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Abstract

It is shown that stability of the celebrated MaxWeight or back pressure policies is
a consequence of the following interpretation: either policy is myopic with respect to a
surrogate value function of a very special form, in which the “marginal disutility” at a
buffer vanishes for vanishingly small buffer population. This observation motivates the
h-MaxWeight policy, defined for a wide class of functions h. These policies share many
of the attractive properties of the MaxWeight policy:

(i) Arrival rate data is not required in the policy.

(ii) Under a variety of general conditions, the policy is stabilizing when h is a per-
turbation of a monotone linear function, a monotone quadratic, or a monotone
Lyapunov function for the fluid model.

(iii) A perturbation of the relative value function for a workload relaxation gives rise
to a myopic policy that is approximately average-cost optimal in heavy traffic,
with logarithmic regret.

The first results are obtained for a general Markovian network model. Asymptotic opti-
mality is established for a general Markovian scheduling model with a single bottleneck,
and homogeneous servers.
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1 Introduction

While it is popular to cite the curse of dimensionality when discussing optimization of stochas-
tic networks, there are many classes of effective policies that are easily implemented, require
limited information, and have other attractive properties. A well-known example is the
MaxWeight policy of Tassiulas and Ephremides [52]. This policy can be interpreted as a
myopic policy for the associated fluid model with respect to a quadratic function,

h(x) = 1
2xTDx, x ∈ R

ℓ, (1)

with D > 0 a diagonal matrix. Stability theory for this and similar classes of policies has
been extended in multiple directions over the past fifteen years [20, 51, 47, 17, 13], and in
particular these policies are known to be approximately optimal in heavy traffic under certain
conditions on the network — see [54, 48, 33], and the recent comprehensive results by Dai
and Lin [14].

These results are fragile: Diagonal quadratics are one of a very few function classes for
which the myopic policy is known to be stabilizing for general classes of network models. In
contrast, stability of the fluid model under a myopic policy is virtually universal [10, 7, 35].

It is important to find broader classes of stabilizing policies for complex networks. It is
known that the MaxWeight policy can perform poorly since it makes use of so little informa-
tion [49].

To explain the gap between the stochastic and deterministic models we consider some
simple, well-known examples. The stochastic model favored in this paper is the controlled
random walk (CRW) model in which the queue length process Q evolves on Z

ℓ
+ in discrete

time according to the recursion,

Q(t + 1) = Q(t) + B(t + 1)U(t) + A(t + 1), t ≥ 0, Q(0) = x . (2)

The allocation sequence U evolves on Z
ℓu
+ for some integer ℓu; the arrival sequence A is

ℓ-dimensional, and B is an ℓ × ℓu matrix sequence, each with integer-valued entries.
The allocation sequence U is subject to both integral and linear constraints of the form

U(t) ∈ U⋄, t ≥ 0, where
U⋄ := {u ∈ {0, 1}ℓu : Cu ≤ 1}. (3)

The ℓm × ℓu matrix C is called the constituency matrix: Each of the rows of C corresponds
to a ‘resource’ in the network. Its entries are assumed to be binary.

The CRW model is a generalization of the network model of Lippman obtained via
uniformization [31]. Versions of this model appear throughout the communications and op-
erations research literature, and in particular appear in the paper [52] that introduced the
MaxWeight policy.

The fluid model q = {q(t) : t ≥ 0} satisfies the linear equations,

q(t) = x + Bz(t) + αt, t ≥ 0, (4)

where x ∈ R
ℓ
+ is the initial condition, B and α are the mean values of B(t) and A(t),

respectively, and z is the cumulative allocation process evolving on R
ℓu
+ . The constraints on
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z are analogous to those on U . We let U denote the convex hull U := conv (U⋄), and assume
that for each 0 ≤ t0 < t1,

z(t1) − z(t0)

t1 − t0
∈ U.

The fluid model (4) is also expressed as the ODE model,

d+

dtq(t) = Bζ(t) + α , t ≥ 0, (5)

where ζ(t) ∈ U denotes the allocation rate vector at time t, and the “+” denotes right
derivative.

Suppose that h : R
ℓ
+ → R+ is any C1 function that vanishes only at the origin. The

h-myopic policy is defined for the fluid and stochastic models by the respective feedback
laws,

φF(x) = arg min
ζ∈U(x)

〈∇h (x), Bζ + α〉, (6)

φD(x) = arg min
u∈U⋄(x)

E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x,U(t) = u], (7)

where the “(x)” is used to capture boundary constraints,

U⋄(x) = {u ∈ U : (B(t)u)i ≥ 0 a.s. when xi = 0} ,

U(x) = {u ∈ U : vi := (Bu + α)i ≥ 0 when xi = 0} ,
(8)

The MaxWeight policy coincides with the h-myopic policy for the fluid model when h is
equal to the quadratic (1). This motivates an alternative policy for the stochastic model, the
h-MaxWeight policy,

φMW(x) = arg min
u∈U⋄(x)

〈∇h (x), Bu + α〉, x ∈ Z
ℓ
+. (9)

Note that φMW = φD when h is a linear function of x.
The policy (6) is stabilizing for the fluid model under mild assumptions on the function

h (see [10] and [7, Thm. 12.5] for linear functions, and [35, Proposition 11] for a smooth norm
on R

ℓ.) The proof is based on establishing that the ‘drift’ defined by,

d+

dth(q(t)) = 〈∇h (q(t)), d+

dtq(t)〉, t ≥ 0, (10)

is strictly negative when q(t) 6= 0.
The h-myopic policy (7) for the stochastic model may or may not be stabilizing, depend-

ing upon the particular network and the structure of the function h. One difficulty is that
the corresponding drift for the stochastic model,

E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x,U(t) = u] (11)

can be positive for certain values of x on the boundary of the state space. This important
distinction between the two models is illustrated in the following two examples.
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Station  1

µ1

µ4

Station  2

µ2

µ3

α1

α3

Figure 1: The Kumar-Seidman-Rybko-Stolyar model

Instability in the model of Rybko and Stolyar Consider the model of Kumar and
Seidman, and Rybko and Stolyar shown in Figure 1 [27, 46]. A typical choice for h is a cost
function c, and a typical cost function in network applications is the ℓ1 norm, c(x) = |x| =∑

xi. With h = c, the myopic policy for the fluid model gives priority to the exit buffers if
no machine is starved of work. Suppose that the parameters satisfy,

µ1 > µ2 and µ3 > µ4. (12)

If for example x1 > 0 and x4 > 0, yet x2 = x3 = 0, we then have

φF

1(x) = µ2µ
−1
1 , φF

4(x) = 1 − φF

1(x).

The h-myopic policy for the stochastic model is very different: The optimization (7) defines
φF

4(x) = 1 if x4 ≥ 1, and φF

2(x) = 1 if x2 ≥ 1. This is precisely the policy found to be
destabilizing in [46].

Work-stoppage under a myopic policy The h-myopic policy may be entirely irrational.
Consider the pair of queues in tandem illustrated in Figure 2. Suppose that a linear cost
function is given c(x) = c1x1 + c2x2, with c2 > c1. The h-myopic policy for the fluid model
with h = c is non-idling at Station 2, while at Station 1,

φF

1(x) =

{
0 if x2 > 0

min(1, µ2µ
−1
1 ) if x2 = 0, x1 > 0.

(13)

The h-myopic policy is path-wise optimal when µ1 ≥ µ2.

Station  1

α1
µ1

Station  2

µ2

Figure 2: Tandem queues.

For a CRW model defined consistently with the fluid model we have for x ∈ Z
2
+,

φMW(x) = φD(x) = arg min
u∈U⋄(x)

E[c(Q(t + 1)) | Q(t) = x, U(t) = u]

= arg min
u∈U⋄(x)

(
c1(α1 − µ1u1) + c2(µ1u1 − µ2u2)

)
.
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At Station 2 this policy is non-idling, while at Station 1,

φMW

1 (x) = arg min
u∈U⋄(x)

(
(c2 − c1)µ1u1

)
.

That is, Station 1 is always idle under our assumption that c2 > c1!

Instability is a consequence of additional constraints in the stochastic model. The choices
are limited in the CRW model, so from certain states on the boundary it is not possible to
find an allocation u such that the drift in (11) is negative. Why then is this possible when h
is a diagonal quadratic?

We show in this paper that the key property that is required is the derivative condition,

∂

∂xj
h (x) = 0 when xj = 0. (14)

For a quadratic we have ∇h (x) = Dx, and hence (14) does hold when D is diagonal. With h
interpreted as an approximate value function, the derivative ∂

∂xj
h (x) represents the “marginal

disutility” of an additional increment of inventory at buffer j. If this marginal disutility is
zero, then it is reasonable to shift inventory to this buffer when possible. Thus starvation of
resources is avoided, which is the cause of instability in these two examples.

In this paper we make these informal observations precise. Moreover, to obtain a wide
class of policies we describe a perturbation technique used to modify a given function so that
(14) holds. Suppose that c is a norm on R

ℓ, such as c(x) =
∑ |xi|, and that h0 : R

ℓ → R+ is
any C1 function that satisfies the dynamic programing inequality for the fluid model,

min
u∈U(x)

〈∇h0 (x), Bu + α〉 ≤ −c(x), x ∈ R
ℓ
+. (15)

With φF defined in (6) using h0, and v := BφF(x) + α, the bound (15) is equivalent to the
functional inequality 〈∇h0, v〉 ≤ −c.

For example, if ‖ · ‖h is a any norm on R
ℓ that is monotone and C1 on R

ℓ
+, then (15)

holds with h0(x) = 1
2‖x‖2

h and c( · ) = ε0‖ · ‖h for some ε0 > 0. Another solution to the
dynamic programing inequality is the quadratic (1) in which D is not necessarily diagonal,
but satisfies Dij ≥ 0 and Dii > 0 for each i, j. In some cases a fluid value function is piecewise
quadratic, C1, and satisfies (15) with equality. An example is contained in Section 2.2.2.

A perturbation of h0 is obtained through a change of variables: For fixed θ ≥ 1 we denote

x̃i := xi + θ(e−xi/θ − 1), for any i and x, (16)

and let x̃ denote the corresponding vector x̃ := (x̃1, . . . , x̃ℓ)
T ∈ R

ℓ
+. The function h is then

defined by,
h(x) = h0(x̃), x ∈ R

ℓ
+. (17)

An application of the chain rule shows that (14) holds. The first main result of this paper is
based on this observation:

Theorem 1.1. Consider the model (2) satisfying the following conditions:
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(i) The i.i.d. process (A,B) has integer entries, and a finite second moment.

(ii) Bij(t) ≥ −1 for each i, j and t, and for each j ∈ {1, . . . , ℓu} there exists a unique
value ij ∈ {1, . . . , ℓ} satisfying,

Bij(t) ≥ 0 a.s. i 6= ij. (18)

(iii) The function h0 : R
ℓ → R+ satisfies the following:

(a) Smoothness: The gradient ∇h0 is Lipschitz continuous,

(b) Monotonicity: ∇h0 (x) ∈ R
ℓ
+ for x ∈ R

ℓ
+,

(c) The dynamic programing inequality (15) holds, with c a norm on R
ℓ.

Then, there exists θ0 < ∞ and ηh < ∞ such that for any θ ≥ θ0, the following bound holds
under the h-MaxWeight policy:

E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x] ≤ −1
2c(x) + 1

2ηh. (19)

Consequently,

n−1
E

[n−1∑

t=0

c(Q(t)) | Q(t) = x
]
≤ 2n−1h(x) + ηh, n ≥ 1, x ∈ Z

ℓ
+. (20)

Proof. This is based on results obtained in Section 2.2.2: Combining the bounds obtained in
Lemma 2.1 and Lemma 2.2 gives under the h-MaxWeight policy, for each x ∈ Z

ℓ
+,

E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x] ≤ −c(x) + k2.1 log(1 + ‖x‖) + k2.2(1 + θ−1‖x‖),

where the constants are independent of θ. Choosing θ > 2k2.2, we obtain the bound (19).
Equation (20) then follows from the Comparison Theorem 2.1. ⊓⊔

Assumption (ii) implies that the matrix −B(t) is Leontief with probability one for each
t, and that its expectation −B = −E[B(t)] is also Leontief. Bramson and Williams [6] call a
network unitary if Assumption (ii) holds, and in addition the rows of C are orthogonal (inter-
preted as the absence of “simultaneous resource possession”). Relaxations of Assumption (ii)
that imply stability of the MaxWeight policy are contained in [13, 14] (called maximum
pressure policies in these papers).

For networks that are unitary the h-MaxWeight policy has a simple representation in
terms of the generalized Klimov indices,

Θj(x) := −
∑

i

Bij
∂

∂xi
h (x), x ∈ Z

ℓ
+, j ∈ {1, . . . , ℓu}. (21)

For a unitary model, for any j we denote by s(j) ∈ {1, . . . , ℓm} the unique value of s satisfying
Cs,j = 1.
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Proposition 1.1. Suppose that the CRW model is unitary. Suppose moreover that h is C1,
monotone, and satisfies the boundary conditions (14). Then, the h-MaxWeight policy can be
described as follows: For each s ∈ {1, . . . , ℓm} and x ∈ Z

ℓ
+, denote Θ∗

s(x) := max{Θj(x) :
s(j) = s}. if Θ∗

s < 0 then Uj(t) = 0 whenever s(j) = s. Otherwise, priority is giving to
buffers that achieve the maximum,

∑{
Uj(t) : s(j) = s, Θj(x) = Θ∗

s

}
= 1.

Proof. For a unitary model the optimization (9) decouples into ℓm separate optimization
problems, each with a single linear constraint obtained from the respective row of C. The
proof is completed on noting that −Θj is the coefficient of uj in the objective function of
(9). ⊓⊔

A drawback to Theorem 1.1 is that stability holds only for θ > 0 sufficiently large.
Section 2.3 considers the alternative change of variables x̃i := xi log(1 + xi/θ), i = 1, . . . , ℓ.
Theorem 2.5 shows that the resulting h-MaxWeight policy is stabilizing, for any fixed θ > 0,
in the sense that a version of (19) holds.

The inequality (19) is a Lyapunov drift condition of the form developed in [41, 18],
and also similar to the bounds used in [11, 4, 28, 26, 43] to obtain performance bounds for
networks. Under natural assumptions on the model the bound (19) implies that the controlled
network is geometrically ergodic, so that the mean E[c(Q(t))] converges to its steady-state
value geometrically fast from each initial condition [41, 42, 40, 26, 35, 19]. Proposition 2.5
below contains sufficient conditions for geometric ergodicity for a particular version of the
h-MaxWeight policy.

In Section 3 we move to an asymptotic, heavy-traffic setting to obtain finer performance
bounds. Dai and Lin’s recent paper [14] contains a comprehensive survey on the theory of
networks in heavy traffic. While the results in Section 3 use language and some results from
the heavy traffic literature, the goals and conclusions are very different from those of [14] or
any other papers from this literature.

A heavy traffic analysis is based on the construction of a one-dimensional parameterized
family of networks with increasing load. Let κ > 0 denote the parameter, and assume that
the load increases to one as κ → ∞. Letting Qκ(t;x) denote the queue-length process for the
κth network at time t with initial condition x, a “Central Limit”-scaling is applied,

Qκ,κ(t;x) =
1

κ
Qκ(κ2t;κx) (22)

This is defined for all t ∈ R+ via linear interpolation.
In virtually all of the asymptotic results contained in the literature it is assumed that

there is a single bottleneck in heavy traffic or, more generally, complete resource pooling
[2, 48, 33, 1, 14]. Let ξ ∈ R

ℓ denote the corresponding workload vector, and assume its
entries are non-negative. Then the workload process W κ(t;x) = ξTQκ(t;x) evolves on R+,

and can be compared to a minimal workload process Ŵ κ(t;x). Section 3 restricts to a
simplified setting in which a realization of the minimal process evolves as a simple queue,

Ŵ κ(t + 1) = Ŵ κ(t) − S1(t + 1)1l{Ŵ κ(t) ≥ 1} + L1(t + 1), t ≥ 0, (23)
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where (S1,L1) is i.i.d. on Z
2
+, and S1 is Bernoulli (see (83)). The load is given by ρ• =

E[L1(t)]/E[S1(t)].
For a convex cost function c : R

ℓ
+ → R+, the effective cost c : R+ → R+ is the value of

the convex program,
c(w) = min c(x)

s.t. ξTx = w, x ∈ R
ℓ
+.

(24)

A sequence of policies is declared to be heavy-traffic asymptotically optimal (HTAO) if the
following properties are verified:

State space collapse For each t, the scaled queue length process has asymptotically minimal
cost, subject to its workload, in the sense that

lim
κ→∞

(
c(Qκ,κ(t;x)) − c(W κ,κ(t;x))

)
= 0,

where the convergence is in probability. This is called state space collapse because typically
it implies that the queue-length processes converge to a one-dimensional subspace,

lim
κ→∞

∥∥Qκ,κ(t;x) −X ∗
(
Qκ,κ(t;x))

)∥∥ = 0, (25)

where X ∗ denotes the projection. The vector X ∗(Q) is known as the effective state corre-
sponding to Q (see (84)).

Asymptotic minimality The scaled workload process W κ,κ(t;x) and the scaled minimal

workload process Ŵ κ,κ(t;x), defined as in (22), each converge in distribution to a reflected
Brownian motion (RBM) with common drift and covariance.

A uniform version of HTAO is formulated in [36]. The paper considers multiclass networks
with multiple bottlenecks and renewal inputs. Under the assumption that the effective cost
is a monotone function of w, among other assumptions, the following uniform asymptotic
bounds are obtained for a proposed policy: For any other policy, letting Qκ′ denote the
resulting state process,

1

T

∫ T

0
c(Qκ(t;x)) dt ≤ 1

T

∫ T

0
c(Qκ′(t;x)) dt+O(log

((
1−ρ•)

−1
))

, 0 ≤ T ≤ 1

(1 − ρ•)3
. (26)

The policies considered in [36] are based on those of [32], which are generalizations of the
policy introduced in [2] for a particular example.

HTAO for MaxWeight and certain generalizations is established in the aforementioned
papers [54, 48, 33, 14]. However, state space collapse for the MaxWeight policy is obtained
with respect to an implicitly defined cost function [48]. In [14] an approximation is obtained:
For a given linear cost function, the projection X ∗ is of the form,

X ∗(x) = (ξTx)
ci∗

ξi∗
1

i∗

where i∗ ∈ arg min{ci/ξi}, and 1
i denotes the ith basis element in R

ℓ. For each ε > 0 the
authors construct a version of the MaxWeight policy satisfying,

8



Stability and Asymptotic Optimality of Generalized MaxWeight Policies

Revision # 2 May 22, 2008

lim
κ→∞

P
{∥∥Qκ,κ(t;x) −X ∗

(
Qκ,κ(t;x))

)∥∥ > ε
∥∥Qκ,κ(t;x)‖

}
= 0. (27)

The present paper is concerned with steady-state performance. The average cost is
denoted,

η = lim
T→∞

1

T

T−1∑

t=0

E[c(Q(t;x))] (28)

where the limit is independent of x under the assumptions imposed in the main results. Note
that HTAO as formulated above does not imply that the performance measured by average
cost is approximately optimal, or even that η is finite. Heavy-traffic asymptotically optimality
suggests a bound of the form,

η ≤ η̂∗ + o(η̂∗) (29)

where η̂∗ = E[c(Ŵ κ(t))], c denotes the effective cost, and the expectation is in steady-state.
This heuristic has been established rigorously only in special cases, based on the assumption
of weak convergence of the scaled workload processes.

Suppose that the scaled workload processes converge in distribution to a reflected Brow-
nian motion,

Ŵ κ,κ(t;x)
w−→ Ŵ∞(t;x), κ → ∞.

If moreover the scaled steady-state means are convergent, E[c(Ŵ κ,κ(t;x))] → η̂∞ = E[c(Ŵ∞(t))],
κ → ∞, then we can then reinterpret (29) as the limit

lim
κ→∞

E[c(Qκ,κ(t;x))] = η̂∞ , (30)

where the expectations are all in steady-state. The approximation (30) has been established
for the single queue in the pioneering work of Kingman [24, 25], and for generalized Jackson
networks [19, Corollary 2, p. 73]. Stolyar conjectures in [48] that the invariant distributions
for Qκ,κ will convergence weakly under the MaxWeight policy, provided there is complete
resource pooling. This together with uniform integrability would imply the limit (30).

The limit (27) also suggests an asymptotic bound, of the form

η ≤ η̂∗ + O(εη̂∗)

but no such result is established in [14], or elsewhere.
Section 3 treats heavy-traffic asymptotic optimality in an average-cost sense. The main

result establishes logarithmic regret : for some fixed constant k0 < ∞, independent of load,

η̂∗ ≤ η ≤ η̂∗ + k0 log(η̂∗) (31)

This is a significant refinement of (29) since η̂∗ → ∞ as the network load approaches unity.
Heavy-traffic asymptotically optimality of the form (31) was obtained for the first time in [37]
in several examples, based on Lyapunov techniques similar to those used in this paper. The
main idea is to take the optimal value function for the fluid model, and introduce a penalty
function to account for possible starvation when the state reaches the boundary of R

ℓ
+. In

each example considered, a single policy is proposed that is independent of network load,
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based on a switching curve with logarithmic growth. For example, for the tandem queues the
policy has the form

Serve buffer 1 if x2 ≤ β log(1 + x1/β), (32)

where β > 0 is a sufficiently large constant.
The approach used in Section 3 is similar: The function h0 is chosen as an approximation

to a fluid value function. Rather than a penalty function, the change of variables (17) is used
to construct a stabilizing h-MaxWeight policy and, under stronger conditions, HTAO with
logarithmic regret.

The development is greatly simplified by imposing further structure on the model. The
following assumptions are imposed in Theorem 3.1, the main result of Section 3 that estab-
lishes logarithmic regret.

(HTAO 1) The network is described by a scheduling model with deterministic routing:
for each i ∈ {1, . . . , ℓ}, after processing at buffer i a customer either enters some
buffer i+ ∈ {1, . . . , ℓ}, or exits the system. The routing matrix R is the ℓ× ℓ matrix
defined for i, j ∈ {1, . . . , ℓ} as Rij = 1lj=i+. The routing matrix satisfies Rℓ = 0ℓ×ℓ;
this ensures that each customer receives at most ℓ services during its lifetime in the
network. The CRW scheduling model is described by the recursion,

Q(t + 1) = Q(t) +

ℓ∑

i=1

Mi(t + 1)[−1
i + 1

i+ ]Ui(t) + A(t + 1), Q(0) = x , (33)

where M i is a Bernoulli sequence for each i. The vector 1
i+ is taken to be zero if

customers exit the system following service at buffer i.

(HTAO 2) The network is of a generalized ‘Kelly type’ in which service statistics are
determined by the station, not the buffer. For each s ∈ {1, . . . , ℓm}, Station s is said
to be homogeneous if the random variables {Mj(t) : s(j) = s} are all identical. It is
assumed that the network is homogeneous, meaning that each station satisfies this
condition.

(HTAO 3) The cost function is linear.

(HTAO 4) There is a single bottleneck in heavy traffic, and the convex program (24) that
defines the effective cost is assumed to possess a unique maximizer for each w ∈ R+.

We believe that many of these assumptions are non-essential. Potential extensions are sur-
veyed in Section 4.

The CRW scheduling model (33) is of the form (2) with,

B(t) = −[I − RT]M(t), t ≥ 1.

The Leontief condition (18) follows from the assumptions on M and R, where ij = j for each
j ∈ {1, . . . , ℓ}. The vector load ρ ∈ R

ℓm
+ is given by,

ρ = CM−1[I − RT]−1α, (34)
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where M is a diagonal matrix, equal to the common mean of M(t). The network load is the
maximum, ρ• = max1≤i≤ℓ ρi.

Homogeneity is used to construct a one-dimensional workload relaxation satisfying the
recursion (23). A one-dimensional workload process W corresponding to the most heavily

loaded station is compared to its (minimal) relaxation Ŵ
∗
. For each t ≥ 0 the lower bound

holds with probability one,
W (t) ≥ Ŵ ∗(t), t ≥ 0, (35)

under any policy for Q. This simplifies a proof of logarithmic regret since a lower bound on
performance is explicit, η̂∗ = E[c(Ŵ ∗(t))].

A relaxation of the form (23) was introduced in the thesis of N. Laws [30] to obtain
performance bounds (see also [29, 44]). Relaxations of this form and multi-dimensional ex-
tensions for the purposes of control synthesis and performance approximation are the subject
of [9, 37, 23, 39].

Two significant contributions in the present paper are worth highlighting,

(i) In each example considered in [37] the policy was explicitly constructed based on
switching curves of the form (32). This requires considerable intuition for more
complex models. In the two main results Theorem 1.1 and Theorem 3.1 the policy
is derived from the given value function via the minimization (9).

(ii) This is the first paper to give a completely general approach to HTAO for average
cost, and in particular bounds of the form (31) for a general class of models.

The remainder of the paper is organized as follows. Section 2 concerns stability of h-
MaxWeight policies. Asymptotic optimality is treated in Section 3; Theorem 3.1 establishes
a bound of the form (31) for a family of models with increasing load. Section 4 contains
conclusions and possible extensions.

2 MaxWeight policies

In this section we consider the general CRW model (2) under the assumptions of Theorem 1.1:
The sequence {A(t), B(t)} is i.i.d. with a finite second moment, and (18) holds for B(t). This
is a very general model:

(i) Controlled routing from buffer i is modeled by allowing ij = i for more than one
j ∈ {1, . . . , ℓu}. Then, Uj(t) = 1 indicates that a customer at buffer i is routed to
buffer i+j .

(ii) It is straightforward to model a flexible server, as found in the processor sharing
models of [21, 22]; Optimal policies for the fluid and CRW models are described in
[35, p. 760] for a simple example.

(iii) Assembly-disassembly systems can be modeled. For example, following service com-
pletion at buffer ij , a customer can spawn several new jobs. This is modeled by
defining positive values of Bij(t) for several values of i 6= ij .
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(iv) On interpreting an arrival as an increment of demand, the CRW model (2) can be
used to model inventory systems. In this setting, an entry of U(t) can model an
order for new raw material [8].

All of the policies considered in this paper are stationary, and deterministic: For the
CRW model it is assumed that there is a function φ : Z

ℓ
+ → U⋄ such that

U(t) = φ(Q(t)), t ≥ 0. (36)

Hence Q is a time-homogeneous Markov chain on Z
ℓ
+, with transition matrix denoted P .

That is, for each x, y ∈ Z
ℓ
+ and t ≥ 0,

P (x, y) = P{Q(t + 1) = y | Q(t) = x} = P{x + B(1)φ(x) + A(1) = y}.

For any function g : R
ℓ → R, the generator D is defined as the difference operator,

Dg (x) := E[g(Q(t + 1)) − g(Q(t)) | Q(t) = x] =
∑

y∈Z
ℓ
+

P (x, y)[g(y) − g(x)].

The analysis of the h-MaxWeight policy is based on bounds on the drift Dh for the stochastic
model, based on the corresponding drift 〈BφMW(x)+α,∇h (x)〉 for the fluid model. The first
step is an application of the Mean Value Theorem, which implies the following representation
for any Q(t) ∈ Z

ℓ
+, and any t ≥ 0,

h(Q(t + 1)) − h(Q(t)) = 〈∇h (Q̄),∆(t + 1)〉
= 〈∇h (Q(t)),∆(t + 1)〉

+ 〈∇h (Q̄) −∇h (Q(t)),∆(t + 1)〉
(37)

where ∆(t + 1) := Q(t + 1)−Q(t), and Q̄ ∈ R
ℓ
+ lies on the line connecting Q(t + 1) and Q(t).

Consequently,
Dh (x) = 〈∇h (x), v〉 + bh, (38)

where

v(x) = E[∆(t+1) | Q(t) = x], bh(x) = E[〈∇h (Q̄)−∇h (Q(t)),∆(t+1)〉 | Q(t) = x]. (39)

To deduce stability based on (38) we obtain a bound on 〈∇h (x), v〉 under the given policy.
We then show that the second term bh(x) is relatively small in magnitude.

We begin with a review of some Lyapunov theory for Markov and fluid models.

2.1 Stochastic stability

When does a stabilizing policy exist for a network model? How do we test for stability? To
answer these questions we consider first the fluid model.

Denote the velocity set for the fluid model by

V := {v = Bζ + α : ζ ∈ U}. (40)
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In the general setting of this section, the “load condition” ρ• < 1 translates to the following,

The origin is an interior point of V. (41)

If (41) holds then there exists ε > 0 such that the vector vx = −εx/|x| lies in V for each
x ∈ R

ℓ
+. Setting ζ = vx from the initial condition q(0) = x we have q(t) = q(0) − (ε/|x|)t

for 0 ≤ t ≤ |x|/ε. For a given policy for the fluid model, such as (7), we consider the value
function,

J(x) =

∫ ∞

0
c(q(t;x)) dt. (42)

We let J∗ denote the minimum of (42) over all policies. Setting h = J in (6) we obtain the
drift inequality,

min
u∈U(x)

〈∇J (x), Bu + α〉 ≤ −c(x), x ∈ R
ℓ
+,

and this inequality is equality when J = J∗. We thereby obtain another class of functions
that satisfy the dynamic programing inequality (15). The fluid value function is typically C1

in workload models [38].

We now turn to the CRW model. The general form of the Lyapunov condition considered
here is Condition (V3), or the special case known as Foster’s criterion [41]. All involve bounds
on the generator applied to a function V : Z

ℓ
+ → R+.

(i) The controlled network satisfies Foster’s criterion if there is a constant b < ∞ and a
finite set S ⊂ Z

ℓ
+ such that

DV (x) ≤ −1 + b1lS(x), x ∈ Z
ℓ
+. (V2)

(ii) The network satisfies Condition (V3) if for a function f : Z
ℓ
+ → [1,∞),

DV (x) ≤ −f(x) + b1lS(x), x ∈ Z
ℓ
+ , (V3)

where again b < ∞ and S ⊂ Z
ℓ
+ is a finite set.

We have the following simple but useful result relating the policies φMW and φD:

Proposition 2.1. Suppose that (V3) holds under the h-MaxWeight policy with V a constant
multiple of h. Then the same bound holds for the h-myopic policy.

Proof. If V = kh for some k < ∞ we then have under the h-myopic policy,

PφDV (x) = k arg min
u∈U⋄(x)

E[h(Q(t + 1)) | Q(t) = x,U(t) = u]

≤ kE[h(Q(t + 1)) | Q(t) = x,U(t) = φMW(x)]

= PφMWV (x) ≤ V (x) − f(x) + b1lS(x).

⊓⊔
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The most common approach to establishing (V3) is to construct a function h : Z
ℓ
+ →

(0,∞) and a constant η < ∞ that solve the Poisson inequality ,

Dh ≤ −c + η. (43)

If c has bounded sublevel sets (e.g., c defines a norm on R
ℓ), then this implies (V3) with

V = h, f = 1 + c/2, b = η + 1, and S is the sublevel set S = {x : c(x) ≤ 2(η + 1)}. The
Comparison Theorem implies that the steady state mean of c is bounded by η when (43)
holds. Theorem 2.1 is also the most common approach to obtaining bounds on expectations
involving stopping times. For a proof see [41].

Theorem 2.1. (Comparison Theorem) Suppose that the non-negative functions V, f, g
satisfy the bound,

DV ≤ −f + g. (44)

Then for each x ∈ Z
ℓ
+ and any stopping time τ we have,

Ex

[τ−1∑

t=0

f(Q(t))
]
≤ V (x) + Ex

[τ−1∑

t=0

g(Q(t))
]
.

⊓⊔

The average cost is finite under (V3), provided f dominates the cost function. The
following result follows from Theorems 14.0.1 and 17.0.1 of [41]. A sufficient condition for
0-irreducibility is given in Proposition 3.1.

Theorem 2.2. Consider the CRW model (2) controlled using a stationary policy. Suppose
that there exists a solution to (V3) satisfying k−1

0 ‖x‖ ≤ c(x) ≤ k0f(x) for some k0 < ∞ and
all x ∈ Z

ℓ
+. Suppose moreover that the controlled network is 0-irreducible: For each x ∈ Z

ℓ
+,

∞∑

t=0

P{Q(t) = 0 | Q(0) = x} > 0, (45)

and that P (0, 0) = P{A(t) = 0} > 0. Then the following hold:

(i) Q is an aperiodic Markov chain with unique invariant measure π. The average
cost defined in (28) is finite, is independent of initial condition, and coincides with
the mean with respect to π:

η = π(c) :=
∑

π(x)c(x)

(ii) The Law of Large Numbers holds: For each initial condition,

η(n) := n−1
n−1∑

t=0

c(Q(t)) → η, n → ∞, a.s.
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(iii) The mean ergodic theorem holds: For each initial condition,

E[c(Q(t))] → η, t → ∞.
⊓⊔

The simplest example is the CRW model for the single server queue defined by the
recursion,

Q(t + 1) = Q(t) − S(t + 1)U(t) + A(t + 1), t ∈ Z+, (46)

with given initial condition Q(0) = x ∈ Z+. A solution to Poisson’s inequality (43) is obtained
with c(x) ≡ x and V = J∗, where the fluid value function is quadratic,

J∗(x) = 1
2

x2

µ − α
. (47)

Theorem 2.3 establishes formulae for the steady-state mean as well as the associated
solution to Poisson’s equation with c the identity function (c(x) = x for x ∈ R+),

Dh (x) = −x + η, x ∈ Z+. (48)

The formula (50) for the steady-state mean may be viewed as an analog of the celebrated
Pollaczek-Khintchine formula for the M/G/1 queue. The proof is based on refinements of
the Comparison Theorem applied to the function V = J∗ [37, 39].

Theorem 2.3. Consider the CRW queueing model (46) satisfying ρ = α/µ < 1, and define

m2 = E[(S(1) − A(1))2], m2
A = E[A(1)2], σ2 = ρm2 + (1 − ρ)m2

A. (49)

Then,

(i) There is a unique invariant probability measure π on Z+, with steady-state mean

η := Eπ[Q(0)] = 1
2

σ2

µ − α
(50)

(ii) A solution to Poisson’s equation (48) is the quadratic,

h(x) = J∗(x) + 1
2µ−1

(m2 − m2
A

µ − α

)
x , x ∈ Z+. (51)

⊓⊔

The MaxWeight policy is defined by (9) with h a quadratic,

φMW(x) = arg min
u∈U⋄(x)

〈Dx,Bu + α〉, x ∈ Z
ℓ
+, (52)

where D > 0 is a diagonal matrix. Proposition 2.2 implies that φMW coincides with the
h-myopic policy for the fluid model. This result is a special case of Proposition 2.4 that
follows.
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Proposition 2.2. Suppose that Assumptions (i) and (ii) of Theorem 1.1 hold. Then, for
each x ∈ Z

ℓ
+, the allocation φMW(x) defined by the MaxWeight policy can be expressed as a

solution to the linear program,

φMW(x) = arg max xTD(I − RT)Mu

s.t. u ∈ U .
(53)

⊓⊔

Proposition 2.2 easily leads to a proof of stability of the MaxWeight policy. Theorem 2.4
is essentially contained in earlier work [52, 13]. We present the short proof since the same
ideas are used to prove Theorem 1.1 and generalizations that follow.

Theorem 2.4. Suppose that ρ• < 1, and that Assumptions (i) and (ii) of Theorem 1.1
hold. Then, for any diagonal matrix D > 0, the network controlled under the MaxWeight
policy has a solution to Poisson’s inequality (43) with V = h the quadratic defined in (1),
and c(x) ≡ ε0|x| for some ε0 > 0.

Proof. Since (41) holds when ρ• < 1, there exists ε > 0 such that the vector v with coefficients
vi = −ε, i ≥ 1, lies in V. By definition there exists u ∈ U such that Bu + α = v, so that by
Proposition 2.2,

〈BφMW(x) + α,∇h (x)〉 = 〈BφMW(x) + α,Dx〉 ≤ vTDx = −ε
∑

Diixi ≤ −ε0|x|,

with ε0 = ε(mini Dii). We thus arrive at a version of the Poisson inequality,

DMWh (x) := EMW[h(Q(t + 1)) − h(Q(t)) | Q(t) = x] ≤ −ε0|x| + ηD,

with

ηD := 1
2 max

x′∈Z
ℓ
+

,u∈U⋄(x)
E[(Q(t + 1) − Q(t))TD(Q(t + 1) − Q(t)) | Q(t) = x′, U(t) = u].

⊓⊔

2.2 Perturbed functions

We now analyze the drift Dh represented in (38) to establish stability of the h-MaxWeight
policy. We return to the general CRW model (2).

An application of the chain rule of differentiation shows that,

Proposition 2.3. For any C1 function h0, the function h defined in (17) satisfies the
derivative conditions (14). We have the explicit representations,

(i) The first derivative is given by,

∇h (x) = [I − Mθ]∇h0 (x̃), (54)

where,
Mθ = Mθ(x) = diag (e−xi/θ), x ∈ R

ℓ
+. (55)
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(ii) If h0 is C2, then the Hessian of h is,

∇2h (x) = [I − Mθ]∇2h0 (x̃)[I − Mθ] + θ−1diag (Mθ∇h0 (x̃)). (56)

Hence h is convex provided h0 is both convex and monotone.
⊓⊔

A key step in the proof of Theorem 1.1 is to generalize Proposition 2.2.

Proposition 2.4. Suppose that Assumptions (i) and (ii) of Theorem 1.1 hold, and that h is
any C1 monotone function satisfying the derivative conditions (14). Then, for each x ∈ Z

ℓ
+,

the allocation φMW(x) defined by the h-MaxWeight policy can be expressed as a solution to
the linear program,

φMW(x) = arg min 〈Bu,∇h (x)〉
s.t. u ∈ U .

(57)

Proof. The proof requires that we demonstrate that the minimum in (9) can be relaxed to a
minimum over all of U.

Recall the definition of the generalized Klimov indices in (21), and the interpretation
that −Θj is the coefficient of uj in the objective function of (9). Monotonicity of h implies
that each partial derivative of h is non-negative. This assumption combined with (18) implies
that

Θj(x) ≤ 0 whenever xij = 0. (58)

It then follows that the optimizer u∗ of the linear program (57) satisfies without loss of
generality u∗

j = 0 whenever xij = 0. This shows that u∗ ∈ U(x) for x ∈ Z
ℓ
+, which proves

(57).
To show that u∗ can be chosen in U⋄ we argue that optimizers of linear programs can be

chosen among the extreme points in the constraint region. The extreme points for this linear
program are contained in U⋄ because of the definition U := conv (U⋄). ⊓⊔

Consider the special case in which h0 is linear.

2.2.1 Perturbed linear function

Suppose that h0(x) = cTx, where the vector c ∈ R
ℓ
+ has non-zero coefficients, so that the

function h can be expressed,

h(x) =
ℓ∑

i=1

cix̃i, x ∈ R
ℓ
+. (59)

An application of Proposition 2.3 shows that the derivative condition (14) holds, and that
the first and second derivatives are given by,

∇h (x) = [I − Mθ]c, ∇2h (x) = θ−1diag (Mθc). (60)

Hence the function h is monotone and strictly convex.
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We show in Proposition 2.5 that the h-MaxWeight policy is stabilizing provided θ ≥ 1
is suitably large. Although the dynamic programming inequality (15) fails for the linear
function h0, it does hold for the function k0h

2
0 where k0 is a sufficiently large constant, and

c(x) = cTx. Hence Proposition 2.5 (ii) could be deduced from Theorem 1.1.

Proposition 2.5. Suppose that Assumptions (i) and (ii) of Theorem 1.1 hold, along with
the stabilizability condition (41). Then, there exists θ0 > 0 such that the following hold under
the h-MaxWeight policy with h0 linear, provided θ ≥ θ0.

(i) The controlled network satisfies Foster’s Criterion. The function V in (V2) can
be taken as a constant multiple of h.

(ii) Condition (V3) holds: There exists ε2 > 0, b2 < ∞, and a finite set S satisfying,

DV ≤ −f + b21lS

with V = 1 + 1
2h2, f = 1 + ε2h.

(iii) Suppose that for some ε > 0 the arrival process satisfies E[exp(ε‖A(t)‖)] < ∞.
Then Condition (V4) holds: For some εe > 0, δe > 0, be < ∞, and a finite set S,

DV ≤ −δeV + be1lS

with V = exp(εeh). Hence Q is geometrically ergodic provided (45) holds [41].

Proof. We apply the second-order Mean Value Theorem to obtain,

h(Q(t + 1)) − h(Q(t)) = 〈∇h (Q(t)),∆(t + 1)〉
+ 1

2∆(t + 1)T
[
∇2h (Q̄)

](
∆(t + 1)

)
,

(61)

where again Q̄ ∈ R
ℓ
+ lies on the line connecting Q(t + 1) and Q(t). This implies the identity

(38) with bh redefined as,

bh(x) = 1
2E

[
∆(t + 1)T∇2h (Q̄)∆(t + 1) | Q(t) = x

]
.

The expression for the second derivative in (60) then gives,

Dh (x) = 〈∇h (x), v〉 + θ−1b∆,

where
b∆ = 1

2‖c‖ sup
x′∈Z

ℓ
+

,u∈U⋄(x′)

E[‖∆(t + 1)‖2 | Q(t) = x′, U(t) = u] < ∞.

We now obtain an upper bound on 〈∇h (x), v〉 under the h-MaxWeight policy. The
expression for the first derivative in (60) implies the bound,

∂

∂xi
h (x) = ci(1 − e−xi/θ) ≥ c(1 − e−xi/θ), 1 ≤ i ≤ ℓ,
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with c := minj cj. Exactly as in the proof of Theorem 2.4 we can consider arbitrary v ∈ V to
obtain bounds on the value of (57). This is justified by Proposition 2.4. The stabilizability
condition (41) implies that there exists ε > 0 such that the vector with components vi = −ε,
1 ≤ i ≤ ℓ, lies in V for each x ∈ R

ℓ
+. By definition, there exists u ∈ U satisfying Bu + α = v.

Consequently, under the h-MaxWeight policy,

Dh (x) ≤ −εc max
i

(1 − e−xi/θ) + θ−1b∆.

Suppose that |x| ≥ ℓθ. Then xi ≥ θ for at least one i, and we obtain the bound,

Dh (x) ≤ −1
2εc + θ−1b∆, if |x| ≥ ℓθ. (62)

The right hand side is negative provided θ > 2b∆/(εc). Fixing θ satisfying this bound we
obtain the desired solution to (V2) with V = 2(εc)−1h, and S = {x : |x| < ℓθ}. This
establishes (i).

To establish (ii) we begin with the identity,

1
2 [h(Q(t + 1))]2 − 1

2 [h(Q(t))]2 = h(Q(t))(h(Q(t + 1) − h(Q(t))) + 1
2 [h(Q(t + 1)) − h(Q(t))]2.

On taking conditional expectations of both sides we obtain DV (x) = h(x)[Dh (x)] + b∆2(x),
where

b∆2 = 1
2 sup

x′∈Z
ℓ
+

,u∈U⋄(x′)

E[[h(Q(t + 1)) − h(Q(t))]2 | Q(t) = x′, U(t) = u] < ∞.

Applying (i) we obtain a version of the Poisson inequality (43) with this V , which implies
that (V3) also holds.

Part (iii) follows from (i) combined with [41, Theorem 16.3.1] (see also [35, Theorem
4].) ⊓⊔

h-MaxWeight policy: serve buffer 1

Level sets of h

q2 = θ log 1 −−

c1

c2

( )

∆(x) = −µ1+α1

µ1

∆(x) = −µ1+α1

−µ2+µ1

∆(x) = α1

−µ2

x1

x2

q2

Figure 3: The perturbed cost function defined in (17) with h0 linear on R
2 satisfies minu〈∇h (x),Bu + α〉 < 0

for each non-zero x ∈ R
2
+. This geometry is illustrated in this figure using the tandem queues. The contour

plots shown are the level sets {x : h(x) = r} for r = 1, 2, . . . .

In the next example we find that the h-MaxWeight policy considered in Proposition 2.5 (i)
mirrors the discounted-cost optimal policy.
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Tandem queues: Emergence of a threshold policy Suppose that we replace the linear
cost function used in (13) with the convex cost function h : R

2
+ → R+ defined in (59). Figure 3

shows a plot of the sublevel sets of this function.
The h-MaxWeight policy defined in (9) minimizes the inner-product,

〈Bu + α,∇h (x)〉 = −µ1u1c1(1 − e−x1/θ) + (µ1u1c1 − µ2u2c2)(1 − e−x2/θ) + 〈α,∇h (x)〉.

The h-MaxWeight policy is thus non-idling at Station 2, and at Station 1 the policy can be
expressed as a switching curve,

φMW

1 (x) = 1l{−c1(1 − e−x1/θ) + c2(1 − e−x2/θ) ≤ 0}, x1 ≥ 1.

For small values of x1 a first order Taylor series gives the approximation φMW

1 (x) ≈
1l{x2 ≤ (c1/c2)x1}. For large x1 there are three cases to consider depending on the relative
sizes of c1 and c2. If c1 = c2 then the approximation is equality, φMW

1 (x) = 1l{x2 ≤ x1} for all
x. If c1 > c2 then Station 1 does not idle for large x1, exactly as in the c-myopic policy. The
h-MaxWeight policy is most interesting when c2 > c1. In this case, for x1 ≫ θ the policy can
be approximated by a threshold policy, φMW

1 (x) ≈ 1l{x2 ≤ q2}, where the threshold q2 is the
solution to the equation c2(1 − e−q2/θ) = c1. That is,

q2 = θ
∣∣∣log

(
1 − c1

c2

)∣∣∣. (63)

Figure 3 illustrates φMW when c1 = 1, c2 = 3, and θ = 10. The asymptote (63) is q2 =
10 log(3/2) ≈ 4 in this special case.

For comparison consider the discounted-cost optimal policy, minimizing

∞∑

t=0

(1 + γ)−t−1
E
[
c(Q(t)) | Q(t) = x

]
,

for a given γ > 0. Letting h∗
γ(x) denote the minimizing value, the optimal policy is expressed

as the h∗
γ-myopic policy, and the discounted-cost dynamic programming equation holds,

γh∗
γ(x) = c(x) + min

u∈U⋄(x)
E[h∗

γ(Q(t + 1)) − h∗
γ(Q(t)) | Q(t) = x,U(t) = u]

20

20
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x1

x2

200 0

20
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x1

x2 Optimal policy: serve buffer 1γ = 0.001γ = 0.01

Figure 4: Discounted cost optimal policy for the tandem queues with cost parameters (c1, c2) = (1, 3). The
load parameters are ρ1 = 9/10, ρ2 = 9/11, and the linear cost defined by c1 = 1, c2 = 3. On the left γ = 0.01
and on the right γ = 0.001.

Consider the CRW model described by the recursion,
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Q(t + 1) = Q(t) + (−1
1 + 1

2)U1(t)M1(t) − 1
2U2(t)M2(t) + 1

1A1(t + 1), t ≥ 0,

in which the statistics of Φ(t) := (M1(t),M2(t), A1(t))
T, t ≥ 1, are consistent with a model

obtained through uniformization: Φ is i.i.d., with marginal distribution defined by,

P{Φ(t) = 1
1} = µ1, P{Φ(t) = 1

2} = µ2, P{Φ(t) = 1
3} = α1, (64)

with µ1 + µ2 + α1 = 1. We take c1 = 1, c2 = 3, ρ1 = 9/11, ρ2 = 9/10.
For any finite γ the following approximation holds,

lim
r→∞

r−1h∗
γ([rx]) = γ−1c(x), x ∈ R

2
+,

where [ · ] denotes the component-wise integer part of a vector. Hence for large x far from
the boundary, the optimal policy coincides with the c-myopic policy. In fact, it can be shown
that the optimal policy is approximated by a static threshold, as seen in the two examples
shown in Figure 4 (see [39, Example 10.6.1]). Hence the optimal policy is similar in form to
the h-myopic policy illustrated in Figure 3.

2.2.2 Perturbed value function

We now consider a function h0 that serves as a Lyapunov function for the fluid model. Our
goal is to complete the proof of Theorem 1.1, which amounts to establishing (V3) in the form
of the Poisson inequality (19) with V = 2h.

Before proving the theorem we present an example to illustrate the structure of the h-
MaxWeight policy with h0 = J∗, the optimal fluid value function defined below (42). In
simple examples it is approximated by a switching curve with logarithmic growth.

Tandem queues: translation of the optimal policy If ρ1 < ρ2 and c1 < c2 then the
fluid value function is purely quadratic,

J∗(x) = 1
2

c1

µ2 − α1
(x1 + x2)

2 + 1
2

c2 − c1

µ2
x2

2, x ∈ R
2
+. (65)

Letting h0 = J∗, the dynamic programing inequality (15) is satisfied with equality,

min
u∈U(x)

〈∇h0 (x), Bu + α〉 = −c(x) x ∈ R
ℓ
+.

The derivative conditions (14) fail, so we do not know if the h0-MaxWeight policy is stabilizing
for the CRW model.

To compute the h-MaxWeight policy we write (65) as

h0(x) = J∗(x) = 1
2d1(x1 + x2)

2 + 1
2d2x

2
2, x ∈ R

2
+,

so that the gradient of h(x) = h0(x̃) can be expressed,

∇h(x) = [I − Mθ]∇h0 (x̃) =

(
d1(x̃1 + x̃2)(1 − e−x1/θ)

(d1(x̃1 + x̃2) + d2x̃2)(1 − e−x2/θ)

)

21



Stability and Asymptotic Optimality of Generalized MaxWeight Policies

Revision # 2 May 22, 2008

Writing Bu + α = (−µ1u1 + α1, µ1u1 + µ2u2)
T, we obtain for any x ∈ Z

ℓ
+, u ∈ U(x),

〈∇h (x), Bu + α〉 = µ1u1

[
d1(e

−x1/θ − e−x2/θ)(x̃1 + x̃2) + d2(1 − e−x2/θ)x̃2

]

− µ2u2

[
d1(1 − e−x2/θ)(x̃1 + x̃2) + d2(1 − e−x2/θ)x̃2

]

+ α1d1(1 − e−x1/θ)(x̃1 + x̃2)

Minimizing over u we see that the policy is non-idling at Station 2. At Station 1 we have
u1 = 1 if and only if x1 ≥ 1 and the coefficient of u1 is non-positive. That is, the policy at
Station 1 is defined by the switching curve described by the equation,

d1(e
−x1/θ − e−x2/θ)(x̃1 + x̃2) + d2(1 − e−x2/θ)x̃2 = 0. (66)

When x1 is large we obtain the approximation,

x2 ≈ s(x1) := θ log
(
1 +

d1

d2
x1

)
, (67)

where by (65),
d1

d2
=

(c2

c1
− 1

)−1 1

1 − ρ2
.

This is an approximation to (66) in the sense that for all sufficiently large x1 there is a
unique x2 such that (x1, x2) solve the equation (66), and the ratio x2/s(x1) tends to unity as
x1 → ∞.

A policy defined by a switching curve s(x1) of the form given in (67) is similar to the
policy introduced in [37] to obtain HTAO (see eq. (32) and the surrounding discussion.)

Optimal to serve buffer 1

10 20 30 40 50 60 70 80 90 100

10

20

30

x1

x2

Figure 5: Average cost optimal policy for the tandem queues with c1 = 1, c2 = 3, ρ1 = 9/11, ρ2 = 9/10.

Consider now the average-cost optimal policy for the CRW model with statistics defined
in (64), and linear cost with (c1, c2) = (1, 3). It is known that the average-cost optimal policy
exists, and that it is h∗-myopic with respect to the relative value function (see [5] and [39,
Chapter 9].) Moreover, Theorem 7.2 of [34] implies that the following approximation holds,

lim
r→∞

r−2h∗([rx]) = J∗(x), x ∈ R
2
+.

The average-cost optimal policy for the CRW model is shown in Figure 5 with ρ1 = 9/11 < ρ2.
This policy can be represented by a switching curve s that is concave and unbounded in x1,
similar to (67).

The proof of Theorem 1.1 is organized in the following two lemmas.
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Lemma 2.1. Under the assumptions of Theorem 1.1 we have under the h-MaxWeight
policy, for some constant k2.1,

〈∇h (x), vMW〉 ≤ −c(x) + k2.1 log(1 + ‖x‖), x ∈ Z
ℓ
+,

where vMW = BφMW(x) + α.

Proof. Fix a constant β− ≥ θ, and define

s−(r) = β− log(1 + r/β−), r ≥ 0.

To prove the lemma we compare vMW with another velocity vector v ∈ V, subject to the
following constraints:

vi ≥ 0 whenever xi < s−(‖x‖), i = 1, . . . , ℓ. (68)

The minimum of 〈∇h (x), v〉 over v satisfying these constraints provides a bound under the
h-MaxWeight policy. Proposition 2.4 is critical here so that we can ignore lattice constraints
as we search for bounds on this inner product.

The purpose of (68) is to obtain the following bound:

− e−xi/θvi ≤ |vi|
(
1 + ‖x‖/β−

)−β−/θ
, i = 1, . . . , ℓ. (69)

Since h0 is assumed monotone we have ∇h0 : R
ℓ
+ → R

ℓ
+, and applying (54) we obtain,

〈∇h (x), v〉 ≤ 〈∇h0 (x̃), v〉 + ‖v‖‖∇h0 (x̃)‖
(
1 + ‖x‖/β−

)−β−/θ
.

Since ∇h0 is also Lipschitz and β− ≥ θ, this gives for some constant k0,

〈∇h (x), v〉 ≤ 〈∇h0 (x̃), v〉 + k0 (70)

To bound (70) we shift x̃ as follows: Let x̃− ∈ Z
ℓ
+ denote the vector with components

x̃−
i = ⌊(x̃i − s−(‖x‖))+⌋, i = 1, . . . , ℓ,

where ⌊ · ⌋ denotes the integer part. In view of (15), there exists u ∈ U(x) such that with
v = Bu + α,

〈∇h0 (x̃−), v〉 ≤ −c(x̃−).

Moreover, we have x̃−
i = 0 whenever the constraint on xi in (68) is active. Since u ∈ U(x),

this implies that the vector v = Bu + α satisfies vi ≥ 0. That is, v satisfies the constraint
(68).

Using this v in (70) gives

〈∇h (x), v〉 ≤ 〈∇h0 (x̃−), v〉 + 〈∇h0 (x̃) −∇h0 (x̃−), v〉 + k0

≤ −c(x̃−) + ‖v‖‖∇h0 (x̃) −∇h0 (x̃−)‖ + k0

≤ −c(x) + |c(x) − c(x̃−)| + ‖v‖‖∇h0 (x̃) −∇h0 (x̃−)‖ + k0.

This completes the proof since c and ∇h0 are each Lipschitz. ⊓⊔
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Lemma 2.2. Under the assumptions of Theorem 1.1 we have under the h-MaxWeight
policy, for some constant k2.2,

Dh (x) ≤ 〈∇h (x), vMW〉 + k2.2(1 + θ−1‖x‖), x ∈ Z
ℓ
+,

where vMW = BφMW(x) + α.

Proof. The first order Mean Value Theorem (37) results in the representation (38) for Dh
with bh defined in (39). The Cauchy-Schwartz inequality gives,

bh(x) ≤ E
[
‖∇h (Q̄) −∇h (Q(t))‖2 | Q(t) = x

]1
2 E

[
‖∆(t + 1)‖2 | Q(t) = x

]1
2 (71)

It remains to bound the right hand side.
Given Q(t) = x, an application of Proposition 2.3 gives,

∇h (Q̄) −∇h (x) = [I − Mθ(Q̄)](∇h0 ( ˜̄Q) −∇h0 (x̃)) + [Mθ(x) − Mθ(Q̄)]∇h0 (x̃),

where ˜̄Q is obtained from Q̄ via the pointwise transformation (16). The first expectation at
right in (71) is bounded through an application of the triangle inequality,

E
[
‖∇h (Q̄) −∇h (Q(t))‖2 | Q(t) = x

]1
2 ≤ E

[
‖[I − Mθ(Q̄)](∇h0 ( ˜̄Q) −∇h0 (x̃))‖2 | Q(t) = x

] 1
2

+ E
[
‖[Mθ(x) − Mθ(Q̄)]∇h0 (x̃)‖2 | Q(t) = x

] 1
2

(72)
To bound the first term on the right hand side of (72) we apply the Lipschitz condition on
h0: For some constant k0,

‖∇h0 ( ˜̄Q) −∇h0 (x̃)‖ ≤ k0‖ ˜̄Q − x̃‖ ≤ ‖∆(t + 1)‖
Hence the first term is bounded over x.

The second term is bounded using the Mean Value Theorem. The ith diagonal element
of [Mθ(x) − Mθ(Q̄)] admits the bound,

|e−xi/θ − e−Q̄i/θ| = e−xi/θ|1 − e−(Q̄i−xi)/θ|
≤ e−xi/θ(1 − e−∆i/θ)1l{Q̄i > xi}

+ e−xi/θ(eℓu/θ − 1)1l{Q̄i < xi}

where ∆i = Ai(1) +
∑

j |Bij(1)|, and we have used the fact that
∑

j Bij(1) ≥ −ℓu under
(18). The right hand side can be bounded through a second application of the Mean Value
Theorem, giving

|e−xi/θ − e−Q̄i/θ| ≤ e−xi/θ(eℓu/θ − e−∆i/θ) ≤ θ−1eℓu/θ(ℓu + ∆i).

The Lipschitz condition on ∇h0 and second moment conditions on (A,B) then imply that
for some k3 < ∞,

E
[
‖[Mθ(x) − Mθ(Q̄)]∇h0 (x̃)‖2 | Q(t) = x

] 1
2 ≤ θ−1eℓu/θ(

√
ℓℓu + E[‖∆‖2]

1
2 )‖∇h0 (x̃)‖

≤ k3θ
−1(1 + ‖x‖).

This combined with (19), (71) and (72) completes the proof. ⊓⊔
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2.3 Universally stabilizing policies

The policies described in the previous sections are stabilizing, provided the parameter θ > 0
is chosen sufficiently large. With a different change of variables we can construct a family of
policies that are stabilizing regardless of the parameter.

In this subsection only we redefine x̃ as follows,

x̃i := xi log(1 + xi/θ), (73)

where θ > 0 is fixed, but arbitrary. Theorem 1.1 and Proposition 2.5 can be generalized using
this new definition of x̃. First we require derivative formulae.

Proposition 2.6. For any C1 function h0, the function h defined in (17) with x̃ defined
component-wise in (73) satisfies the derivative conditions (14):

(i) The first derivative is given by,

∇h (x) = Lθ∇h0 (x̃), (74)

where,
Lθ(x) = diag (xi/(θ + xi) + log(1 + xi/θ)), x ∈ R

ℓ
+. (75)

(ii) If h0 is C2, then the Hessian of h is,

∇2h (x) = Lθ∇2h0 (x̃)Lθ + θ−1diag (Nθ∇h0 (x̃)) , (76)

where Nθ(x) = diag (θ/(θ + xi) + θ2/(θ + xi)
2). In particular, h is convex provided

h0 is both convex and monotone.
⊓⊔

Proposition 2.7 establishes stability of the h-MaxWeight policy when h0 is linear. We
omit the proof since it is so similar to the proof of Proposition 2.5 (i), applying Proposition 2.6
instead of Proposition 2.3.

Proposition 2.7. Suppose that Assumptions (i) and (ii) of Theorem 1.1 hold, along with
the stabilizability condition (41). Then, under the h-MaxWeight policy with h0 linear, and
x̃ defined in (73) with θ > 0, there exists ε = ε(θ) > 0 such that Condition (V3) holds with
f(x) = 1 + ε log(1 + ‖x‖). ⊓⊔

We now consider a version of Theorem 1.1. It is necessary to strengthen the L2 condition
on the arrival process to a second moment bound on Ã,

E[‖Ã(t)‖2] :=

ℓ∑

i=1

E[(Ai(t) log(1 + Ai(t)/θ))2] < ∞ (77)

Moreover, it appears that the monotonicity assumption must be strengthened to the following,
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∂

∂xi
h0(x) ≥ ε78xi, x ∈ R

ℓ
+, i = 1, . . . , ℓ, (78)

where ε78 > 0 is constant. For example, (78) holds for a quadratic (1) in which Dij ≥ 0 and
Dii > 0 for each i, j.

Theorem 2.5. Consider the h-MaxWeight policy in which the function h is based on the
change of variables x̃ defined in (73). The constant θ > 0 is fixed, but arbitrary. The network
model (2) and function h0 satisfy all of the assumptions of Theorem 1.1. In addition, the
arrival process satisfies (77), and h0 satisfies the uniform bound (78) with ε78 > 0. Then,
there exists δh > 0 and ηh < ∞ such that the following version of the Poisson inequality (43)
holds under the h-MaxWeight policy:

Dh (x) = E[h(Q(t + 1)) − h(Q(t)) | Q(t) = x] ≤ −δh‖x‖
(
log(1 + ‖x‖)

)2
+ ηh. (79)

Proof. We first obtain an extension of Lemma 2.1: There exists δ0
h > 0 such that,

〈∇h (x), vMW〉 ≤ −δ0
h‖x‖

(
log(1 + ‖x‖)

)2
, x ∈ Z

ℓ
+. (80)

As in the proof of Proposition 2.4 we have the bound 〈∇h (x), vMW〉 ≤ 〈∇h (x), v〉 with
vi = −ε, i ≥ 1, and ε > 0 chosen so that v ∈ V. Hence,

〈∇h (x), vMW〉 ≤ −ε
ℓ∑

i=1

∂

∂xi
h (x) = −ε

ℓ∑

i=1

(xi/(θ + xi) + log(1 + xi/θ))
∂

∂xi
h0 (x̃).

This combined with the bound (78) gives,

〈∇h (x), vMW〉 ≤ −εε78

ℓ∑

i=1

log(1 + xi/θ)x̃i

From the definition of x̃ we obtain (80) for some δ0
h > 0.

Based on (80) we complete the proof using an extension of Lemma 2.2. Combining (71)
and (80) gives,

Dh (x) ≤ −δ0
h‖x‖

(
log(1 + ‖x‖)

)2

+ E
[
‖∇h (Q̄) −∇h (Q(t))‖2 | Q(t) = x

] 1
2 E

[
‖∆(t + 1)‖2 | Q(t) = x

] 1
2

(81)

Following the arguments used in the proof of Lemma 2.2, based on Proposition 2.6 in place
of Proposition 2.3, we obtain the bound, for some constant k0,

E
[
‖∇h (Q̄) −∇h (Q(t))‖2 | Q(t) = x

] 1
2 ≤ k0‖x‖

(
log(1 + ‖x‖)

)
.

This together with (81) completes the proof of (79), where the constant δh can be chosen
arbitrarily in the open interval (0, δ0

h). ⊓⊔
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3 Relaxations and heavy traffic

We now establish HTAO under the h-MaxWeight policy for a specifically chosen function h,
and under further restrictions on the network model.

Throughout this section we consider the homogeneous scheduling model (33) subject to
the following conventions. The load parameters defined in (34) are expressed,

ρi = λi/µi, 1 ≤ i ≤ ℓm,

where µi is the common mean of {Mj(t) : s(j) = i}, and λi is the ith component of C[I −
RT]−1α. It is assumed throughout this section that ρ1 = max1≤i≤ℓ ρi, so that ρ• = ρ1. This
can be achieved by choice of indices. We let ξ ∈ Z

ℓ
+ denote the first column of the ℓ × ℓm

matrix [I − R]−1CT, so that ξTα = λ1.
Homogeneity implies that the random variables {Mj(t) : s(j) = 1} are all identical;

We let S1(t) denote their common value, and we let L1(t) = ξTA(t). The one-dimensional
workload process W (t) = 〈ξ,Q(t)〉 evolves as,

W (t + 1) = W (t) − S1(t + 1) + S1(t + 1)ι(t) + L1(t + 1), t ≥ 0, (82)

where ι(t) := 1 − [CU(t)]1.
The one-dimensional relaxation is defined on the same probability space with Q, and

evolves as a controlled random walk analogous to (82):

Ŵ (t + 1) = Ŵ (t) − S1(t + 1) + S1(t + 1)ι̂(t) + L1(t + 1), t ≥ 0. (83)

The idleness process {ι̂(t)} is assumed to be non-negative, and adapted to {Ŵ (t), S1(t), L1(t)}.
The relaxation is denoted Ŵ

∗
when controlled using the non-idling policy, ι̂

∗
(t) = 1l{Ŵ ∗(t) ≥

1}. In this case we have (35), provided each process has the common initialization

Ŵ ∗(0) = W (0) = 〈ξ,Q(0)〉, which we assume henceforth.
For a convex cost function c : R

ℓ
+ → R+ the effective cost c : R+ → R+ is defined in (24).

For each w ∈ R+ an effective state X ∗(w) is defined to be any vector x∗ ∈ R
ℓ
+ that achieves

the minimum in (24):

X ∗(w) = arg min
x∈R

ℓ
+

(
c(x) : ξTx = w

)
. (84)

It follows from the definitions that the following bound holds for all t:

c(Q(t)) ≥ c(W (t)) ≥ c(Ŵ ∗(t)). (85)

3.1 Starvation and relaxations

It is helpful to consider a workload relaxation to see how starvation arises under a myopic
policy.
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3.1.1 Linear cost function

If c(x) = cTx, x ∈ R
ℓ
+, then the effective state in a one-dimensional relaxation is given by

X ∗(w) =
( 1

ξi∗
1

i∗
)
w, w ∈ R+,

where the index i∗ is any solution to ci∗/ξi∗ = min1≤i≤ℓ

(
ci/ξi

)
. The effective cost is given by

the linear function, c(w) = c(X ∗(w)) = (ci∗/ξi∗)w, w ∈ R+.
This underlines the conflict that arises frequently in network optimization: Optimization

of an idealized model dictates zero inventory at various stations, while in a more realistic
model, adopting a “zero-inventory policy” results in starvation of resources.

3.1.2 Quadratic cost function

If c : R
ℓ
+ → R+ is quadratic, of the form c(x) = 1

2xTDx, x ∈ R
ℓ
+ for a symmetric matrix D,

then the effective state is again linear in the workload value in any one-dimensional relaxation.
For the scheduling model considered in this section the workload vector ξ has non-negative

entries. Suppose that D−1 also has non-negative entries. In this case we have the explicit
expression,

X ∗(w) =
((

ξTD−1ξ
)−1

D−1ξ
)
w, w ∈ R+,

and the effective cost is the one-dimensional quadratic,

c(w) = 1
2

(
ξTD−1ξ

)−1
w2, w ∈ R+.

For example, if D > 0 is diagonal, and ξ has strictly positive entries, then the effective state
X ∗(w) has strictly positive entries for any w > 0. In conclusion, the conflict observed for linear
cost functions does not arise when using a quadratic function satisfying these conditions.

3.2 Logarithmic regret

We now construct a policy satisfying (31) with c a linear cost function. The policy is defined
as the h-MaxWeight policy for a specific function h.

We saw in Section 3.1.1 that the effective state x∗ = X ∗(w) can be constructed so that
x∗

i = 0 for all but one i ∈ {1, . . . , ℓ}. By choice of indices we assume that x∗
i = 0 for i ≥ 2

and any w ∈ R+. Consequently, the effective cost is given by,

c(w) = c(X ∗(w)) =
c1

ξ1
w, w ∈ R+. (86)

We assume moreover that the solution to (24) is unique, which amounts to the following
strict bound,

ci

ξi
>

c1

ξ1
, i = 2, . . . , ℓ. (87)

Theorem 2.3 implies the following formula for the steady-state cost for the relaxation,

η̂∗ = 1
2

σ2
κ

µ1 − λ1

c1

ξ1
, (88)
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where σ2
κ :=ρ•E[(S1(1)−L1(1))

2]+(1−ρ•)E[(L1(1))
2]. From (85) we evidently have η̂∗ ≤ η∗.

To establish (31) we require a bound in the reverse direction.
We now introduce a family of network models, parameterized by a scalar κ ∈ [1,∞) that

represents load. It is assumed that, for some fixed κ0 ≥ 1, ρ̄ < 1 we have

ρ• := ρ1 = 1 − 1/κ for each κ ∈ [κ0,∞),

and ρi ≤ ρ̄ for each κ and i ≥ 2.
(89)

The one-dimensional workload process W is given in (82), where we suppress the dependency
of {Q,W ,S,L} on the parameter κ to simplify notation.

The fluid model for the one-dimensional workload process is expressed d+

dtw(t) = −(µ1 −
λ1) + ι(t) with ι(t) ≥ 0. Given the cost function c given in (86), the fluid value function is
given by,

Ĵ∗(w) = 1
2

c1

ξ1

w2

µ1
κ, w ≥ 0. (90)

The solution to Poisson’s equation (51) is the sum of Ĵ∗ and a linear function of w. We
take the function h0 used to define the h-MaxWeight policy as a different perturbation of Ĵ∗:
Fix a positive constant b > 0, and define

h0(x) = Ĵ∗(ξTx) + 1
2b

(
c(x) − c(ξTx)

)2
. (91)

This function is monotone since c(x) ≥ c(ξTx) for each x. We then take h(x) = h0(x̃), or

h(x) := Ĵ∗(w̃) + 1
2b

(
c(x̃) − c(w̃)

)2
, x ∈ R

ℓ
+, (92)

where x̃ is the ℓ-dimensional vector with components given in (16), and w̃ :=
∑

ξix̃i.
For each κ we denote by η = η(κ) the steady state cost under the policy for the CRW

model, and η̂∗ the optimal average cost for the one-dimensional relaxation. Applying (89),
the representation (88) becomes,

η̂∗ = 1
2

σ2
κ

µ1

c1

ξ1
κ. (93)

Note that η and η̂∗ are each unbounded as the network load ρ• approaches unity, and η̂∗ is
of order κ. Hence (31) implies the bounds,

η∗ ≤ η ≤ η∗ + k94 log(κ), κ ≥ κ0. (94)

Theorem 3.1. Suppose that the following hold for the parameterized family of networks.

(HTAO 1) For each κ, the network is a CRW scheduling model with deterministic
routing.

(HTAO 2) The network is homogeneous for each κ. Moreover,

(a) The random variables {Aκ(t), Sκ
s (t) : t ≥ 1, κ ∈ [1,∞], s ≥ 1} are de-

fined on a common probability space, and are monotone in κ: for each
s ∈ {1, . . . , ℓm},

Sκ
s (t) ↓ S∞

s (t), Aκ(t) ↑ A∞(t), κ → ∞, a.s., t ≥ 1.
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(b) The distribution of Sκ
s (t) is Bernoulli for each s, and E[‖A∞(t)‖2] < ∞.

(c) For some ε > 0 independent of κ and s,

P{Sκ
s (t) = 1 and Aκ(t) = 0} ≥ ε. (95)

(HTAO 3) Linear cost.

(HTAO 4) The load parameters satisfy (89). Hence ρκ → ρ∞ as κ → ∞, where
ρ∞1 = 1 and ρ∞i < 1 for i ≥ 2.

Moreover, the effective state is unique: Equation (87) holds.

Then, there exists θ0 > 0 and b0 > 0 such that the following conclusions hold for the h-
MaxWeight policy with h defined in (92), with θ ≥ θ0 and b ≥ b0: There exists κ0 > 0 such
that the controlled network is ergodic, in the sense that it is 0-irreducible and (V3) holds, for
each κ ≥ κ0. Moreover, the family of controlled networks satisfies the bound (94) for some
fixed k94 < ∞. That is, the policy is heavy-traffic asymptotically optimal with logarithmic
regret.

The proof is based on the construction of a Lyapunov function V : Z
ℓ
+ → R+ satisfying

a refinement of (V3),

Ex[V (Q(1))] ≤ V (x) − c(x) + η̂∗ + E(x), x ∈ Z
ℓ
+, (96)

where the error E has at most logarithmic growth,

E(x) = k97

(
log(κ + c(x)) + κ/(1 + (ξTx)2)

)
, x ∈ R

ℓ
+, κ ≥ 1. (97)

This is achieved using the same steps used in Section 2.2 to establish stability of the h-
MaxWeight policy: First we obtain a bound on the term 〈∇h (x), v〉 appearing in (38). We
then decompose the term bh(x) into a bounded term, and a term whose mean is equal to η̂∗.

3.3 Proof of Theorem 3.1

Throughout this section we assume that the assumptions of Theorem 3.1 hold. We let E
denote the function of x and κ given in (97). The constant k97 may differ in each appearance.

We first establish irreducibility:

Proposition 3.1. Under the assumptions of Theorem 3.1 the policy φMW is 0-irreducible
for each κ < ∞.

Proof. Monotonicity of h implies that the h-MaxWeight policy is “weakly non-idling’: For
any t,

ℓ∑

i=1

U(t) ≥ 1 whenever Q(t) 6= 0.

Combining this with (95) we can conclude that for some δ > 0, and any non-zero x ∈ X⋄,
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P
{
A service is completed at time t and A(t) = 0 | Q(t − 1) = x

}
≥ δ, t ≥ 1.

Since each customer in the network requires service at most ℓ times, it follows that P T (x, 0) ≥
δT for T = ℓ|x|. This establishes 0-irreducibility.

Aperiodicity also follows from (95) since P (0, 0) = P{A(t) = 0} > 0. ⊓⊔

Recall that the proof of Theorem 1.1 was based on Lemmas 2.1 and 2.2. The following
two propositions are refinements of these results.

Proposition 3.2. Under the h-MaxWeight policy we have for some ε3.2 > 0, independent
of b and x,

〈∇h (x), vMW〉 ≤ −c(w) − ε
(
b|c(x) − c(w)| + ‖Mθ(x)ξ‖κw

)
+ E(x), (98)

where w = ξTx and vMW = BφMW(x) + α. ⊓⊔

Proposition 3.3. Under the h-MaxWeight policy we have for some k3.3 < ∞, independent
of b, κ, and x,

Dh (x) ≤ 〈∇h (x), vMW〉 + η̂∗(x) + k3.3θ
−1

(
b|c(x) − c(w)| + ‖Mθ(x)ξ‖κw

)
+ E(x), (99)

where vMW = BφMW(x) + α and

η̂∗(x) := 1
2

κ

µ1

c1

ξ1
σ2

κ(x), with σ2
κ(x) := E[(ξT∆(t + 1))2 | Q(t) = x] (100)

⊓⊔

We begin with the proof of Proposition 3.2. Note that,

c(x) − c(w) =

ℓ∑

i=2

(
ci − (c1/ξ1)ξi

)
xi, (101)

which is non-negative by (87). That is, we have |c(x) − c(w)| = c(x) − c(w). To prove the
proposition we first apply Proposition 2.3 to obtain a representation for the gradient of h,

∇h (x) = ∇Ĵ∗(w̃)[I − Mθ]ξ + b(c(x̃) − c(w̃))[I − Mθ]
(
c − c1

ξ1
ξ
)
, (102)

with
∇Ĵ∗(w) =

c1

ξ1

w

µ1 − λ1
=

c1

ξ1

κ

µ1
w, w ≥ 0.

A representation for the drift easily follows:

Lemma 3.1. For any v ∈ V, x ∈ R
ℓ
+ we have,
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〈∇h (x), v〉 = ∇Ĵ∗(w̃)〈ξ, v〉 − ∇Ĵ∗(w̃)

ℓ∑

i=1

e−xi/θξivi

+ [c(x̃) − c(w̃)]

ℓ∑

i=2

(1 − e−xi/θ)bivi.

(103)

with bi = b(ci − (c1/ξ1)ξi), i ≥ 2. ⊓⊔

Fix constants β+ > β− > 0, and define for r ≥ 0,

s−(r) = β− log(1 + r/β−), s+(r) = β+ log(1 + r/β+). (104)

It is assumed throughout that β− ≥ 3θ−1.
Similar to the proof of Lemma 2.1, to bound (103) we impose the following constraints

on the velocity vector v.

vi ≥ 0 if xi ≤ s−(ξTx) − β− log(|ξ|) and ξi > 0, (105)

where |ξ| :=∑
ξi. The minimum of 〈∇h (x), v〉 over v satisfying (105) provides a bound under

the h-MaxWeight policy. The following two results imply that (105) is feasible for a policy
that is non-idling at Station 1.

Lemma 3.2. For each x ∈ R
ℓ
+ we have max{xi : ξi > 0} ≥ s−(ξTx) − β− log(|ξ|).

Proof. Letting x∞ = max{xi : ξi > 0}, we have ξTx ≤ x∞|ξ|, and hence by concavity of the
logarithm, with w = ξTx,

s−(w) = β− log(1 + w/β−) ≤ β− log(1 + x∞|ξ|/β−)

≤ β−

(
log(|ξ|) + (1 + x∞|ξ|/β− − |ξ|)/|ξ|

)
.

The right hand side is bounded above by β− log(|ξ|) + x∞ since |ξ| ≥ 1. This gives the
desired bound. ⊓⊔

We now establish a set of feasible values for v.

Lemma 3.3. There exists κv ≥ 1 and εv > 0 such that for each κ ≥ κv we have

{
v : ‖v‖ ≤ εv and 〈ξ, v〉 ≥ −(µ1 − λ1)

}
⊂ V.

Proof. The velocity space V
κ is a polyhedron for each κ, and as κ → ∞ these sets converge

to a polyhedron whose interior is non-empty, with a single face meeting the origin given by
{ξTv = 0}. ⊓⊔

Proof of Proposition 3.2. To avoid trivialities we assume that ℓ ≥ 3 (no less than three
buffers), and that ξi > 0 for at least three values of i.
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The drift obtained with any v ∈ V provides an upper bound on the drift obtained
using the h-MaxWeight policy. We take v ∈ V of the specific form v = v∗ + v0 with v∗ =
−(µ1−λ1)ξ

−1
1 1

1, and v0 orthogonal to ξ so that ξTv = ξTv∗ = −(µ1−λ1). As in the proof of
Lemma 2.1, we apply Proposition 2.4 to relax lattice constraints and boundary constraints
in our construction of v.

Lemma 3.3 implies that we can find ε3.3 > 0 such that the following inclusion holds for
each κ ≥ κv ,

{
v = v∗ + v0 ∈ R

ℓ : ξTv0 = 0 , and |v0
i | ≤ ε3.3 for each i ≥ 1

}
⊂ V

κ.

With this value of ε3.3 fixed, we set v0
i = −ε3.3 for each i satisfying ξi = 0, and v0

i = 0 for all
but (at most) three indices satisfying ξi > 0. In Cases (ii) and (iii) below there are just two
non-null indices, denoted i⊖ and i⊕, with v0

i⊖
< 0 and v0

i⊕
> 0.

To complete the specification of v0 we introduce the index sets,

I⊕ = {i ≥ 1 : ξi > 0, xi ≤ s−(ξTx) − β− log(|ξ|)}
I⊖ = {i ≥ 2 : ξi > 0, xi > s+(ξTx)}

The choice of v0 depends upon these sets as follows:

(i) If I⊕ = ∅ and I⊖ = ∅ then v0
i = 0 for each i satisfying ξi > 0.

(ii) If I⊕ = ∅ and I⊖ 6= ∅ then we take i⊖ ∈ I⊖ arbitrary with v0
i⊖

ξi⊖ = −ε3.3, and set

v0
1ξ1 = ε3.3.

(iii) If I⊕ 6= ∅ and I⊖ = ∅ then we take

i⊕ ∈ arg min{xi : i ≥ 2, ξi > 0} , i⊖ = 1,

and define v0
i⊕

ξi⊕ = ε2
3.3

, v0
i⊖

ξi⊖ = −ε2
3.3

, and v0
i = 0 for all other i satisfying ξi > 0.

(iv) If I⊕ 6= ∅ and I⊖ 6= ∅ then i⊖ ∈ arg max{xi : i ≥ 2, ξi > 0}. To determine i⊕
there are two sub-cases to consider.

a) If I⊕ = {1} then v0
i⊖

ξi⊖ = −ε3.3, and i⊕ = 1 with v0
1ξ1 = ε3.3.

b) Otherwise, i⊕ ∈ arg min{xi : i ≥ 2, ξi > 0}, and we take,

v0
i⊕ξi⊕ = ε2

3.3
, v0

i⊖ξi⊖ = −ε3.3, and v0
1ξ1 = ε3.3 − ε2

3.3

where again vi = 0 for all other i satisfying ξi > 0.

The added complexity in cases (iii) and (iv) is due to the positive drift induced by vi⊕ . By
imposing the constraint that this is of order ε2

3.3
rather than ε3.3 we can maintain a negative

overall drift.
This choice of v satisfies (105). Moreover, under the assumption that β− ≥ 3θ−1 and

β+ > β− we have for some constants k106, ε106, and all x,

33



Stability and Asymptotic Optimality of Generalized MaxWeight Policies

Revision # 2 May 22, 2008

∣∣∇Ĵ∗(w̃)e−xi/θξivi

∣∣ ≤ k106κ(1 + w2)−1 ≤ E(x), i 6∈ I⊕.

−∇Ĵ∗(w̃)e−xi⊕
/θξi⊕vi⊕ ≤ −ε106‖Mθ(x)ξ‖κw, if I⊕ 6= ∅.

‖Mθ(x)ξ‖κw ≤ E(x), if I⊕ = ∅.
(106)

Combining the bounds in (106) with Lemma 3.1 we obtain,

〈∇h (x), v〉 ≤ −(µ1 − λ1)∇Ĵ∗(w̃) − ε106‖Mθ(x)ξ‖κw + E(x)

+ [c(x̃) − c(w̃)]

ℓ∑

i=2

(1 − e−xi/θ)bivi.

To complete the proof we argue that the following bound holds: For some ε107 > 0,

[c(x̃) − c(w̃)]

ℓ∑

i=2

(1 − e−xi/θ)bivi ≤ −ε107b[c(x̃) − c(w̃)] + E(x). (107)

It is here that we require the the fact that at most one value of vi is positive for i ≥ 2, and
that for all such i we have the bound viξi ≤ ε2

3.3
.

If xi > s+(ξTx) for some i ≥ 2 (not necessarily satisfying ξi > 0) then vi = −ε3.3 for some
i ≥ 2. In fact, with i− ∈ arg max{xi : i ≥ 2} we have vi− = −ε3.3, and from (101) we obtain
c(x) − c(w) ≤ |c|xi− . Consequently,

ℓ∑

i=2

(1 − e−xi/θ)bivi ≤ −(bi−ε3.3 − bi⊕ε2
3.3

) + ε3.3bi−e−[c(x)−c(w)]/(|c|θ)

The bound (107) follows for ε3.3 > 0 sufficiently small: fix ε3.3 < mini,j≥2 bi/bj and set
ε107 = mini,j≥2(biε3.3 − bjε

2
3.3

)/b. Note that the positive term bi⊕ε2
3.3

is absent in cases (i) or
(ii), so that we are considering the worst case in which I⊕ 6= ∅.

If xi ≤ s+(ξTx) for each i ≥ 2 then it may be impossible to guarantee the negative drift
vi = −ε3.3 for any i ≥ 2. But this is irrelevant since in this case,

[c(x̃) − c(w̃)] ≤ E(x),

so that (107) follows trivially. ⊓⊔

Proof of Proposition 3.3. We begin with a representation of the form (38) based on a second-
order Mean Value Theorem of the form (61). We write h0(x) = 1

2xTH0x, with

H0 =
κ

µ1

c1

ξ1
ξξT + b(c − (c1/ξ1)ξ)(c − (c1/ξ1)ξ)

T.

Based on this expression combined with the Mean Value Theorem we obtain,

Dh (x) = 〈∇h (x), v〉 + 1
2E

[
∆(t + 1)TH0∆(t + 1) | Q(t) = x

]

+ 1
2E

[
∆(t + 1)T

(
∇2h (Q̄) − H0

)
∆(t + 1) | Q(t) = x

]
.

(108)

We also have by definition of η̂∗(x) in (100),
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E
[
∆(t+1)TH0∆(t+1) | Q(t) = x

]
= η̂∗(x)+bE

[(
(c−(c1/ξ1)ξ)

T∆(t+1)
)2 | Q(t) = x

]
. (109)

We apply Proposition 2.3 to bound the final term in (108):

∇2h (x) − H0 = −[MθH0 + MθH0] + MθH0Mθ + θ−1diag (Mθ∇h0(x̃)). (110)

We have for any ∆ ∈ R
ℓ,

∆T
[
−[MθH0 + MθH0] + MθH0Mθ

]
∆

= κc1/(µ1ξ1)
[
−2(∆Tξ)(∆TMθξ) + (∆TMθξ)

2
]
+ O(1)

= κc1/(µ1ξ1)
[
−(∆TMθξ) + 2(∆TMθξ)

(
(∆TMθξ) − (∆Tξ)

)]
+ O(1)

≤ κc1/(µ1ξ1)
[
−(∆TMθξ) + 2‖∆‖2‖Mθξ‖‖(I − Mθ)ξ‖

]
+ O(1)

where terms that are independent of κ are suppressed using the “big O” notation. Applying
the Mean Value Theorem as in the proof of Lemma 2.2 we obtain the crude bound, ‖(I −
Mθ)ξ‖ ≤ θ−1w, and hence for some k0 < ∞,

−[MθH0 + MθH0] + MθH0Mθ ≤ k0(θ
−1‖Mθξ‖κw + 1)I

Also, for a possibly larger constant k0,

‖Mθ∇h0(x̃)‖ = ‖Mθ

(
κµ−1

1 c(w̃)ξ + b(c(x̃) − c(w̃))(c − (c1/ξ1)ξ)
)
‖

≤ k0

(
‖Mθξ‖κw + b|c(x̃) − c(w̃)|

)
.

Consequently, for some k0 < ∞,

∇2h (x) − H0 ≤ k0θ
−1

(
κ‖Mθξ‖w + b|c(x̃) − c(w̃)|

)
I + k0I.

This combined with (108) and (109) completes the proof. ⊓⊔

Proof of Theorem 3.1. Following Proposition 3.2 and Proposition 3.3, the proof of the theo-
rem amounts to establishing the drift (96) for a function V derived from h. We define,

V (x) = h(x) + 1
2

c1

ξ1
µ−1

(m2 − m2
L

µ − α

)
ξTx , x ∈ Z

ℓ
+,

where m2 := E[(S1(1) − L1(1))
2] and m2

LE[(L1(1))
2]. That is, we are re-introducing the

linear term appearing in the solution to Poisson’s equation for the relaxation. Based on the
definitions of η̂∗ and η̂∗(x) in (88) and (100) we obtain the following identity for any policy,

E

[
1
2

c1

ξ1
µ−1

(m2 − m2
L

µ − α

)(
W (t + 1) − W (t)

)
| Q(t) = x

]
= η̂∗ − η̂∗(x).

Hence the function V does satisfy (96).
This bound implies that (V3) holds, so that π(c) is finite for any finite κ. An application

of the Comparison Theorem gives,

π(c) ≤ η̂∗ + π(E).
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From the form of E given in (97), it follows that π(c) is bounded by a constant times κ. In
fact, by the bound above, (97), and Jensen’s inequality we obtain,

π(c) ≤ η̂∗ + k97 log(κ + π(c)) + k97κEπ[(1 + (ξTQ(t)))2)−1]

so that for a possibly larger constant,

π(c) ≤ η̂∗ + k97 log(κ) + k97κEπ[(1 + (ξTQ(t)))2)−1].

Moreover, applying (35) we obtain,

π(c) ≤ η̂∗ + k97 log(κ) + k97κE[(1 + (Ŵ ∗(t))2)−1],

where the expectation is taken for the steady-state relaxation. Lemma A.2 of [37] implies that

κE[(1 + (Ŵ ∗(t))2)−1] is uniformly bounded in κ, so this final bound completes the proof. ⊓⊔

4 Extensions, Conjectures, and Conclusions

The generalized MaxWeight policies proposed in this paper can be designed to capture all of
the desirable features observed in Tassiulus’ original policy. Depending upon the structure
of h, the policy can be designed to depend only on local information as in the standard
algorithm, or it can utilize more information if available.

There remain many questions.

Statistics Generalizations of Theorems 1.1 and 2.5 to network models with renewal arrivals
and service is straightforward by applying fluid limit techniques [12, 15, 13]. It would be of
interest to develop alternative methods to cope with these more complex models to obtain
sharp performance estimates in heavy traffic. In particular, to-date logarithmic regret has
been established only for homogeneous Markovian models. To relax the homogeneity (Kelly-
type) assumption, the workload process should be constructed in units of time rather than
inventory as done here. It would be much more interesting to find a counterexample within
the class of renewal models with finite second moment, though this is not likely to exist.

Of greater practical importance is the issue of memory: Long-range dependent models
remain a frontier. It may be possible to extend fluid limit techniques to establish stability.
New techniques are required to obtain performance bounds.

Information Design of the function h0 requires stability considerations, e.g., monotonicity
has been imposed as a blanket assumption in each of the main results. A second consideration
is the amount of information required for implementation.

Consider the special case of the quadratic function (1). Monotonicity holds provided
Dij ≥ 0 for each i, j, and the dynamic programing inequality holds if in addition Dii > 0 for
each i. In typical scheduling and routing models the MaxWeight policy in which D is diagonal
requires only local information [52]. The main result of this paper shows that this can be
relaxed through the introduction of a state transformation. If the matrix D that defines h0
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is sparse, then the amount of information required for implementation of the h-MaxWeight
policy will be limited.

Suppose that D is a band matrix with width n0 ≥ 1 (Dij = 0 for each i, j satisfying
|i − j| > n0). For the same scheduling and routing models considered in earlier work, the
resulting h-MaxWeight policy will require “(n0 +1)-hop” local information. For example, for
a network consisting of a sequence of N queues in tandem, for each integer i ∈ [n0, N −n0−1]
the policy at Station i will require queue length information at buffers {i ± k, |k| ≤ n0} and
buffer i + n0 + 1.

Another important class of quadratics is those with low rank. Suppose that for linearly
independent vectors {di : i = 1, . . . , n1} ⊂ R

ℓ
+ we have,

h0(x) = 1
2

n1∑

i=1

didiT.

For example, the function (91) is of this form with n1 = 2. This matrix is not banded in
general, but the h-MaxWeight policy will again require limited information. For scheduling
and routing models the required information is the same “one-hop” data required in the usual
MaxWeight algorithm, along with values of the inner products {diTQ(t) : i = 1, . . . , n1}. For
small values of n1 this information might be distributed through message passing.

Performance bounds for universally stabilizing policies The h-MaxWeight policy
considered in Theorem 2.5 using the change of variables (73) is universally stabilizing, but
its performance is not understood. It will be interesting to evaluate its performance in the
setting of Section 3. It will not yield logarithmic regret in general under the assumptions of
Theorem 3.1.

Conjecture 1 : Under the assumptions of Theorem 3.1, with x̃ redefined via (73)
and the L2 bound (77) satisfied for A∞(t), the h-MaxWeight policy will result in asymptotic
minimality of workload, with logarithmic regret, in the sense that

E[W (t;x)] ≤ E[Ŵ ∗(t;x)] + k1 log(κ)

for some k1, each κ sufficiently large, and each t and initial condition. ⊓⊔
It is likely that minimality is not difficult to establish. It is also likely that state space

collapse (25) will hold in some form, perhaps with X ∗ defined with respect to the perturbed
cost function,

X ∗(w) = arg min
x∈R

ℓ
+

(
c(x̃) : ξTx = w

)
.

Linearity and logarithmic regret If c is an arbitrary norm on R
ℓ then the average cost

for the relaxation becomes,

η̂∗ = 1
2c(1)

σ2
κ

µ1
κ,

where the definition of the effective cost is given in (24). This generalizes (93) since c(1) =
c1/ξ1 under the assumptions of Theorem 3.1. A stability proof is simplified if the function
h0 in (91) used to define the h-MaxWeight policy is redefined via,
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h0(x) = Ĵ∗(ξTx) + 1
2b‖x − x∗‖2

Conjecture 2 : The conclusions of Theorem 3.1 remain valid when c is a general norm,
h0 redefined as above, and with the remaining assumptions of the theorem maintained. ⊓⊔

Multiple bottlenecks The generalization of Theorem 3.1 to multiple bottlenecks is a
significant open problem. This is difficult because we do not have an explicit representation
for the relative value function for the relaxation, and we do not know the optimal policy when
the effective cost is not monotone.

To formulate a conjecture we again restrict to the homogeneous scheduling model with
linear cost. If there are n bottlenecks in heavy traffic we consider an n-dimensional relaxation,
as formulated in [9]. Analysis of the usual MaxWeight policy based on a workload relaxation
of dimension n ≥ 2 is contained in [39, Chapter 6].

The workload relaxation evolves in a positive cone W ⊂ R
n according to a multi-

dimensional recursion of the form (83). Let η̂∗ denote the optimal average cost, and suppose
that ĥ∗ : W → R solves the average-cost optimality equations for the relaxation, perhaps
approximately: For some finite constant k3 and all κ,

min E[ĥ∗(Ŵ (t + 1)) | Ŵ (t) = w, ι(t) = ι] ≤ ĥ∗(w) − c(w) + η̂∗ + k3 log(κ)

where ι(t) denotes the idleness at time t, and the minimum is over all ι ≥ 0 such that

Ŵ (t + 1) ∈ W with probability one. The integer constraints are relaxed so that ĥ∗ is defined
on all of W. Based on the relative value function for the relaxation, the function h0 in (91)
is redefined via,

h0(x) := ĥ∗(ξ
Tx) + 1

2b[c(x) − c(ξTx)]2, x ∈ R
ℓ
+. (111)

The function ĥ∗ will depend upon κ in a parameterized model, but the constant b will be
fixed as in Theorem 3.1.

Conjecture 3 : Theorem 3.1 can be extended to the case where there are precisely n
bottlenecks as κ → ∞, based on the h-MaxWeight policy with h0 given in (111). ⊓⊔

If true, this provides a valuable tool for constructing an effective policy in a complex
network setting.

A final topic of current interest is to bridge this work with recent approaches to machine
learning. Given a parameterized family of functions {hα : α ∈ R

d}, we seek the value of
α such that the hα-MaxWeight policy has the best performance in this class. There are a
variety of methods to find an optimizer based on simulation [3, 50, 53, 16, 45]. It is hoped that
specialized algorithms can be constructed for networks based on the techniques introduced
here.
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[22] J. M. Harrison and M. J. López. Heavy traffic resource pooling in parallel-server systems.
Queueing Syst. Theory Appl., 33:339–368, 1999.

[23] S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance evaluation and policy
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