repeating this process, we get a sequence of the partition Tk(k = 1, 2, . . . , L), each quasi-
uniform of size hk = h1/2k−1.

As in Section 2, with the partitionTk, we define the mortar P1 nonconforming element
velocity space and P0 element pressure space as Xk and Qk, respectively. We can see that
Xk (k = 1, 2, . . . , L) are nonnested, and Qk (k = 1, 2, . . . , L) are nested. Furthermore, we
denote the P1 nonconforming element product space on Ω by X̃k.

Let {ϕi
k
} be the basis of Xk, and let {ψi

k
} be the basis of Qk. For any vk ∈ Xk, qk ∈ Qk,

we have the corresponding vector vk = (vk,i) and q
k
= (q

k,i
). We introduce the matrice Ak,

Bk, and f
k
having the entries ak,ij = a(ϕik, ϕ

j

k), bk,ij = b(ϕ
i
k, ψ

j

k), and fk,i = (f, ϕik), respectively.

Then at level k, the problem (2.16) is equivalent to

(
Ak BT

k
Bk 0

)(
uk
p
k

)
=

(
f
k
0

)
. (4.1)

In the following of this section, we introduce our multigrid method; the key of this
method is the intergrid transfer operator.

We first define the intergrid transfer operator on the product space, Lkk−1 : X̃k−1 → X̃k

Lkk−1v(mi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v(mi), mi ∈ κ, κ ∈ Tk−1,
1
2
(
v|κ1(mi) + v|κ2(mi)

)
, mi ∈ ∂κ1

⋂
∂κ2, κ1, κ2 ∈ Tk,

0, mi ∈ ∂Ω,

(4.2)

where κ, κi (i = 1, 2) is the partition of Tk−1, Tk respectively,mi ∈ ΩCR
k,i

(1 ≤ i ≤N).
Then we define the intergrid operator on the mortar P1 nonconforming element

velocity space, Rk
k−1:Xk−1 → Xk

Rk
k−1v = Lkk−1v +

M∑
m=1

Ξk,δm(j)L
k
k−1v, (4.3)

where Ξk,δm(j) is defined as (3.7).
On the P0 element pressure space, we apply the natural injection operator Jkk−1:Qk−1 →

Qk, that is,

Jkk−1 = I. (4.4)
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Therefore, our prolongation operator on velocity space and pressure space can be
written as

Ikk−1 =
[
Rk
k−1, J

k
k−1

]
. (4.5)

Multigrid Algorithm

If k = 1, compute the (u1, p1) directly. If k ≥ 2, do the following three steps.

Step 1. Presmoothing: for j = 0, 1, . . . , m1 − 1, solving the following problem:

(
u
j+1
k
pj+1
k

)
=

(
u
j

k
pj
k

)
−
(
αkIk BTk
Bk 0

)−1

×
{(

Ak BTk
Bk 0

)(
u
j

k
pj
k

)
−
(
f
k
0

)}
,

(4.6)

where αk is a real number which is not smaller than the maximal eigenvalue of Ak.

Step 2. Coarse grid correction: find (ũk−1, p̃k−1) ∈ Xk−1 ×Qk−1, such that

ak−1(ũk−1,vk−1) + bk−1
(
vk−1, p̃k−1

)

=
〈
f, Rk

k−1vk−1
〉
− ak
(
um1
k
, Rk

k−1vk−1
)
− bk
(
Rk
k−1vk−1, p

m1
k

)
, ∀vk−1 ∈ Xk−1,

bk−1
(
ũk−1, qk−1

)
= 0, ∀qk−1 ∈ Qk−1.

(4.7)

Compute the approximation (u∗
k−1, p

∗
k−1) by applying μ ≥ 2 iteration steps of the multigrid

algorithm applied to the above equations on level k − 1 with zero starting value. Set

um1+1
k

= um1
k

+ Rk
k−1u

∗
k−1, pm1+1

k
= pm1

k
+ p∗k−1. (4.8)

Step 3. Postsmoothing: for j = 0, 1, . . . , m2 − 1 solving following problem:

(
u
m1+j+2
k
pm1+j+2
k

)
=

(
u
m1+j+1
k
pm1+j+1
k

)
−
(
αkIk BTk
Bk 0

)−1

×
{(

Ak BTk
Bk 0

)(
u
m1+j+1
k
pm1+j+1
k

)
−
(
f
k
0

)}
,

(4.9)

then, (um1+m2+1
k

, pm1+m2+1
k

) is the result of one iteration step.
For convenience, at level k the problem (2.16) can bewritten as followes: find (uk, pk) ∈

Xk ×Qk such that

Lh,k
((
uk, pk

)
;
(
vk, qk

))
= Fk
((
vk, qk

))
, ∀
(
vk, qk

)
∈ Xk ×Qk. (4.10)
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Since Lh,k((uk, pk); (vk, qk)) is a symmetric bilinear form onXk×Qk, there is a complete
set of eigenfunctions (φjk, ψ

j

k), which satisfy

Lh,k
((
uk, pk

)
;
(
vk, qk

))
= λj
[(
φ
j

k,vk
)
0
+ h2
(
ψ
j

k, qk
)
0

]
, ∀
(
vk, qk

)
∈ Xk ×Qk,

(
vk, qk

)
=
∑
j

cj
(
φ
j

k
, ψ

j

k

)
.

(4.11)

In order to verify that our multigrid algorithm is optimal, we need to define a set of
mesh-dependent norms. For each k ≥ 0 we equip Xk ×Qk with the norm

∥∥∣∣(v, q)∣∣∥∥0,k =
∥∥(v, q)∥∥0,k =

(
‖v‖2L2(Ω) + h

2
k

∥∥q∥∥2L2(Ω)

)1/2
=
(
(v,v)k + h

2
k

(
q, q
)
k

)1/2
,

(4.12)

and define

∥∥∣∣(vk, qk)∣∣∥∥s,k =
⎧⎨
⎩
∑
j

∣∣λj∣∣s∣∣cj∣∣2
⎫⎬
⎭

1/2

, ‖v‖2k =
∑
τ

(∇v,∇v)k. (4.13)

For our multigrid algorithm, we have the following optional convergence conclusion.

Theorem 4.1. If (u, p) and (ui
h
, pi

h
) (0 ≤ i ≤ m + 1) are the solutions of problems (2.16) and (4.10),

respectively, then there exists a constant 0 < γ < 1 and positive integer m, all are independent of the
level number k, such that

∥∥∥
∣∣∣(u, p) − (um+1

k , pm+1
k

)∣∣∣
∥∥∥
0,k

≤ γ
∥∥∣∣(u, p) − (u0

k, p
0
k

)∣∣∥∥
0,k. (4.14)

To prove this theorem, we give in the next section two basic properties for convergence
analysis of the multigrid, that is, the smoothing property and approximation property.

5. Proof of Theorem 4.1

From the standard multigrid theory, the W-cycle yields a h-independent convergence rate
based on the following two basic properties.

We first show the smoothing property. By [[12] Theorem 5.1], we have the following.

Lemma 5.1 (smoothing property). Assume that λmax(Ak) ≤ αk ≤ Cλmax(Ak), if the number of
smoothing steps ism, then

∥∥∣∣(umh − uh, pmh − ph
)∣∣∥∥

2,k ≤ Ch−2

m

∥∥∥u0
h − uh

∥∥∥
L2(Ω)

. (5.1)

The property has been proved in [11].
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Next, we prove the approximation property. We just apply the following conclusion in
[14], which can simplify the complexity of theoretical analysis.

Lemma 5.2. If the prolongation operator Ik
k−1 defined in (4.5) satisfies the following criterion,

Then, the approximation property in multigrid method holds and the multigrid algorithm converges
optimally.

(A.1) ‖v − Rk
k−1v‖L2(Ω) ≤ Chk‖v‖k−1, ∀v ∈ Xk−1,

(A.2) ‖Jk
k−1q‖L2(Ω) ≤ C‖q‖L2(Ω), ∀q ∈ Qk−1,

(A.3) ‖|(uk, pk) − Ikk−1(uk−1, pk−1)|‖0,k ≤ Ch2
k
(‖u‖H2(Ω) + ‖p‖H1(Ω)).

where (u, p) ∈ (H1
0(Ω) ∩H2(Ω))2 × (L2

0(Ω) ∩H1(Ω)) is the solution of (2.3) with the force term
f ∈ (L2(Ω))2 and (uk−1, pk−1), (uk, pk) are the mixed finite element approximation of (u, p) at levels
k − 1 and k, respectively.

This lemma has been proved in [14].

Lemma 5.3 (approximation property). Let (Ik
k−1)

∗
: Xk ×Qk −→ Xk−1 ×Qk−1(k ≥ 1) be defined

as follows:

Lk−1
((
Ikk−1

)∗(
vk, qk

)
,
(
vk−1, qk−1

))
,

= Lk
((

vk, qk
)
, Ikk−1
(
vk−1, qk−1

))
, ∀
(
vk−1, qk−1

)
∈ Xk−1 ×Qk−1,

(
vk, qk

)
∈ Xk ×Qk.

(5.2)

Then one has

∥∥∥∣∣∣(v, q) − Ikk−1
(
Ik
k−1

)∗(
v, q
)∣∣∣∥∥∥

0,k
≤ Ch2

k

∥∥∣∣(v, q)∣∣∥∥2,k, ∀
(
v, q
)
∈ Xk ×Qk. (5.3)

Proof. By Lemma 5.2, we only need to prove our prolongation operator Ikk−1 that satisfies
(A.1), (A.2), and (A.3).

For any v ∈ Xk−1, the inequality (A.1) holds. In fact

∥∥∥v − Rk
k−1v
∥∥∥
L2(Ω)

≤
∥∥∥v − Lkk−1v

∥∥∥
L2(Ω)

+

∥∥∥∥∥
M∑
m=1

Ξk,δm(j)L
k
k−1v

∥∥∥∥∥
L2(Ω)

, (5.4)

by Lemma 5.2 in [14], we can get

∥∥∥v − Lkk−1v
∥∥∥
L2(Ω)

≤ Chk‖v‖k−1, (5.5)
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by norm equivalence, we deduce

∥∥∥Ξk,δm(j)L
k
k−1v
∥∥∥2
L2(Ω)

≤ h2k
∑

mk
i ∈δ

CR
k,m(j)

(
Ξk,δm(j)L

k
k−1v
)2(

mk
i

)

= h2k
∑

mk
i ∈δ

CR
k,m(j)

Qk,δm(j)

((
Lkk−1v

)
|γm(i)

−
(
Lkk−1v

)
|δm(j)

)2(
mk
i

)

≤ Chk
∥∥∥Qk,δm(j)

((
Lkk−1v

)
|γm(i)

−
(
Lkk−1v

)
|δm(j)

)∥∥∥2
0,γm

≤ Chk
∥∥∥(Lkk−1v

)
|γm(i)

−
(
Lkk−1v

)
|δm(j)

∥∥∥2
0,γm

≤ Chk

(∥∥∥(Lkk−1v
)
|γm(i)

− v|δm(j)

∥∥∥2
0,γm

+
∥∥∥v |δm(j)

−
(
Lkk−1v

)
|δm(j)

∥∥∥2.0
0,γm

)

= Chk(K1 +K2).

(5.6)

Using trace theorem and (5.5), we have

K2 ≤ Chk‖v‖2k−1,j . (5.7)

Owing to v ∈ Xk−1, then

∥∥∥(Lkk−1v
)
|γm(i)

− v |δm(j)

∥∥∥2
0,δm(j)

≤ 2
∥∥∥(Lkk−1v

)
|γm(i)

−Qk−1,δm(j)

(
v |γm(i)

)∥∥∥2
0,γm(i)

+ 2
∥∥∥Qk−1,δm(j)

(
v |δm(j)

)
− v |δm(j)

∥∥∥2
0,δm(j)

.

(5.8)

The second term of the above inequality can be estimated as follows:

∥∥∥Qk−1,δm(j)

(
v |δm(j)

)
− v |δm(j)

∥∥∥2
0,γm

=
∑

e∈Tk−1(δm(j))

∫
e

(v −Qev)2ds, (5.9)

where Qe is the L2 orthogonal projection onto one-dimensional space which consists of
constant functions on an element e, and e is an edge of E which is in the triangulation Tk−1.
Using the scaling argument in [17], for any constant c we have

∫
e

(v −Qev)2ds ≤
∫
e

(v − c)2ds ≤ Chk
∫
ê

(v̂ − c)2dŝ ≤ Chk‖v̂ − c‖2
1,Ê

≤ Chk|v̂|21,Ê ≤ Chk|v|21,E,
(5.10)
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which combining with (5.9) gives

∥∥∥Qk−1,δm(j)

(
v |δm(j)

)
− v |δm(j)

∥∥∥
0,γm

≤ Ch1/2
k

‖v‖k,j . (5.11)

For the first term of the right side of (5.8), we have

∥∥∥(Lkk−1v
)
|γm(i)

−Qk−1,δm(j)

(
v |γm(i)

)∥∥∥2
0,γm

=
∥∥∥(Lkk−1v

)
|γm(i)

− v |γm(i)
+ v |γm(i)

+Qk−1,δm(j)

(
v |γm(i)

)∥∥∥2
0,γm

≤ 2
∥∥∥(Lkk−1v − v

)
|γm(i)

∥∥∥2
0,γm(i)

+ 2
∥∥∥v |γm(i)

−Qk−1,δm(j)

(
v |γm(i)

)∥∥∥2
0,γm(i)

= F1 + F2.

(5.12)

Trace theorem and (5.5) give

F1 ≤ Chk
∥∥∥Lkk−1v

∥∥∥2
k,i

≤ Chk‖v‖2k−1,i. (5.13)

For F2, by trace theorem and the approximation of the operator Qk−1,δm(j) , we have

F2 ≤ Chk‖v‖2k−1,i, (5.14)

which together with (5.4)–(5.13), gives (A.1).
Obviously, (A.2) naturally holds so we only need to prove (A.3).
By proof of Lemma 5.2 in [14], we can see that

∥∥∥
∣∣∣(uk, pk) − Ikk−1(uk−1, pk−1)

∣∣∣
∥∥∥
0,k

≤
∥∥∥uk − Lkk−1uk−1

∥∥∥
0,k

+

∥∥∥∥∥
M∑
m=1

Ξk,δm(j)L
k
k−1uk−1

∥∥∥∥∥
0,k

+ h2k
∥∥∥pk − Jkk−1pk−1

∥∥∥
0,k

≤ Ch2k
(
‖u‖H2(Ω) +

∥∥p∥∥H1(Ω)

)
+

∥∥∥∥∥
M∑
m=1

Ξk,δm(j)L
k
k−1uk−1

∥∥∥∥∥
0,k

.

(5.15)
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Arguing as (5.6), we obtain

∥∥∥Ξk,δm(j)L
k
k−1uk−1

∥∥∥2
0,k

≤ h2k
∑

mk
i ∈δ

CR
k,m(j)

Ξk,δm(j)

(
Lkk−1uk−1

)2(
mk
i

)

= h2k
∑

mk
i ∈δ

CR
k,m(j)

(
Qk,δm(j)

((
Lkk−1uk−1

)
|γm(i)

−
(
Lkk−1uk−1

)
|δm(j)

))2(
mk
i

)

≤ Chk
∥∥∥Qk,δm(j)

((
Lkk−1uk−1

)
|γm(i)

− uk |γm(i)
+ uk |δm(j)

−
(
Lkk−1uk−1

)
|δm(j)

)∥∥∥2
0,k

≤ Chk
(∥∥∥(Lkk−1uk−1

)
|γm(i)

− uk |γm(i)

∥∥∥2
0,γm

+
∥∥∥(Lkk−1uk−1

)
|δm(j)

− uk |δm(j)

∥∥∥2
0,γm

)

= Chk(K1 +K2).

(5.16)

By (5.15) and trace theorem, we get that

K1 ≤ Ch3k‖u‖
2
H2(Ωi), K2 ≤ Ch3k‖u‖

2
H2(Ωj), (5.17)

together with (5.15), (A.3) has been proved, and we have completed the proof of Lemma
5.3.

6. Numerical Results

In this section, we present some numerical results to illustrate the theory developed in the
earlier sections. The examples are as same as those in [5], so that we can compare the
conclusion with the mortar rotated Q1 element method.

Here we deal with Ω = (0, 1)2. We choose the exact solution of (2.1) as

u1 = 2x2(1 − x)2y
(
1 − y

)(
1 − 2y

)
, u2 = −2x(1 − x)(1 − 2x)y2(1 − y)2, (6.1)

for the velocity and p = x2 − y2 for the pressure.
For simplicity, we decompose Ω into two subdomains: Ω1 = (0, 1) × (0, 1/2) as

nonmortar domain and Ω2 = (0, 1) × (1/2, 1) as mortar domain. The sizes of the coarsest grid
are denoted by h1,1 and h1,2, respectively (see Figure 1). The test concerns the convergence
of the W-cycle multigrid algorithm. In what follows, k denotes the level, Nu and Np are the
number of the unknowns of the velocity and pressure, the norm ‖ · ‖0,d is the usual Euclidean
norm of a vector which is equivalent to ‖ · ‖h. iter(m1,m2) denotes the number of iterations to
achieve the relative error of residue less than 10−3, where m1 and m2 are the presmoothing
steps, and the postsmoothing steps respectively, and the initial approximative solution for
the iteration is zero. The numerical results are presented in Tables 1 and 2.

From Table 1, we can see that the errors of the mortar element method for the velocity
and the pressure are small, which demonstrates Theorem 3.2.
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Figure 1: The coarsest mesh with h1,1 = 1/4 and h1,2 = 1/6.

Table 1: Error estimate for the mortar element method with h1,1 = 1/4 and h1,2 = 1/6.

k Nu Np ‖u − uk‖0,d ‖p − pk‖L2(Ω)

1 178 51 0.0772974 0.164013
2 668 207 0.0455288 0.133103
3 2584 831 0.0242334 0.0733174
4 10160 3327 0.0123836 0.037679
5 40288 13311 0.00619081 0.0195834

Table 2: Iterative numbers for theW-cycle with h1,1 = 1/4 and h1,2 = 1/6.

k 2 3 4 5
iter(4,4) 9 8 8 9
iter(5,5) 8 8 7 7

From Table 2, we can see that the convergence for the W-cycle multigrid algorithm is
optimal; that is, the number of iterations is independent of the level number k. Meanwhile,
we note that the number of iterations is less than the rotated Q1 element method in [5]when
achieving the same relative error.
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