
Query Containment and Rewriting Using Views
for Regular Path Queries Under Constraints

Gösta Grahne
Concordia University

1455 De Maisonneuve Blvd. West
Montreal, Quebec
H3G 1M8, Canada

grahne@cs.concordia.ca

Alex Thomo
Concordia University

1455 De Maisonneuve Blvd. West
Montreal, Quebec
H3G 1M8, Canada

thomo@cs.concordia.ca

ABSTRACT
In this paper we consider general path constraints for semi-
structured databases. Our general constraints do not suf-
fer from the limitations of the path constraints previously
studied in the literature. We investigate the containment
of regular path queries under general path constraints. We
show that when the path constraints and queries are ex-
pressed by words, as opposed to languages, the containment
problem becomes equivalent to the word rewrite problem
for a corresponding semi-Thue system. Consequently, if the
corresponding semi-Thue system has an undecidable word
problem, the word query containment problem will be unde-
cidable too. Also, we show that there are word constraints,
where the corresponding semi-Thue system has a decidable
word rewrite problem, but the general query containment
under these word constraints is undecidable. In order to
overcome this, we exhibit a large, practical class of word con-
straints with a decidable general query containment prob-
lem.

Based on the query containment under constraints, we rea-
son about constrained rewritings –using views– of regular
path queries. We give a constructive characterization for
computing optimal constrained rewritings using views.

1. INTRODUCTION
The semistructured data model [1] is now used as the foun-
dation on which to reason about a multitude of applica-
tions, for which a strictly relational or object-oriented data
model would be either inappropriate or too heavy. The data
in these applications is best formalized in terms of labeled
graphs, and usually such data are found in web information
systems, XML data repositories, digital libraries, communi-
cation networks, and so on.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00

Virtually, all the query languages for semi-structured data
provide the possibility for the user to query the database
through regular expressions. The design of query languages
using regular path expressions is based on the observation
that many of the recursive queries, which arise in practice,
amount to graph traversals. In essence, these queries are
graph patterns, and the answers to the query are subgraphs
of the database that match the given pattern [20, 12, 7, 8].
In particular, the (sub)queries expressed by regular expres-
sions are called regular path queries.

Regular path queries have the advantage over more expres-
sive recursive languages, such as datalog, that many deci-
sion problems become computable. However, navigating a
database graph, in order to answer a regular path query, is
still very expensive. This is because a regular expression can
describe arbitrarily long paths in the database, which means
in turn an arbitrary number of physical accesses. Hence, the
need and methodology to optimize the evaluation of regular
path queries on a database graph are by now well recognized
and explored [7, 15, 16]. In those papers, query optimization
is approached by computing query rewritings using views.
Clearly, if cached views relevant to a query are available,
then a rewriting using these views offers a substantial opti-
mization for query evaluation.

On the other hand, there are the constraints. They are facts
that we know or learn about the structure of the databases,
on which a query is to be evaluated. Intuition says that
if we have some knowledge about the territory we are go-
ing to navigate, then we can navigate more wisely. No-
tably, constraints for semistructured data are investigated
in [2, 5, 6, 11]. In [2], local path constraints are introduced.
As defined there, a path constraint with respect to a node
a of the database, is a pair of regular path queries (Q1, Q2),
such that in the intended databases, the set of nodes reach-
able from a along paths spelling words in Q1, is a subset
of the nodes reachable from a along paths spelling words in
Q2.

An important extension of path constraints for databases
having a special root node, say r, has been considered in
[5, 6]. There, a path constraint holds only from nodes a
that are reachable from r, by following paths labeled with
words in a prefix language which is regular as well.

In all of [2, 5, 6], the constraint implication problem is stud-
ied. Namely, the implication problem is to test whether a
new constraint follows from the ones already known. As a
constraint is a query containment in [2], by solving the im-
plication problem, the containment problem is being solved
as well. However, there are limitations. The implication is
based only on the constraints holding in (from) a particular
node, and so, it doesn’t take into consideration other con-
straints holding in nearby nodes. Also, the constraints hold-
ing in a node only imply constraints holding in that same
node. As a result, the methods presented in [2] can only be
used to decide containment of regular path queries starting
from the same node as the local constraints, and under the
assumption that there are no other constraints holding in
the nearby nodes, which the queries can eventually reach.

In [5, 6], for the databases having the special root node,
it is shown that in general, implication of extended path
constraints is undecidable, and the papers leave open the
question of query containment. Finally, we can also view
[11] as solving containment of regular path queries under
constraints, for restricted classes of regular path queries,
namely those expressible by first order logic.

In this paper we consider general semistructured databases
[7, 8, 15, 16], which do not have any special root nodes.
We capture (partial) knowledge about such databases, with
path constraints where each constraint is a pair of regular
path queries for which the containment or equality of their
answer sets on the target databases is known to hold. The
queries in such constraints ask for pairs of nodes connected
by paths spelling words in the corresponding queries, rather
than the nodes reachable by such paths from some root.
Our constraints are a semantic generalization of the path
constraints in [2]. With the generalization we eliminate the
afore mentioned limitations associated with the constraints
in [2].

We study query containment in this general setting. Query
containment is considered starting from all the nodes of the
database, not just from a special node. Then, based on the
query containment, we reason about the query rewriting us-
ing views. We define constrained rewritings and give a char-
acterization that enables their computation. We demon-
strate that when we take constraints into account, we can
always compute more useful rewritings, which use the views
optimally. As mentioned before, query rewriting using views
offers substantial optimization when the views are relevant
to the query, and by using constraints we make more room
for such relevance.

Even if the queries and the views are to be evaluated start-
ing from all the nodes in the database, as is shown in [16], a
rewriting can be efficiently used to optimize the query eval-
uation in the case when the query is to be computed, or
the views have been computed, starting from some nodes
only. Such partial query/view evaluations usually occur
when dealing with regular path atoms of conjunctive reg-
ular path queries. A formal algorithm for this case is given
in [16]. The algorithm is based on the intuition of “un-
rewriting” when reaching nodes from which a view has not
been evaluated.

Query rewriting using views also has other applications apart
from traditional query optimization. In the following exam-
ple we illustrate how beneficial our rewritings are in a Web
based scenario. The example also shows the need for the
generalized path constraints used in this paper.

Let’s consider the html-pages of the multi-site Web of Eric-
sson Inc. Naturally the html-pages have href-links to other
pages and so we have a (finite) graph structure that we
would like to query through regular expressions, instead
of “endlessly” manually browsing. For the appropriate ab-
straction level, let there be a function mapping the href-
links to symbols of an alphabet. For example, links for the
Ericsson Canada site could be labeled with “canada.” By
browsing, the reader can easily verify that the following con-
straints hold from all the nodes of the Ericsson Web.

• canada . products . mobile systems . mobile internet
= canada . mobile internet

• italy . tecnologie . bluetooth . white papers =
canada . technology . bluetooth . white papers

We can continue a long way learning constraints like these.
Observe that the above constraints also hold from the nodes
not having at all a link labeled “canada” or “italy.” In such
cases, the constraints hold because the left-hand side and
the right-hand side queries have both empty answer sets.

Let’s take a closer look at the first constraint. It is true
because at the moment there exists a shortcut link labeled
“mobile systems” in the main page of Ericsson Canada. As
a matter of fact, such shortcuts are temporary and will be
replaced with something else in a couple of days. However,
we would like to answer the users still asking queries like
Q = ∗ . canada . mobile internet . white papers. By
considering some important long browsing paths as regular
path views, e.g. V = ∗ . canada . products . mobile systems
. mobile internet . white papers, we could rewrite Q as
V . white papers and answer the user.

Now consider the second constraint. It is clear that, if
the user gives a query having a subquery asking for Cana-
dian technology Bluetooth white papers, and the Ericsson
Canada site is down for maintenance, then we could answer
the user by using a query rewriting with a corresponding
path view in the Italian site. Obviously, in neither case
would we be able to have a rewriting if we lacked the knowl-
edge captured in the constraints.

2. BACKGROUND
Semistructured databases. We consider a database to
be an edge labeled graph. This graph model is typical in
semistructured data, where the nodes of the database graph
represent the objects, and the edges represent the attributes
of the objects or relationships between the objects.

Formally, we assume that we have a universe of objects D
and a finite alphabet ∆, called the database alphabet. Ob-
jects of D will be denoted a, b, Elements of ∆ will be
denoted R, S, . . ., and words over ∆ will be denoted t, u, w,
x, y As usually, ∆∗ denotes the set of all words over ∆.

A database DB over (D,∆) is a pair (N,E), where N ⊆ D
is a set of nodes and E ⊆ N × ∆ × N is a set of directed
edges labeled with symbols from ∆.

Path queries and constraints. A (regular) path query1

Q is a finite or infinite (regular) language over the alphabet
∆. Let Q be a path query, and DB = (N,E) a database.
Then the answer to Q on DB is defined as:

ans(Q,DB) = {(a, b) ∈ N ×N :

(a,R1, c1), (c1, R2, c2) . . . , (cn−1, Rn, b) ∈ E,
and R1R2 · · ·Rn ∈ Q}

A query Q1 is contained in a query Q2, denoted Q1 v Q2 iff
ans(Q1,DB) ⊆ ans(Q2,DB), for all DB ’s. We say that Q1

is equivalent to Q2 and write Q1 ≡ Q2, when Q1 v Q2 and
Q2 v Q1. It is easy to see that the above query containment
coincides with the (algebraic) language containment of Q1

and Q2 and the query equivalence coincides with the lan-
guage equality, i.e. Q1 v Q2 iff Q1 ⊆ Q2 and Q1 ≡ Q2 iff
Q1 = Q2.

If for two queries Q1 and Q2, we have in general Q1 6v Q2,
we could be interested in the set {DB} of databases, such
that ans(Q1,DB) ⊆ ans(Q2,DB). Clearly, an expression
Q1 v Q2 could be seen as a constraint restricting the set of
databases to only those satisfying the containment. We now
proceed with a the following definition:

Definition 1.

1. A path constraint is an expression of the formQ1 v Q2,
where Q1 and Q2 are path queries.

2. A database DB satisfies a path constraint, denoted
DB |= Q1 v Q2, if ans(Q1,DB) ⊆ ans(Q2,DB).

3. DB satisfies a set C of path constraints, denoted by
DB |= C, if it satisfies each constraint in C.

4. A query Q1 is contained in a query Q2 under a fi-
nite set of constraints C, denoted Q1 vC Q2, if for
each database DB such that DB |= C, we also have
ans(DB , Q1) ⊆ ans(DB , Q2).

5. A query Q1 is equivalent to a query Q2 under a finite
set of constraints C, denoted Q1 ≡C Q2, if Q1 vC Q2

and Q2 vC Q1.

6. If two queries Q1 and Q2 are words, i.e., simply se-
quences of labels, the constraint Q1 v Q2 is called a
word constraint. Word constraints will also be written
as w1 v w2, when Q1 equals w1 and Q2 equals w2.

We can easily see now, that the query containment (equiv-
alence) under constraints, no longer coincides with the con-
tainment (equality) of regular languages.

1A query Q could be non-regular as well. However, perhaps
since very few problems would be decidable, larger classes
of queries have not been considered in previous literature.
We also restrict ourselves to regular path-queries, except for
a technicality in Section 5.

Rewrite systems. A (semi-Thue) rewrite system R is a
finite subset of ∆∗×∆∗. The elements ofR are called rewrite
rules. A rewrite system R induces a single-step reduction
relation →R over ∆∗ defined as

→R = {(v, w) : v = xty and w = xuy

for some (t, u) ∈ R, and x, y ∈ ∆∗}.

We denote with
∗→R the reflexive and transitive closure of

→R. Testing whether a given pair (v, w) is an element of
∗→R

is called the rewrite problem for
∗→R. We shall sometimes use

infix notation for the reduction relation and write (u,w) ∈
→R as u→R v. For

∗→R the convention is similar.

The following fundamental result is well known (see e.g. [4])

Theorem 1. The rewrite problem is undecidable in gen-
eral.

We define the set of rewrite ancestors and rewrite descen-
dants of a word w, with respect to R, to be ancR(w) =

{x ∈ ∆∗ : x
∗→R w} and descR(w) = {x ∈ ∆∗ : w

∗→R x},
respectively. For a language L ⊆ ∆∗ we set ancR(L) =
∪w∈L ancR(w), and descR(L) = ∪w∈L descR(w),

We say that two ∆-words u and w are equivalent with re-

spect to R iff v
∗→R w and w

∗→R v. We denote the equiva-
lence class of a word w with respect to R by [w]R, or simply
by [w], if R is evident from the context.

Let us now consider a reduction relation we would obtain
by applying the rewrite rules only in the prefix of words.
Formally, we define the prefix-reduction relation

7→R = {(v, w) : v = ty, and w = uy,

for some (t, u) ∈ R and y ∈ ∆∗}.

We will denote the reflexive and transitive closure of 7→R
with

∗7→R.

We define the set of prefix rewrite ancestors and prefix rewrite
descendants of a word w, with respect to R, to be pancR(w)

= {x ∈ ∆∗ : x
∗7→R w} and pdescR(w) = {x ∈ ∆∗ : w

∗7→R x},
respectively. For a language L ⊆ ∆∗ we set pancR(L) =
∪w∈L pancR(w) and pdescR(L) = ∪w∈L pdescR(w).

Finite transducers and rational relations. A finite
transducer T = (P, I, O, δ, s, F) consists of a finite set
of states P , an input alphabet I, and an output alphabet
O, also a starting state s, a set of final states F , and a
transition-output relation δ ⊆ P ×I∗ ×P ×O∗. Intuitively,
for instance, (p, v, q, w) ∈ δ means that if the transducer is
in state p and reads word v it can go to state q and emit the
word w. For a given word v ∈ I∗, we say that a word w ∈ O∗
is an output of T for v if there exists a sequence (s, v1, p1,
w1) ∈ δ, (p1, v2, p2, w2) ∈ δ, . . . , (pn−1, vn, pn, wn) ∈ δ of
state transitions in T , such that pn ∈ F , v = v1 . . . vn and
w = w1 . . . wn. A finite automaton is simply a transducer
without output, i.e. the tuples in the transition relation are
triplets of the form (p, a, q) instead of quadruplets of the
form (p, a, q, b).

We shall also use the symbol T to denote the set of all pairs
(v, w) ∈ I∗×O∗, where w is an output of T when providing
v as input. Finally, T can also be seen as a mapping from
languages to languages, and we write

T (L) = {w : (v, w) ∈ T , for some v ∈ L}.

It is well known that T (L) is regular whenever L is.

A possibly infinite subset of ∆∗ ×∆∗ will be called a word
relation. A word relation R is rational if there exists a trans-
ducer T = (P, ∆, ∆, δ, s, F), such that R = T . We say
that the transducer T recognizes the relation R. It is easy
to see that, if we reverse the input with the output in a
transducer T , we get a transducer recognizing the inverse
R−1 of the relation R that T recognizes. We call the trans-
ducer obtained in this way from T , the inverse transducer
and denote it with T −1.

Let R be a word relation. We define the powers of R as
follows: R0 = ∅,R1 = R, and

Ri+1 = {(vv′, ww′) : (v, w) ∈ Ri, and (v′, w′) ∈ R}.

The power closure of R is defined as R⊗ =
⋃
i∈NRi.

It is also easy to see that class of rational relations is closed
under power closure. Formally, we have

Lemma 1. Let R be a rational relation. Then R⊗ is ra-
tional.

Proof. Construct a transducer T = (P, ∆, ∆, δ, s, F)
for R. Then, the transducer T ′ = (P, ∆, ∆, δ′, s, F), where
δ′ = δ∪{(f, ε, s, ε) : f ∈ F}, recognizes the relation R⊗.

3. QUERY CONTAINMENT UNDER
CONSTRAINTS

In this section we show that for word queries and constraints,
the query containment problem is equivalent to the rewrite
problem for general semi-Thue systems. Although this tells
us that, in general, the query containment is undecidable
even for word constraints, the equivalence is important be-
cause from that we will derive a characterization for reason-
ing about the containment of arbitrary regular path queries.
In fact, there are useful subclasses of word constraints for
which the (arbitrary) query containment is decidable, and
we show one such subclass in the next section.

Let C = {ti v ui : i ∈ [1, n]} be a set of word constraints.
Consider the corresponding semi-Thue word rewriting sys-
tem RC = {(ti, ui) : i ∈ [1, n]}. With slight abuse of no-

tation, we shall denote the induced relations by →C,
∗→C,

ancC(·), and descC(·). Now, suppose we are given two word
queries w1 and w2, and we want to test the containment
w1 vC w2. The following theorem shows that deciding the
above word query containment coincides with deciding the

w1
∗→C w2 word rewrite problem.

[ε]

S

[R] [S]

[RR]

[RS] [SR]

[SS]

R,SS

R,S

 S

S R

R,S

Figure 1: The construction of DBC

Theorem 2. w1 vC w2 iff w1
∗→C w2.

Proof. It is easy to see that if w1
∗→C w2 then w1 vC w2.

To prove the converse, we will build a database DBC such
that DBC |= C and

(§) If DBC |= w1 v w2 then w1
∗→C w2.

To see why this is important, suppose that we have this
database DBC and also have that w1 vC w2. Since w1 vC w2

and DBC |= C, we get that DBC |= w1 v w2. By (§), this

means in turn that w1
∗→C w2.

In order to construct the above mentioned database we gen-
eralize the construction of Lemma 4.4 in [2]. Since the de-
velopment is neither trivial nor derivable from [2], we go in
the details of the construction and its properties.

Let k be the number of symbols in the longer of the two
words w1 and w2. We then set DBC = (NC, EC), where

NC = {[x] : x ∈ ∆∗ and |x| ≤ k},

and

EC = {([x], R, [y]) : ([x], [y]) ∈ NC ×NC and y ∈ ancC(xR)}.

We note here that to “really” build this database we need
to be able to decide whether y ∈ ancC(x) for any [x] and
[y] in NC. Clearly, this is possible only if we are able to
decide the rewrite problem for the corresponding semi-Thue
system. However, what we actually show is the existence of
DBC, although its construction might not be executable by
a halting Turing machine.

For an example of the construction of the database DBC,
let’s take C = {R v S}, that gives a corresponding rewrite
system {(R, S)}, for which the rewrite problem is decidable.
The construction for k = 2 is presented in Figure 1. The
solid arrows represent database edges, while a dashed arrow
from [x] to [y] indicates that y ∈ ancC(x).

We prove that any database DBC, constructed as described
above, always satisfies the set C of word constraints, from
which it was derived. For this we need the following lemma,

[x]

w w

[y]

[yR][z]

R RR

[xwR]

[xw]

Figure 2: Proof of Lemma 2

which says that, starting from a node, say [x], and following
paths labeled with some (non-empty) word w, we reach all
the nodes corresponding to the ancestors of [xw]. In order
to simplify the notation, we will denote with Reach([x], w)
the set of nodes that can be reached from [x] by following
paths labeled with w in DB , i.e.

Reach([x], w) = {[y] : ([x], [y]) ∈ ans(w,DBC)},

and with Anc([x]) we will denote the set of nodes [y], such

that y
∗→C x, i.e.

Anc([x]) = {[y] ∈ NC : y ∈ ancC(x)}.

Lemma 2. For each w ∈ ∆+ and [x] ∈ NC, we have that

Reach([x], w) = Anc([xw]).

Proof. We proceed by induction. First, observe that by
the construction, for R ∈ ∆ we have that [y] ∈ Reach([x], R)
iff y ∈ ancC([xR]), i.e. [y] ∈ Anc([xR]).

Suppose (by induction on the length of w) thatReach([x], w)
= Anc([xw]), and let R ∈ ∆. Then, by the induction hy-
pothesis and the construction of DBC, Reach([x], wR) con-
tains Anc([xwR]) 2.

Let’s show the converse. If Reach([x], wR) is empty, then
the claimed equality follows. Let [z] be in Reach([x], wR).
Then, there exists y, such that [y] is reachable from [x]
with a path spelling w, and there is an R-edge from [y]
to [z] (see Figure 2). From the induction hypothesis we
get [y] ∈ Anc([xw]). Also, by the construction of DBC,
[z] ∈ Anc([yR]). Now, since [y] ∈ Anc([xw]) we have that
[yR] ∈ Anc([xwR]), so Anc([yR]) ⊆ Anc([xwR]). Thus, [z]
is in Anc([xwR]), and finally we have that Reach([x], wR) =
Anc([xwR]). Lemma 2

2If |xwR| > k, then by the definition of NC , Anc([xwR]) is
empty and the containment still holds.

Let’s return to the proof of Theorem 2. For any constraint
ti v ui in C, we have Anc([ti]) ⊆ Anc([ui]). This implies
that, for any node [x] ∈DBC, Anc([xti])⊆Anc([xui]), which
by Lemma 2 is equivalent with Reach([x], ti) = Reach([x],
ui). Since [x] was an arbitrary DBC node, we have that
DB |= ti v ui. Hence, DB |= C.

Consider now x = ε. Lemma 2 transforms in this case into
Reach([ε], w) = Anc([w]). Then, if DB |= w1 v w2, we con-
clude that Reach([ε], w1) ⊆ Reach([ε], w2), which in turn
implies that Anc([w1]) ⊆ Anc([w2]). Recall that by defini-
tion we have that [w] ∈ Anc([w]), where w is a word. So,
Anc([w1]) ⊆ Anc([w2]) implies [w1] ∈ Anc([w2]), which fi-

nally implies w1
∗→C w2.

Theorem 2

From the above theorem and Theorem 1 we get the following
corollaries.

Corollary 1. Query containment under constraints is
undecidable.

Corollary 2. A subclass of word constraints has decid-
able word query containment problem iff the corresponding
class of semi-Thue rewrite systems has decidable word rewrite
problem.

The second corollary is a positive result, so we would be
interested in knowing whether the general query contain-
ment is decidable for a subclass of word constraints with
decidable word query containment. Unfortunately, the an-
swer to this question is negative as we show by the following
lemmas and theorems. Nevertheless, they provide the basis
for showing (in the next section) that a useful subclass of
word constraints has decidable general query containment
problem.

The following lemma is a generalization of Lemma 4.6 in [2].

Lemma 3. Let C be a finite set of word constraints and
Q1, Q2 regular path queries. If Q1 vC Q2 then for each
w1 ∈ Q1 there exists w2 ∈ Q2 such that w1 vC w2.

Proof. Let w1 ∈ Q1. Then, if C |= Q1 v Q2 we have
that C |= w1 v Q2. Now, let’s consider the database DBC
described in the proof of Theorem 2, for k > |w1|. Since
DBC satisfies C, it must also satisfy w1 v Q2. It follows
that

Reach([ε], w1) ⊆
⋃

w2∈Q′2

Reach([ε], w2),

where Q′2 is the subset of Q2 such that for each w ∈ Q′2,
[w] is a node in DBC. Now, observe that by the construc-
tion of DBC, for any two nodes [x], [y] we have that [x] ∈
Reach([ε], y) iff x ∈ ancC(y). Since by the construction
[w1] ∈ Reach([ε], w1), it follows that there exists w2 ∈ Q′2,
such that [w1] ∈ Reach([ε], w2). From this we have that

w1 ∈ ancC(w2). The last fact implies that w1
∗→C w2, which

as showed in Theorem 2, coincides with w1 vC w2.

From the above lemma and Theorem 2, we can easily see
that the following is true.

Theorem 3. Given a finite set C of word constraints,
and (general) regular path queries Q1 and Q2, we have that
Q1 vC Q2 iff Q1 ⊆ ancC(Q2).

Let R be a word rewriting system and R−1 its inverse, ob-
tained by reversing the direction of the pairs in R. Clearly,
the inverse of a word rewriting system is also a word rewrit-
ing system. It is easy to verify the following lemma.

Lemma 4.
∗→R−1 = (

∗→R)−1 and ancR(L) = descR−1(L),
for any language L ⊆ ∆∗.

Now, we are ready to show that the containment for (gen-
eral) regular path queries, under finite sets of word con-
straints with decidable word query containment, is undecid-
able.

Theorem 4. There exists a subclass of word constraints
with decidable word query containment, but with undecidable
query containment in general.

Proof. The proof is based on the notion of monadic word
rewriting systems. A word rewriting system R is length-
reducing if |t| > |u| for each pair (t, u) ∈ R. A word rewrit-
ing system R is monadic if it is length-reducing, and u ∈ ∆
for each pair (t, u) ∈ R. It is well known that the rewrite
problem for length-reducing systems is decidable, and so it
is for monadic systems [4].

Let us now consider the universality problem for the context
free class CFG of grammars. Formally, this problem says
that the language

{<G> : G ∈ CFG and L(G) = ∆∗},

where <G> is a grammar encoding, is undecidable [25]. Let
CFG≥2 be the subclass of context free grammars whose
productions have right side of length greater or equal to 2.
Without loss of generality, we have that the slightly modified
language

{<G> : G ∈ CFG≥2 and L(G) = ∆+ −∆}

is also undecidable. We will now present a reduction from
this modified undecidable problem.

Let G be a grammar in CFG≥2 with nonterminal symbols
Γ, start symbol S, and productions of the form (head, body).
Clearly,

RG = {(body, head) : (head, body) is a production in G}

is a monadic rewrite system over the extended alphabet
∆ ∪ Γ. In this proof we will consider ∆ ∪ Γ as the database
alphabet.

We take Q1 = ∆∗, Q2 = S, and C = {body v head :
(body, head) ∈ RG}. Since RG belongs to the class of
monadic rewrite systems, which has a decidable word rewrite

problem, from Corollary 2 it follows that C belongs in a sub-
class of word constraints with a decidable word query con-
tainment problem. Clearly, L(G) ⊆ (∆+−∆). On the other
hand, based on Lemma 4, we have that (∆+ −∆) ⊆ L(G)
iff (∆+ − ∆) ⊆ ancC(S) ∩ (∆+ − ∆), which is equivalent
with (∆+ −∆) ⊆ ancC(S), and this is finally equivalent by
Theorem 3 with Q1 vC Q2.

4. A SUBCLASS WITH DECIDABLE QUERY
CONTAINMENT

Often, in a Web based scenario we can encounter sets of
constraints, such that any left-hand side overlaps (if it does)
with some right-hand side only by prefix. For example, the
constraints presented in Section 1 were such ones. The high
frequency of this type of constraints is because they, after a
short prefix, start expressing local information about a node,
say a, and the prefix is nothing else but the link (or sequence
of few links) that we need to navigate from another node in
order to reach a. In our example of Section 1, from any
html page of the Ericsson Web, we can jump to the Ericsson
Canada main page, only if there is a link labeled “canada”
–the prefix– and then, various local facts can hold starting
from there.

The local constraints –connected with particular nodes– have
been very well motivated in [2]. However, as explained in
Section 1, there are limitations associated with the way the
constraints are treated in [2], most important of which are:
(a) the non-extensibility of the methods to decide query con-
tainment when the queries start from other nodes than the
constraints, and (b) not taking into consideration the in-
teraction with other local constraints in nearby nodes. By
prefixing the local constraints with the link label(s) needed
to reach the relevant node, the local constraints are trans-
formed into global ones, and we will give decision procedures
that do not have the mentioned limitations 3.

We also relax the notion of “overlapping” to be more “gener-
ous,” in the sense that it allows a left-hand side to not over-
lap at all with any right-hand side, and it also allows strictly
internal sub-words to overlap. This relaxation of the over-
lapping allows for expressing not only local constraints, but
also “pure” global constraints such as the second constraint
in Section 1 or the constraint canada . events . bluetooth .
latest v bluetooth . events . latest, in which the left-hand
side overlaps with the right-hand side by a strictly internal
subword.

Now let’s formally define our subclass of word constraints.
We will start by considering rewrite systems R. We first
set left(R) = {t : (t, u) ∈ R, for some u ∈ ∆∗}, and
right(R) = {u : (t, u) ∈ R, for some t ∈ ∆∗}. Now we
have

3If from some node there is no link(s) leading to the relevant
node, then the constraints still hold since the sets of the
reachable nodes with the left- and right-hand sides (words)
are empty.

Definition 2. ([24]). Let R be a rewrite system. Then
R is said to be

1. Internal overlapping, if some t ∈ left(R) is a substring
of a word u ∈ right(R) or vice versa.

2. Right overlapping, if there are x, y, w ∈ ∆∗, t ∈ left(R),
and u ∈ right(R), such that t = xw and u = wy, for
w 6= ε.

3. Left overlapping, if there are x, y, w ∈ ∆∗, t ∈ left(R),
and u ∈ right(R), such that u = yw and t = wx, for
w 6= ε.

If a rewrite system R is neither internal, nor left or right
overlapping, we say that R is prefix overlapping. Clearly, a
prefix overlapping system allows in addition for non-overlap-
ping at all, or overlappings of left- with right-hand sides by
strictly internal subwords.

The following result has recently been obtained by Caucal.

Theorem 5. ([10]). Let R be a prefix overlapping rewrite
system. Then, we have that

∗→R = (
∗7→R)⊗.

Abiteboul and Vianu have an important related recent re-
sult.

Theorem 6. ([2]). Let R be an arbitrary rewrite sys-
tem and L ⊆ ∆∗ a regular language. Then, the set of pre-
fix rewrite ancestors pancR(L) is regular as well, and com-
putable in PTIME from an automaton for L.

Based on the above theorem and reasoning similarly as for
Lemma 4, we also have

Theorem 7. Let R be an arbitrary rewrite system and
L ⊆ ∆∗ a regular language. Then, the set of prefix rewrite
descendants pdescR(L) is regular as well, and computable in
PTIME from an automaton for L.

Here we strengthen these results for
∗7→R. We show that

∗7→R
is rational for any arbitrary rewrite system R.

We do this in order to compute ancR(L) for a regular lan-
guage L and a prefix overlapping rewrite system R. It can
be easily verified that, ancR(L) is in general not equal to
(pancR(L))⊗, as we could think at the first glance on The-
orem 5.

Let R be a rewrite system, and (v, w) a pair of words. Then
the prefix lineage through (v, w) induced by R is defined as

plinR(v, w) = {(x, y) : x ∈ pancR(v) and y ∈
pdescR(w)}.

We have the following theorem.

Theorem 8. Let S = ∪{plinR(t, u) : (t, u) ∈ R} ∪ {ε, ε}.
Then,

∗7→R = 7→S.

Proof. We will prove that, for the rewrite system
∗7→R,

w1
∗7→R w2 if and only if w1 = w2, or, w1 = xz and w2 = yz,

where {x, y, z} ⊂ ∆∗, and there exists a a pair (t, u) ∈ R,

such that such that x
∗7→R t and u

∗7→R y. Clearly from this,
the theorem follows.

The If-direction is straightforward. For the converse we will
use induction on n, for w1

n7→R w2. For n = 0 we must indeed
have w1 = w2.

Suppose that the claim is true for n, and let’s show it for

n + 1. Let w1
n+17→R w2. There exists a word v, such that

w1
n7→R v 7→R w2. By the induction hypothesis w1 = x1z1

and v = y1z1, and for some (t1, u1) ∈ R we have that

x1
∗7→R t1 and u1

∗7→R y1.

Since v 7→R w2, there exists a pair (t2, u2) ∈ R, such that
v = t2z2 and w2 = u2z2. So, v = t2z2 = y1z1 and we have
that either y1 is a prefix of t2, or vice versa.

w 1

x 1 t 1 t 1 u 1 u 1 t 2

z 1 z 1 z 1 z 1

u 2

w 2

x 1 y1

z 1 z 1

* *

s s

vv

Figure 3: First case of Theorem 8

t 1 t 1 u 1 u 1 t 2 u 2

w 2

y1
* *

w 1

x 1x 1

z 1 1z 1z

s

v v

zzz 2 2 2

Figure 4: Second case of Theorem 8

In the first case (see Figure 3) t2 is a prefix of y1. So, y1 = t2s
and z2 = sz1. Thus, w1 = x1z1 and w2 = u2z2 = u2sz1. By

the induction hypothesis (x1
∗7→R t1 and u1

∗7→R y1), we have

that x1
∗7→R t1 7→R u1

∗7→R y1. Since y1 = t2s, u1
∗7→R t2s 7→R

u2s. On the other hand, recall that w2 = u2sz1. So, in total

we have w1 = x1z1 and w2 = u2sz1, where x1
∗7→R t1 and

u1
∗7→R u2s. Hence, in this case we take x = x1, y = u2s,

z = z1, and (t, u) = (t1, u1).

In the second case (see Figure 4) we have t2 = y1s and
z1 = sz2. Thus, w1 = x1z1 = x1sz2, and by the in-

duction hypothesis (x1
∗7→R t1 and u1

∗7→R y1), we have that

x1s
∗7→R t1s 7→R u1s

∗7→R y1s. Since y1s = t2, we have that

x1s
∗7→R t2 (recall w1 = x1sz2). On the other hand, recall

that w2 = u2z2. Hence, in this case we take x = x1s, y = u2,
z = z2, and (t, u) = (t2, u2).

Theorem 9.
∗7→R is a rational relation.

Proof. Observe that for a pair (v, w), plinR(v, w) =
pancR(v) × pdescR(w). Since from Theorem 6 and Theo-
rem 7, pancR(v) and pdescR(w) are regular languages, we
have from Theorem 8 that the corresponding rewrite system
S is a union of Cartesian products of regular languages.

It is not difficult to construct a transducer for a Cartesian
product L×M of two regular languages. For this, let AL =
(PL,∆, δL, sL, FL) and AM = (PM ,∆, δM , sM , FM) be finite
automata recognizing L and M , respectively. Then con-
struct the transducer TL×M = (PL ∪ PM ,∆,∆, δ, sL, FM),
where δ contains all the tuples (p, a, q) of δL expanded as
(p, a, q, ε), all the tuples (p, b, q) of δM expanded as (p, ε, q, b),
the set {(f, ε, sM , ε) : f ∈ FL}, and nothing else. It is easily
seen that TL×M recognizes exactly L×M .

Finally, we construct a transducer for 7→S by taking the (fi-
nite) union of the transducers recognizing the above Carte-
sian products, concatenating at the end with a transducer
“leaving everything unchanged.”

From the above theorem and Theorem 5 we have the follow-
ing corollary.

Corollary 3. Let R be prefix overlapping. Then
∗→R is

rational.

We say that a finite set C of word constraints is prefix over-
lapping, if the corresponding rewrite system RC is prefix
overlapping. We now finally have

Theorem 10. Let C be a prefix overlapping finite set of
word constraints, and Q1 and Q2 regular path queries. Then,
Q1 vC Q2 is decidable and complete in PSPACE.

Proof. From all the above it follows that the relation
∗→C

is rational and a transducer TC recognizing it can be com-
puted in polynomial time. It is easy now to verify that

ancC(Q) = T −1
C (Q).

Based on this fact and Theorem 3, we conclude that deciding
the containment Q1 vC Q2, for general path queries, under
a prefix overlapping set C of word constraints, is equiva-
lent with deciding Q1 ⊆ T −1

C (Q2), and this is in PSPACE.
The lower bound is the same because in the absence of con-
straints, the query containment coincides with the algebraic
containment of regular languages, which is PSPACE com-
plete.

5. QUERY REWRITING USING VIEWS
UNDER CONSTRAINTS

We will now reason about rewriting of regular path queries
using views based on the query containment under con-
straints. We first recall some concepts regarding rewriting
regular path queries (without constraints).

Let V = {V1, . . . , Vn} be a set of view definitions with each
Vi being a finite or infinite regular language over ∆. Asso-
ciated with each view definition Vi there is a view name vi.
We call the set Ω = {v1, . . . , vn} the outer or view alpha-
bet. For each vi ∈ Ω, we set def (vi) = Vi. The substitution
def associates with each view name vi in Ω alphabet the
language Vi. We also extend the substitution def to the ∆
alphabet to be the mapping associating each symbol with
itself. The substitution def is applied to words, languages,
and regular expressions in the usual way (see e. g. [17]).

Given a database DB , which is a graph where the edges are
labelled with database symbols from ∆, we define the view
graph VDB to be the graph induced by the set⋃

i∈{1,...,n}

{(a, vi, b) : (a, b) ∈ ans(Vi, DB)}.

of Ω-labelled edges.

Suppose now that we want to answer a query on the view
graph instead of on the database. To this end, we say that a
query Q′ ⊆ Ω∗ is a rewriting of a query Q ⊆ ∆∗, if def (Q′) ⊆
Q. If def (Q′) = Q, the rewriting Q′ is said to be exact.

In the seminal paper [7], Calvanese et al. give an automata
theoretic method for constructing the maximally contained
rewriting MCRV, which is the set of all words w on Ω, such
that def (w) ⊆ Q.

For example, let Q = R∗S, V1 = R∗, and V2 = S. 4 Then,
MCRV(Q) = v1v2. Additionally, it happens to be exact.

As it can easily be verified, when the rewriting MCRV is
exact, it can be used to obtain all the answers to the query.

Theorem 11. For all databases DB, we have that

ans(MCRV(Q),VDB) ⊆ ans(Q,DB).

If MCRV(Q) is exact, then

ans(MCRV(Q),VDB) = ans(Q,DB).

Unfortunately, rewritings in Ω∗ can happen to not exist.
Furthermore, even if there are rewritings in Ω∗, it can hap-
pen that an exact one does not exists. Suppose for example,
that Q = R1 · · ·R200, and that we have two views, V1 and
V2, where V1 = R1 · · ·R99, and V2 = R101 · · ·R199. Then,
there is no rewriting in Ω∗, and we cannot obtain any answer
for Q from the view graph only.

However, in [7, 15, 16], partial rewritings have been intro-
duced in order to deal with such situations. As discussed
4For simplicity, we blur the distinction between the regular
languages and the corresponding regular expressions.

in [16], a partial rewriting can be used to compute the an-
swer to the query by evaluating a partial rewriting on the
view graph and, only when necessary, by consulting the
database. In our example we could have a partial rewrit-
ing Q′ = V1R100V2R200. A hybrid algorithm eval is given in
[15, 16], and for this algorithm, with inputs: 1) an “exact”
partial rewriting Q′, 2) a database DB and 3) a view graph
VDB , we have

Theorem 12. ([15, 16]) eval(Q′,VDB ,DB) = ans(Q,DB).

Formally, a language Q′ over the mixed alphabet Ω ∪∆, is
said to be a partial rewriting of Q using V, if def (Q′) ⊆
Q. The partial rewriting is exact if def (Q′) = Q. Since
obviously Q itself is an exact partial rewriting of Q, we need
a way to compare partial rewritings of the same query. To
this end, a partial order ≤QV is introduced in [16], where

Q1≤QV Q2 intuitively means that the words in Q2 have more
view symbols than the words in Q1. For instance, if we
let Q = R1 · · ·R200, and V = {V1, V2} as above, we have

R1 · · ·R200 ≤QV v1R100 · · ·R200 ≤QV v1R100v2R200.

In [16] it is shown that if we set MPRV(Q) to be the union

of all ≤QV-maximal partial rewritings of Q, then we get an
exact rewriting, in other words, def (MPRV(Q)) = Q. Also,
as discussed in the mentioned paper, MPRV(Q) is the “best
in class” compared to other partial rewritings in [7, 15]. Fur-
thermore, [16] gives an automata theoretic construction of
MPRV(Q) and shows that this can be effectively computed.

Suppose now that we have a set C of constraints available.
The question is if can we use the constraints to get “bigger
and better” rewritings. For example, let Q = R1 · · ·R200,
and suppose that we have two views, V1 and V2, where
V1 = S1 · · ·S99, V2 = R101 · · · R199, and C = {Ri v Si :
i ∈ [1, 99]} ∪ {Si v Ri : i ∈ [1, 99]}. Then, MPRV(Q) =
R1 · · ·R99R100v2R200. On the other hand, the rewriting
v1R100v2R200 is “bigger and better” because v1R100v2R200

is C-equivalent to Q.

In the rest of this section we show how to obtain such
“biggest and best” rewritings, using constraints.

Let C be a finite set of constraints, and let L ⊆ ∆∗. Then
we define the maximization of L under C, denoted maxC(L)
to be the ⊆-largest language M , such that M ≡C L.

Intuitively, under constraints we can replace more subwords
and still have a rewriting. We capture this intuition by
enlarging the view languages Vi to maxC(Vi), for i ∈ [1, n].

We then define the substitution defC : Ω ∪ ∆ → ∆∗ as
defC(vi) = maxC(Vi), for vi ∈ Ω, and defC(R) = {R} for
R ∈ ∆.

A C-constrained partial V-rewriting of Q is a language Q′

on Ω ∪∆, such that defC(Q
′) vC Q. The rewriting is said

to be C-constrained exact if defC(Q
′) ≡C Q.

In order to compare different rewritings, we generalize the
partial order in [16] to take constraints into account. With
this partial order we want to capture the intuition that the

more subwords on the ∆-alphabet that have been replaced
by Ω symbols in a rewriting, the “bigger and better” the
rewriting is.

Let Q1 and Q2 be C-constrained V-rewritings (over Ω∪∆) of

Q. Then, Q1 is “smaller” than Q2, denoted Q1≤QV,C Q2, if
it is possible to substitute by vi1 ,. . .,vik some (not necessar-
ily all) occurrences of words in maxC(Vi1), . . ., maxC(Vik)
respectively, occurring as subwords in Q1, and obtain Q2 as
a result. Also, a word in Q1 can participate in the creation
of more than one word in Q2.

Obviously, ≤QV,C is transitive and reflexive. Is is not anti-

symmetric, as for instance {vRR, vv, RRRR} ≤QV,C {vv,
RRRR}, and {vRR, vv, RRRR} ≥QV,C {vv, RRRR}, when
for example there is a single view V = {RR}, with v as the
corresponding representative view symbol, and C = ∅. How-
ever, if we defineQ1 ≡QV,C Q2 iffQ1≤QV,C Q2 andQ2≤QV,C Q1,
we get a partial order on the equivalence classes.

Notably, we have that if a set Q′ is ≤QV,C-maximal, then
its equivalence class is a singleton. For this, observe that
we cannot replace just any subword which is in some word
of some maxC(Vi), for i ∈ [1, n]. However, a word w =
w1w2w3, where w2 ∈ maxC(Vi) and defC(w1viw3) vC Q,
is not yet an “optimal” word, and we call w2 a subword C-
eligible for replacement. On the other hand, we call a word
on Ω ∪∆, that has no subwords C-eligible for replacement,
a C-optimal word.

Theorem 13. Let Q′ be a C-constrained partial V-rewrit-
ing of Q on Ω ∪∆. Then, Q′ is ≤QV,C-maximal, if and only

if, there does not exist a non C-optimal word in Q′.

Proof. (If.) This direction is easy to see because, if there
is no word in maxC(Vi), for any i ∈ [1, n], that appears as
a subword C-eligible for replacement in any of the words
of Q′, then it is impossible to obtain any new ≤QV,C-larger

rewriting from Q′.

(Only if.) Let’s suppose that there are subwords C-eligible
for replacement in the words of Q′. Then, for each word
w ∈ Q′, compute a word wV by exhaustively replacing the
subwords C-eligible for replacement in w, until nothing can
be replaced anymore. If there are no subwords C-eligible for
replacement in w, then wV equals w. Clearly, for each word
w there is at least one such word wV, and the number of
steps for computing it, is bounded by the length of w. Now,
consider the rewriting Q′′ =

⋃
w∈Q′{wV}. For the rewriting

Q′′ we have that (a) Q′′ 6= Q′, (b) Q′≤QV,C Q
′′, and (c) we

cannot obtain any new ≤QV,C-larger rewriting from Q′′. We

can see that, from (a) and (c) Q′ and Q′′ cannot belong to

the same equivalence class, and from (b), Q′′ is ≤QV,C-larger

than Q′. All the above show that Q′ cannot be a maximal
rewriting, and this is a contradiction.

Corollary 4. If Q′ is ≤QV,C-maximal, then its ≡QV,C-
equivalence class is a singleton.

Proof. Since Q′ is ≤QV,C-maximal, from the above the-

orem we have that, from Q′, there cannot be obtained any

new ≤QV,C-larger rewriting. This means in turn that the

equivalence class of Q′ is a singleton.

As discussed in [8, 15, 16], a rewriting Q′ is (more) useful
for query optimization when it is exact.

A rewriting, that is both ≤QV,C-maximal and exact, is the

union of all ≤QV,C-maximal V-rewritings of Q. We call this
rewriting the C-constrained maximal partial V-rewriting of
Q, and denote it with CMPRV(Q).

From all the above, we can see that CMPRV(L) is the set
of all the words on Ω ∪ ∆ with no subword C-eligible for
replacement. Formally, we have:

Theorem 14. The rewriting CMPRV(Q) is ≤QV,C-maxi-
mal and C-constrained exact.

Proof. The ≤QV,C-maximality follows from the fact that
CMPRV(Q) is the union of the sets of words w with no sub-
words C-eligible for replacement. For C-constrained exact-
ness, observe that by definition we have def (CMPRV(Q))
vC Q. On the other hand, consider a word w ∈ Q. Iterating
a finite number of times (function of the length of w) we can
find a word w′ ∈ (Ω∪∆)∗ with the smallest possible number
of ∆ symbols and such that w ∈ defC(w′) vC Q. Clearly,
w′ ∈ CMPRV(Q).

Now, let’s consider again the rewritings of [16]. As men-
tioned before, a V-rewriting of Q is any language Q′ on
Ω ∪ ∆, such that def (Q′) ⊆ Q. Notably, the definition of
the V-rewritings of Q is compliant with the definition of
the C-constrained V-rewritings of Q, and the partial order
≤QV is also compliant with the partial order ≤QV,C . Formally

speaking, ≤QV is a restriction of ≤QV,C . This is because any
(algebraically contained) rewriting in [16], by the following
theorem, is also a C-constrained rewriting.

Theorem 15. Let Q′ be a V-rewriting of Q as defined in
[16]. Then, Q′ is also a C-constrained V-rewriting of Q.

Consider now the maximal partial rewriting MPRV(Q) in
[16]. As mentioned before, MPRV(Q) is defined as the

union of all ≤QV-maximal V-rewritings of Q, and in plain
language this means that MPRV(Q) is the set of all “opti-
mal” words w on Ω ∪∆, such that def (w) ⊆ Q. Naturally,
a word w = w1w2w3, where w2 ∈ Vi and def (w1viw3) ⊆ Q,
for some i ∈ [1, n], is not yet an “optimal” word, and we call
w2 a subword eligible for replacement. On the other hand,
we call a word on Ω ∪∆, that has no subwords eligible for
replacement, an optimal word.

Since ≤QV is a restriction of ≤QV,C , we have that, in gen-

eral, MPRV(Q) ≤QV,C CMPRV(Q), and this means that,
in the presence of constraints, CMPRV(Q) is always a bet-
ter (never worse) rewriting than MPRV(Q). Finally, when
the set C of constraints is empty, CMPRV(Q) coincides with
MPRV(Q).

We will now give a characterization for computing the rewrit-
ing CMPRV(Q). Namely, we show that we can compute it
by a language theoretic construction. Let V = {V1, . . . , Vn}.
Then maxC(V) = {maxC(V1), . . ., maxC(Vn)}. Consider for
maxC(V) the same alphabet Ω of view symbols.

Theorem 16. CMPRV(Q) = MPRmaxC(V)(maxC(Q)).

Proof. (⊆-direction). Let w ∈ CMPRV(Q). For w
we have that defC(w) vC Q, and since maxC(Q) is the ⊆-
largest C-equivalent language on ∆, we have that defC(w) ⊆
maxC(Q). This is the first condition for a word to be in a
maxC(V)-rewriting of maxC(Q). Additionally, we should
show that w is optimal with respect to the sets maxC(V)
and maxC(Q). Let’s suppose that w is not optimal. This
means in turn that w can be written as w = w1w2w3, where
w2 ∈ maxC(Vi) and defC(w1viw3) ⊆ maxC(Q), for some
i ∈ [1, n]. This fact, in other words, means that w is not
C-optimal and so, it cannot belong to CMPRV(Q), which
is a contradiction.

(⊇-direction). Let w ∈ MPRmaxC(V)(maxC(Q)). For

w we have that defC(w) ⊆ maxC(Q), which implies that
defC(w) vC Q. This is the first condition for a word to
be in a C-constrained V-rewriting of Q. Additionally, we
should show that w is C-optimal. Let’s suppose that w is
not C-optimal. This means in turn that w can be written
as w = w1w2w3, where w2 ∈ maxC(Vi) and defC(w1viw3)
vC Q, for some i ∈ [1, n]. Similarly as in the first part
of the proof, this implies defC(w1viw3) ⊆ maxC(Q). Fi-
nally, the last containment says that in w there are still
subwords eligible for replacement, and so w cannot belong
to MPRmaxC(V)(maxC(Q)), which is a contradiction.

Based on the above theorem and Theorem 3, we have the
following corollary.

Corollary 5. If C is a set of word constraints, then
CMPRV(Q) = MPRancC(V)(ancC(Q)), where ancC(V) =

{ancC(V1), . . ., ancC(Vn)}.

A set C of constraints is regularity preserving when, for any
regular language L on ∆, maxC(L) is regular as well. Simi-
larly, C is context-freeness preserving when, for any context-
free language L on ∆, maxC(L) is context-free as well.

Now, a first conclusion from Theorem 16 is that, when C is
regularity preserving, CMPRV(Q) can be effectively com-
puted by the algorithm given in [16].

We can raise the question about rewriting using views when
the set C of constraints is not regularity preserving. We
show that in such cases, even when C is context-freeness
preserving, it is undecidable in general to test the existence
of a “useful” rewriting using views. We define a rewriting
as useful when it contains at least one word, which has at
least one view symbol in it.

Theorem 17. There exist a query Q, and a set V of
views, such that the existence of a (constrained) useful rewrit-
ing of Q by V is undecidable for the class of context-freeness
preserving constraints.

Proof. We give a reduction from the universality prob-
lem for the context free class CFG of grammars. Let G =
(Γ,∆, S,Π) be a grammar in CFG, with Γ and ∆ being its
sets of non-terminals and terminals respectively (Γ∩∆ = ∅),
S ∈ ∆ being the start symbol, and Π being the set of pro-
duction rules

{(ui, ti) : ui ∈ Γ, ti ∈ (∆ ∪ Γ)∗, for i ∈ [1,m]}.

Clearly, for the set C = {ti v ui : i ∈ [1,m]} of word con-
straints on ∆ ∪ Γ, we have that L(G) = ancC(S)∩∆∗. Also,
for any symbol T ∈ Γ, ancC(T) is context-free since it is the
set of all the sentential forms of a context-free sub-grammar.
On the other hand, for any symbol R ∈ ∆, ancC(R) = {R}.
Since the context free languages are closed under union, con-
catenation and Kleene star, we conclude that the ancestor
function ancC applied to regular languages on ∆ ∪ Γ does
not escape from the class of context-free languages. Since by
Theorem 3, maxC = ancC, we have that C is context-freeness
preserving.

Let $ be a special symbol not in ∆∪Γ. We take the database
alphabet to be ∆ ∪ Γ ∪ {$}, Q = {$S$}, C as above, and
a single view V = $∆∗$. From Corollary 5, CMPRV(Q)
= MPRancC(V)(ancC(Q)), where ancC(V) = {ancC(V)}.
We observe that ancC(V) = ancC({$∆∗$}) = V . So, in fact
MPRancC(V)(ancC(Q)) = MPRV(ancC(Q)). Now, because

of the special symbol $, testing if there is a useful constrained
rewriting is equivalent with testing if MPRV(ancC(Q)) ∩ Ω
6= ∅. The last can happen if and only if V ⊆ ancC(Q). This
is $∆∗$ ⊆ ancC(S) = $ ancC(S)$, which is equivalent
to ∆∗ ⊆ ancC(S). Finally, ∆∗ ⊆ ancC(S) is equivalent to
∆∗ ⊆ ancC(S) ∩∆∗, which is nothing else but ∆∗ ⊆ L(G),
i.e. ∆∗ = L(G) since L(G) is a pure ∆ language.

Let us now analyze the complexity of computing the rewrit-
ing CMPRV(Q), when C is a prefix overlapping set of word
constraints. As shown in Section 4, for any regular language
L on ∆, we can polynomially compute its language of ances-
tors ancC(L), which is regular as well. Then, by Corollary 5,
we conclude that the computation of CMPRV(Q) remains
in the same complexity class as that of MPRV(Q). The
lower bound can be established by the fact that in the ab-
sence of constraints, i.e. when C = ∅, CMPRV(Q) coincides
with MPRV(Q).

6. REFERENCES

[1] S. Abiteboul, P. Buneman and D. Suciu. Data on the
Web : From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

[2] S. Abiteboul, V. Vianu. Regular Path Queries with
Constraints. Journal of Computing and System
Sciences 58(3) 1999, pp. 428-452

[3] L. Boasson, M. Nivat. Centers of Languages. Proc. of
Theoretical Computer Science, 5th GI-Conference
1981, LNCS 104, pp. 245-251.

[4] R. Book, F. Otto String Rewriting Systems. Springer
Verlag, 1993.

[5] P. Buneman. W. Fan, S. Weinstein. Path Constraints
in Semistructured and Structured Databases. Proc. of
PODS 1998, pp. 129-138.

[6] P. Buneman. W. Fan, S. Weinstein. Query
Optimization for Semistructured Data Using Path
Constraints in a Deterministic Data Model. Proc. of
DBPL 1999, pp. 208-223.

[7] D. Calvanese, G. Giacomo, M. Lenzerini and
M. Y. Vardi. Rewriting of Regular Expressions and
Regular Path Queries. Proc. of PODS 1999, pp.
194-204.

[8] D. Calvanese, G. Giacomo, M. Lenzerini and
M. Y. Vardi. Answering Regular Path Queries Using
Views. Proc. of ICDE 2000, pp. 389-398.

[9] D. Calvanese, G. Giacomo, M. Lenzerini and
M. Y. Vardi. View-Based Query Processing for
Regular Path Queries with Inverse. Proc. of PODS
2000, pp. 58-66.

[10] D. Caucal. On the Transition Graphs of Turing
Machines. Proc. of Machines, Computations, and
Universality, Third Int’l Conf. 2001, pp. 177-189

[11] A. Deutsch, V. Tannen. Optimization Properties for
Classes of Conjunctive Regular Path Queries. Proc. of
DBPL 2001, pp. 21-39.

[12] D. Florescu, A. Y. Levy, D. Suciu Query Containment
for Conjunctive Queries with Regular Expressions
Proc. of PODS 1998, pp. 139-148.

[13] G. Grahne and A. O. Mendelzon. Tableau Techniques
for Querying Information Sources through Global
Schemas. Proc. of ICDT 1999, pp. 332-347.

[14] G. Grahne and A. Thomo. An Optimization
Technique for Answering Regular Path Queries. Proc.
of WebDB 2000, and Lecture Notes in Computer
Science 1997, Springer 2001, pp. 215-225.

[15] G. Grahne and A. Thomo. Algebraic Rewritings for
Optimizing Regular Path Queries. Proc. of ICDT 2001
pp. 301-315.

[16] G. Grahne and A. Thomo. New Rewritings and
Optimizations for Regular Path Queries. Proc. of
ICDT 2003. pp. 242-258.

[17] J. E. Hopcroft and J. D. Ullman Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley 1979.

[18] A. Y. Levy. Answering queries using views: a survey.
Technical Report, Comp. Sci. Dept., Washington
Univ., 2000.

[19] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava.
Answering Queries Using Views. Proc. of PODS 1995,
pp. 95-104.

[20] A. O. Mendelzon and P. T. Wood, Finding Regular
Simple Paths in Graph Databases. SIAM J. Comp.
24:6, (December 1995).

[21] A. O. Mendelzon, G. A. Mihaila and T. Milo.
Querying the World Wide Web. Int. J. on Digital
Libraries 1(1), 1997 pp. 54-67.

[22] T. Milo and D. Suciu. Index Structures for Path
Expressions. Proc. of ICDT, 1999, pp. 277-295.

[23] Y. Papakonstantinou, V. Vassalos. Query Rewriting
for Semistructured Data. proc. of SIGMOD 1999, pp.
455-466

[24] G. Senizergues. Some Decision Problems about
Controlled Rewriting Systems. Theoretical Computer
Science 71(3), 1990, pp. 281-346

[25] M. Sipser. Introduction to the Theory of Computation
PWS Pub. Co., 1996.

[26] S. Yu. Regular Languages. In: Handbook of Formal
Languages. G. Rozenberg and A. Salomaa (Eds.).
Springer Verlag 1997, pp. 41-110

