
Flexible Views for View-Based Model-Driven Development

Erik Burger
Karlsruhe Institute of Technology

Am Fasanengarten 5
Karlsruhe, Germany
burger@kit.edu

ABSTRACT
Model-driven development processes suffer from growing com-
plexity, which leads to information spread across heterogen-
eous metamodels as well as drift and erosion between ar-
chitecture and implementation. In this paper, we present a
view-based modeling approach based on Orthographic Soft-
ware Modeling (OSM), and introduce flexible views as a
concept for the creation of custom, user-specific views. The
envisioned benefit of the approach is to improve software
quality, to increase consistency between the various model-
ing artifacts in model-driven software development, and to
reduce the complexity for software developers.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods; D.2.11 [Software Architectures]: Lan-
guages

General Terms
Keywords
Model-driven software development; View-based modeling;
Orthographic Software Modeling

1. INTRODUCTION
Most of today’s software delopment processes make use of

models and model-based technologies to cope with the com-
plexity of larger systems by expressing features of the system
on a higher level of abstraction. With the extensive use of
models in complex systems, these models can themselves
grow large and become too complex to be understood by a
single developer. These models are often instances of sev-
eral heterogeneous metamodels, across which information is
spread. Thus, inconsistencies can occur, leading to drift and
erosion between the models and the implementation of the
system. To lower the complexity for the developer, partial
views on the system restrict the amount of information that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCOP’13, June 17, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2125-9/13/06
http://dx.doi.org/10.1145/2465498.2465501 ...$15.00.

is presented to the developer and structure the way of dis-
playing and manipulating information. Pre-defined views
are however often limited to the information contained in
one specific metamodel, and cannot be defined by the de-
velopers themselves.

In this paper, model-driven development techniques are
used to define a view-based modeling approach based on the
Orthographic Software Modeling concept by Atkinson et al.
[2]. Dynamically created, so called flexible views are intro-
duced to help the software developer to focus on the parts
of the system which are relevant for his or her current role,
and offer an abstraction for the rest of the system. Flexible
views can be defined by a lightweight domain-specific lan-
guage (DSL), and are part of a novel construction method
for the single underlying model (SUM), a central concept on
which the OSM approach is built.

The goal of our approach is to improve software quality
by giving developers permanent access to consistent, up-
to-date and complete information about the system under
development, tailored to the information needs of different
developer roles, e.g., domain experts, system architects, or
software developers. Flexible views are customized to the
needs of a single developer and can be defined by the de-
velopers themselves. They reduce the complexity by dis-
playing only the type of information which is relevant at the
time of modeling. Flexible views may also be used to hide
information and thus to implement access control to parts
of a software system.

2. FOUNDATIONS

2.1 Model-Driven Development
Model-driven development (MDD) [28, 26] puts models

into the centre of the development process and provides a
clear separation of views and models. During the MDD
process, several models can be used, which may differ in the
level of abstraction and the type of modeled information, but
should essentially represent the same system. Developers
have to take manual efforts to achieve synchronisation of
information across these models. This is why developers
usually work in only one kind of model at a time.

In view-based modeling [16], all access to the models is
organised in views, which in general are partial, i.e., do not
show the complete model, thus reducing the complexity for
the developer by presenting him or her only the relevant
parts of a system.

The terms view and view point have been defined for soft-
ware architectures and architectural description languages

in the IEEE 1471/ISO 42010 standard [18, 19], which only
give a broad definition of the terms and do not distinguish
between view types and actual view instances. We will use
the more precise definition of Goldschmidt et al. [15, 16],
given in Definition 1, instead.

Definition 1. A view type defines the set of metaclasses
whose instances a view can display. It comprises a definition
of a concrete syntax plus a mapping to the abstract metamo-
del syntax. The actual view is an instance of a view type
showing an actual set of objects and their relations using a
certain representation. A view point defines a concern.

In UML, for example, diagram types such as sequence or
class diagrams would be view types. A view is the actual
diagram containing classes A, B and C. The static architec-
ture or dynamic aspects of a system would be view points
in UML.

The main difference of this definition to the IEEE/ISO
standard is the introduction of the term view type, which
can be interpreted as a metamodel for actual views. Gold-
schmidt also defines defines different notions for complete-
ness and partiality of view types and views, such as contain-
ment-completeness, selectional completeness, and a defini-
tion for overlaps of view types [15, sect. 4.4].

A developer will rarely use a complete view on a system
because it is often too complex and tends to be confusing.
This is why today’s software modeling tools offer possibilit-
ies to restrict a view to certain elements; the possibilities for
creating custom views are however limited to the selection
mechanisms implemented in the tools, so that often only a
manual selection of elements is possible. The idea of restric-
ted views for developers goes back to the 1990s [13, 20, 24],
but has not been accepted as a development paradigm yet.
We are conviced that today’s model-driven techniques like
model transformations and the support for textual syntaxes
offers greater possibilities for view-based approaches.

2.2 Orthographic Software Modeling
With the Orthographic Software Modeling (OSM) [2] ap-

proach, Atkinson et al. aim to establish views as first-
class entities of the software engineering process. In the en-
visioned view-centric development process, all information
about a system is represented in a single underlying model
(SUM); thus, the SUM even transcends the function of being
a model, but becomes the system itself. This makes the ap-
proach radical in the sense that even source code is treated
as only a special textual view. The SUM itself has to con-
tain all execution semantics and could theoretically also be
executed without the use of source code.

The authors of OSM suggest that user-specific custom
views be generated dynamically, based on model transform-
ations from and to the SUM. These views are organized in
dimensions that are ideally independent from each other
(orthogonal). Technically, a view is a model of its own
which also has a metamodel (view and view type in terms
of Definition 1). Model-to-model transformations create the
views dynamically from the SUM. This also – theoretically
– solves the issue of keeping views consistent, since every
edit operation in a view is immediately represented in the
SUM and thus available to all other views. This concept re-
quires however that bi-directional transformations exist for
every view type (i.e., metamodel); they provide the syn-
chronization of views with the SUM, and edit operations are

SUM

view1

view2

view3

view4

view5

view6

view7

view1

view2

view3

view4

view5

view6

view7

Figure 1: Hub-and-spoke vs. peer-to-peer

propagated back to the SUM likewise. Although writing bi-
directional transformations is a difficult task, the complexity
of a hub-and-spoke architecture like OSM is linear in terms
of the number of transformations that have to be written
and maintained, in contrast to the exponential number of
transformations in a peer-to-peer synchronisation scenario
for views, which must also be bi-directional (see Figure 1).

The KobrA Method [3] is a prototypical implementation
of the OSM approach, based on UML and OCL. KobrA is
however lacking a method for the construction of the single
underlying model (and the metamodel it is based on), which
is supposed to carry all information of the software develop-
ment lifecycle.

2.3 Bidirectional Transformations
Depending on the transformation language used, bidirec-

tionality is difficult to maintain or to prove. Algebraic frame-
works and methods like the lenses approach by the Harmony
group [14] offer a sound theoretical foundation, but are not
yet mature enough to be used in practice. Triple graph
grammars [21] can be used to define bidirectional trans-
formation rules, which are in practice often transformed into
pairs of unidirectional transformations.

Perdita Stevens distinguishes bidirectional transformations
from bijective transformations [29], and identifies several re-
quirements that bidirectional transformations should satisfy:
In the context of QVT-R, the basic requirements are cor-
rectness (the transformation engine produces models that
satisfy the relations), hippocraticness (models that satisfy
a relation are not modified by the executions of the trans-
formation engine), and additionally undoability. Diskin et al.
[11] give a weaker definition for undoability and invertibility
that is more suitable for practical applications of bidirec-
tional transformation and which is based on lenses. They
also argue that delta-based approaches are superior to state-
based approaches: While state-based transformations have
the complete models in their current status as input and
output, delta-based approaches use the differences between
models. These deltas may carry semantic information that
cannot be computed by comparing model versions, such as
refactorings like renaming and changes in containment. This
is especially important in scenarios where UUIDs/primary
keys are not always available, as it is the case in EMF, where
they are only optional for model elements.

Bidirectional transformations can be classified into sym-
metric and assymetric cases: In the symmetric case, both
source and target model of a transformation can contain new
information that is not yet present in the respective other
model and has to be added there by the transformation. In
the asymmetric case, one model does not contain new in-

formation, which is the case for (non-editable) views. In the
context of view-based modeling, the views in general may be
editable, and thus, the framework must support changes in
both the underlying model and in the view. For read-only
views, it is sufficient to define only a unidirectional trans-
formation, thus reducing the complexity.

3. EXAMPLE
To demonstrate our idea of view-based development, we

have chosen a component-based development process based
on the Palladio Component Model (PCM) [6], UML class
diagrams, and Java code, as displayed in Figure 2. Informa-
tion about the same software system is represented on differ-
ent levels of abstraction in these three formalisms: software
architecture and performance properties are represented in
PCM; the class structure is represented in the UML class
diagrams; the implementation and full runtime semantics
are represented in Java, either as a plain textual repres-
entation of code or using a model-based representation like
MoDisco [7].

Different developer roles (not displayed in the figure) may
use (legacy) view types like component diagrams or class
diagrams (VT 1) to access the information in the metamod-
els, but would also like to have integrated views like the
“component-class implementation view” (VT 2) displayed in
the example.

4. FLEXIBLE VIEWS FOR VIEW-BASED MODEL-
DRIVEN DEVELOPMENT

The approach presented in this paper is based on the
concept of Orthographic Software Modeling. Current OSM
publications are however lacking a definition of the single
underlying model or a way of constructing it. In the proto-
typical implementation [3], the authors built a metamodel
for the SUM manually and from scratch. Existing MDD pro-
jects will however contain several legacy metamodels which
have to be migrated to be used in a view-based approach.
We therefore propose the construction of a modular SUM
which contains several (legacy) metamodels, but can be ac-
cessed as a single entity: View types act as interfaces and
are the only way of accessing and manipulating informa-
tion. The sub-metamodels themselves do not have to be
modified to work in the modular SUM, which makes the
approach non-invasive and backwards-compatible. In the
example of Figure 2, the SUM metamodel (indicated as the
large circle in the middle) consists of three sub-metamodels
(PCM, UML, Java) and also stores additional information,
e.g., the class-component mapping, which is not part of any
of the single models. Developers can continue to use their
legacy view types like class diagrams and Java source code,
but can also use integrated views that gather information
from heterogeneous metamodels. Consistency constraints
(displayed as double arrow) guarantee that the SUM is
always in a consistent state if changes are made to one of the
sub-models. These constraints are not necessarily defined on
every pair of sub-models, as in the example, where there is
no constraint between PCM and Java directly. The defin-
ition of these constraints and the update mechanisms for
the restoration of a valid model are part of the view-based
approach, but not in the focus of this paper.

For the creation of custom, user-specific views on a modu-
lar SUM, we present the concept of flexible views. A flexible

view can be pre-defined or defined at runtime (of the de-
velopment framework). It is dependent from the instance
level of the underlying models; i.e., following Definition 1, it
defines a view type as well as a view. Different flexible views
can re-use an existing view type. This can be compared to
a view in relational databases, which defines the schema of
the result (i.e. the view type), and the result set itself (the
view). A flexible view is defined by rules that determine its
contents and behaviour; these rules can be altered for spe-
cific modeling purposes by developers themselves or by an
additional developer role. In the OSM approach, a “meth-
odologist” role is suggested, who defines the rule set for each
software project.

Definition 2. Flexible views are partial views on a soft-
ware system. They

• can be defined at runtime of the development frame-
work

• are defined on modeling instances
• may introduce new elements to subsume elements of

the underlying model
• support an online modeling workflow
• contain rules describing

– the selection of elements which are displayed (based
on instance properties)

– which edit operations are possible
– how edit operations are reflected in the underlying

model

A view type can be understood as a metamodel, with the
single views as instances of this metamodel respectively (in-
dicated by the solid arrow). To create a view, a model
transformation has to be executed from the SUM to the
view type. In the example of Figure 2, this is indicated as a
dashed arrow (). In case of the legacy view type VT 1

(class diagram), the view type corresponds to only one sub-
metamodel of the modular SUM metamodel; hence, the view
type is fully editable, and the transformation is the identity
relation. (Additional operations between the sub-models
of the SUM may be necessary so that all consistency con-
straints are satisfied after an editing step.) The legacy view
types enable the usage of existing modeling tools and can
also be used for im- and export. View type VT 2 represents
a more complex example: A developer would like to have
a “class-component implementation view” which shows in-
stances of two heterogeneous metamodels (PCM and UML)
and an implements-relation between them. The purpose of
this view type is to edit the mapping information between
classes and components, but not to edit the class or com-
ponent model. Thus, the developer creates a flexible view
with the following parameters:

• PCM components and UML classes can only be dis-
played, but not be deleted or edited, e.g., renamed

• details of classes and components are omitted, e.g. at-
tributes are not shown for classes, only provided inter-
faces are shown for components

• the implements-relation is editable

The synchronisation between the view and the SUM de-
pends on the design decision of where to store the imple-
ments-relation; since it is neither present in the PCM nor
in the UML metamodel, it could be stored as an annotation

PCM

UML

Java

cons1

cons2

C1

name:String

C2 C3

UML class diagram view

VT1VT1
instance of

C1

C2

implem
ents

implements

component-class implementation view

VT2

instance of

/* @implements-component comp_1

*/

public class C2 extends C1 {

public static void main (String[] args) {

System.out.println ("Hello World!");

}

}

annotated Java source view

VT4

instance of

tr
a
n
sf
o
rm

a
ti
o
nperformance view

VT3

instance of

comp1

Figure 2: Example: Component-based development

on either side, or in an additional artifact, e.g., a mapping
model which would have to be added to the SUM then. Let
us assume that a methodologist has decided to store the in-
formation as an annotation in the UML sub-model of the
SUM. Since components cannot be edited by a view of this
view type, the transformation from PCM to VT 2 will be
unidirectional; although classes themselves are not modified
by the view either, but the mapping information is added as
an annotation, the transformation from UML to VT 2 is bi-
directional. Neither of the metamodels has to be modified,
since the existing UML annotation mechanism is used. The
user of the view needs not know how the implements-relation
is technically represented in the SUM; it is even possible to
change the representation strategy without modifying the
view type.

In general, readability and editability of views can also be
used to implement access control to the system. A software
engineer who is responsible for the object-oriented design of
a system may not be authorized to change the software ar-
chitecture, since this is the responsibility of a software archi-
tect. In the example, the component-class implementation
view type VT 2 guarantees that the software engineer does
not change the architecture by making the components read-
only, but gives the ability to update the class-component
mapping.

The synchronisation by transformations in our approach
should be based on the propagation of deltas, as proposed
in [11]. For the propagation of changes from the view to
the SUM, editor traces can be used to determine the deltas;
for the other direction, a diffing mechanism such as EMF-
compare [12] computes the deltas, so delta-based synchron-
isation is used for editing, but state-based synchronisation
for updates in views after changes to the SUM. The deltas
should be classified according to their impact on the consist-
ency of the SUM, so that the framework can already suggest
strategies for restoring consistency if an edit operation viol-
ates constraints. In [8], the author presented a classification
scheme for metamodel evolution that can be adapted for the
use in SUM-based modeling; the effect of a delta could then
be estimated based on its impact on the consistency.

As mentioned in subsection 2.3, it is difficult and in many
cases impossible to define bi-directional transformations. It
is however necessary to have bi-directionality for the syn-
chronisation of views with the SUM. To adress this problem,

we will provide a catalogue of possible operations and rules
for the definition of view types and consistency constraints,
which include a description of their invertability and the
limitations, e.g., that non-invertable operations will lead to
a read-only view. The goal is that the methodologist who
adds a metamodel to the modular SUM or the developer
who defines a custom view is provided with information on
how the choice of consistency constraints or selection mech-
anisms affects the editability of views.

5. RELATED WORK

5.1 Aspect-Oriented Software Development
The concept of Aspect-Oriented Programming has also

been extended to model-driven development, yielding Aspect-
Oriented Modeling and, more generally Aspect-Oriented Soft-
ware Development (AOSD) [9, 30]. One main focus of AOSD
is “breaking the hegemony of the dominant decomposition”
[5] in software development: software is re-structured along
system-wide, so called cross-cutting concerns, which have to
be distinguished from non-cross-cutting concerns like com-
ponent or object structures. In contrast to view-based mod-
eling, where all information is contained in the model and is
organised and structured in views, the information in AOM
contained in seperate concerns. Changes to such a concern
are not reflected in the underlying system immediately, but
unified afterwards in a weaving or composition process. In
our proposed view-based approach, aspects are expressed in
partial views that always in sync with the underlying model,
so there is no weaving or composing; the model is designed
in a way that the information needed in the views can be
extracted and manipulated by model-to-model transforma-
tions.

5.2 Distributed Modeling Approaches
The ModelBus approach [17, 1] aims to provide sharing

mechanisms for models in a distributed and heterogenous
model-driven process. A central repository serves as storage
for models, which are then transformed into tool-specific
formats using service-based invocation techniques. Model-
Bus also supports collaborative work on a software model
using different tools, e.g., IBM Enterprise Architect and Pa-
pyrus. ModelBus is a tool-centric approach that is suitable

for the the interchange of EMF/MOF-based metamodels,
describing the same domain, between heterogeneous model-
ing tools. It is not suitable for the integration of information
from heterogeneous metamodels.

DuALLy [23] is a framework that aims to create interoper-
ability between architecture description languages (ADL). It
uses higher-order transformations to translate existing lan-
guages via a hard-coded core set of architectural models and
weaving models (the so-called A0 profile). This is similar to
the idea of the SUM in the OSM approach, but limited to
the domain of architectural engineering, since the concepts
in the A0 model are fixed and cannot be extended to other
domains. An implementation of DuALLy based on Eclipse
and ATL exists.

5.3 Databases
Many of the problems that are encountered in view-based

modeling have counterparts in database research. Relational
databases also offer the possibility to create views which may
be editable. Also, a relational view defines a schema of its
own, just like a view in MDD has a metamodel (i.e., the view
type). The query mechanism in relational databases serves
the function of a model-to-model transformation in MDD.
If data in the partial view is manipulated, the view update
problem [4, 10] arises, which is a central issue in relational
databases which is well understood, but mainly unsolved
[22]. The process of re-integrating changes on a partial view
into the underlying database is called translation; it has been
shown that such a translation does not always exist for any
kind of view update, and that it is undecidable if a unique
translation exists. The problem can be alleviated by care-
fully designing the views, so that every edit operation of a
user in a certain view can also be reverted in that same view
without losing information in the underlying database. We
will chose the same approach for the definition of views in
the OSM approach; by defining view types that limit the
possible operations, we can guarantee that consistency con-
straints in the underlying SUM are not violated. In recent
database research, the view-update problem has also been
investigated for tree-like structures [14], which can be ap-
plied to model transformations using graph structures (see
subsection 2.3).

Integrating heterogeneous metamodels and instances bears
similarities the well-known problem of schema integration of
heterogeneous databases [25, 27]: A semantic understanding
of both domains is necessary to define the mapping of ele-
ments; hence, it cannot be fully automated. Furthermore, a
global database schema is used to express data from various
sources. This is also true for model-driven development, and
is why we refrain from defining automatisms for the iden-
tification of similarities in heterogeneous metamodels auto-
matically, e.g., by graph-based comparison using heuristics.
We suggest that the methodologist must understand the se-
mantics of the metamodels, which act as the modular parts
of the SUM, between which he or she will define the consist-
ency constraints and evolution policies.

6. PLANS FOR VALIDATION
As a prototype for the definition of user-specific views

at runtime, we have created a DSL with a textual syntax
similar to SQL for the rapid creation of specialized views,
which is not described here due to limited space. An engine
that uses metamodel generation and transformation genera-

tion creates view types the views from textual queries. This
enables the developer to create and modify custom views
without having to design metamodels and transformations
manually. Currently, the prototypical implementation sup-
ports read-only views.

We plan to validate our approach by applying it to the
component-based development process of the Palladio meta-
model [6]. As sketched in Figure 2, we plan to combine the
component-based modeling formalisms of PCM with a de-
scription of the class structure in UML and a code represent-
ation in Java. A larger example system, e.g., the MediaStore
example from [6] or the common component modeling ex-
ample (CoCoME) [3] will be used since the software archi-
tecture description and an implementation already exist.

Based on these systems and a SUM-metamodel that com-
bines PCM, UML and Java, we will test the migration of
legacy systems to our orthographic approach. With the
resulting model, a comparison of a SUM approach and a
non-SUM-approach can be conducted. We plan to evalu-
ate different evolution scenarios for software in a qualitative
study that involves computer science students with educa-
tion in model-driven engineering. The goals of this study
are to valide the following theses: Firstly, the feasibility of
the OSM approach in general; secondly, that the view-based
approach reduces the complexity for the developer; thirdly,
that the approach improves the quality of software, i.e., im-
proves the consistency and reduces drift and erosion.

7. CONCLUSION/NEXT STEPS
We have presented a view-based development process based

on the OSM approach and introduced a novel modeling
paradigm called flexible views. We motivate this approach
by a component-based usage scenario in which information is
spread across several metamodels and implementation code,
which together form a modular single underlying model of
the software system. Flexible views structure the access to
the information in the system and reduce complexity for
the developer by displaying only relevant information. Fur-
thermore, editability restrictions serve as an access control
mechanism to support a software development process with
structured permissions for the different developer roles.

As next steps, we plan to extend our textual DSL for the
definition of flexible views, since it currently only supports
read-only views. For this goal, we will create a catalogue
of operations that can be used to create flexible views and
categorize them with respect to invertability and bidirec-
tionality. The synchronisation of views and the SUM can
then be defined with the use of bi-directional model trans-
formations, in combination with the consistency constraints
between the sub-models of the SUM.

The benefits of the proposed approach are increased con-
sistency of systems in model-driven software development
with reduced complexity for the single developer, leading to
higher software quality.

References
[1] Eric Armengaud et al. “Model-based Toolchain for the

Efficient Development of Safety-Relevant Automotive
Embedded Systems”. In: SAE 2011 World Congress &
Exhibition. 2011.

[2] Colin Atkinson, Dietmar Stoll and Philipp Bostan.
“Orthographic Software Modeling: A Practical Approach
to View-Based Development”. In: Evaluation of Novel
Approaches to Software Engineering. Ed. by Leszek A.
Maciaszek, César González-Pérez and Stefan Jablon-
ski. Vol. 69. Communications in Computer and In-
formation Science. Berlin/Heidelberg: Springer, 2010,
pp. 206–219.

[3] Colin Atkinson et al.“Modeling Components and Com-
ponent-Based Systems in KobrA”. In: The Common
Component Modeling Example. Ed. by Andreas Rausch
et al. Vol. 5153. Lecture Notes in Computer Science.
Berlin/Heidelberg: Springer, 2008, pp. 54–84.

[4] F. Bancilhon and N. Spyratos. “Update semantics of
relational views”. In: ACM Trans. Database Syst. 6.4
(Dec. 1981), pp. 557–575.

[5] Elisa Baniassad and Siobhan Clarke. “Theme: An Ap-
proach for Aspect-Oriented Analysis and Design”. In:
Proceedings of the 26th International Conference on
Software Engineering. ICSE ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 158–167.

[6] Steffen Becker, Heiko Koziolek and Ralf Reussner.“The
Palladio component model for model-driven perform-
ance prediction”. In: 82 (2009), pp. 3–22.

[7] Hugo Bruneliere et al. “MoDisco: a generic and extens-
ible framework for model driven reverse engineering”.
In: Proceedings of the IEEE/ACM international con-
ference on Automated software engineering. ASE ’10.
Antwerp, Belgium: ACM, 2010, pp. 173–174.

[8] Erik Burger and Boris Gruschko. “A Change Metamo-
del for the Evolution of MOF-Based Metamodels”. In:
Modellierung 2010, Klagenfurt, Austria, March 24-26,
2010. Ed. by Gregor Engels, Dimitris Karagiannis and
Heinrich C. Mayr. Vol. P-161. GI-LNI. 2010.

[9] Ruzanna Chitchyan et al. Survey of Analysis and Design
Approaches. Tech. rep. AOSD-Europe, May 2005.

[10] E. F. Codd. The relational model for database manage-
ment: version 2. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1990.

[11] Zinovy Diskin et al. “From State- to Delta-Based Bid-
irectional Model Transformations: The Symmetric Case”.
In: Model Driven Engineering Languages and Systems.
Ed. by Jon Whittle, Tony Clark and Thomas Kühne.
Vol. 6981. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2011, pp. 304–318.

[12] EMF Compare. Dec. 2012. url: http://wiki.eclipse.
org/EMF_Compare/FAQ.

[13] Anthony Finkelstein et al. “Viewpoints: A Framework
for Integrating Multiple Perspectives in System Devel-
opment”. In: International Journal of Software Engin-
eering and Knowledge Engineering 2.1 (1992), pp. 31–
57.

[14] J. Nathan Foster et al. “Combinators for bi-directional
tree transformations: a linguistic approach to the view
update problem”. In: SIGPLAN Not. 40.1 (Jan. 2005),
pp. 233–246.

[15] Thomas Goldschmidt.“View-based textual modelling”.
PhD thesis. Karlsruhe, 2011.

[16] Thomas Goldschmidt, Steffen Becker and Erik Bur-
ger. “View-based Modelling - A Tool Oriented Ana-
lysis”. In: Proceedings of the Modellierung 2012, Bam-
berg. Mar. 2012.

[17] Christian Hein, Tom Ritter and Michael Wagner.“Model-
Driven Tool Integration with ModelBus”. In: Work-
shop Future Trends of Model-Driven Development. 2009.

[18] “ISO/IEC Standard for Systems and Software Engin-
eering – Recommended Practice for Architectural De-
scription of Software-Intensive Systems”. In: ISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-15
(July 2007), pp. c1–24.

[19] ISO/IEC/IEEE Std 42010:2011 – Systems and soft-
ware engineering – Architecture description. Los Alam-
itos,CA: IEEE, 2011.

[20] P.B. Kruchten. “The 4+1 View Model of architecture”.
In: Software, IEEE 12.6 (Nov. 1995), pp. 42–50.

[21] Marius Lauder et al. “Bidirectional Model Transform-
ation with Precedence Triple Graph Grammars”. In:
Modelling Foundations and Applications. Ed. by Ant-
onio Vallecillo et al. Vol. 7349. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2012, pp. 287–
302.

[22] Jens Lechtenbörger. “The impact of the constant com-
plement approach towards view updating”. In: Pro-
ceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems.
PODS ’03. New York, NY, USA: ACM, 2003, pp. 49–
55.

[23] I. Malavolta et al. Providing Architectural Languages
and Tools Interoperability through Model Transform-
ation Technologies. Tech. rep. 1. Jan. 2010, pp. 119–
140.

[24] Janis Putman. Architecting with RM-ODP. Upper Saddle
River, NJ: Prentice Hall, 2001.

[25] M.P. Reddy et al. “A methodology for integration of
heterogeneous databases”. In: IEEE Transactions on
Knowledge and Data Engineering 6.6 (Dec. 1994), pp. 920–
933.

[26] D.C. Schmidt. “Guest Editor’s Introduction: Model-
Driven Engineering”. In: Computer 39.2 (Feb. 2006),
pp. 25–31.

[27] Amit P. Sheth and James A. Larson. “Federated data-
base systems for managing distributed, heterogeneous,
and autonomous databases”. In: ACM Comput. Surv.
22 (3 Sept. 1990), pp. 183–236.

[28] Thomas Stahl et al. Modellgetriebene Softwareentwick-
lung : Techniken, Engineering, Management. 1. Aufl.
Heidelberg: dpunkt-Verl., 2005.

[29] Perdita Stevens. “Bidirectional model transformations
in QVT: semantic issues and open questions”. In: Soft-
ware and Systems Modeling 9 (1 2010), pp. 7–20.

[30] Manuel Wimmer et al.“A survey on UML-based aspect-
oriented design modeling”. In: ACM Comput. Surv. 43
(4 Oct. 2011), 28:1–28:33.

http://wiki.eclipse.org/EMF_Compare/FAQ
http://wiki.eclipse.org/EMF_Compare/FAQ

	Introduction
	Foundations
	Model-Driven Development
	Orthographic Software Modeling
	Bidirectional Transformations

	Example
	Flexible Views for View-Based Model-Driven Development
	Related Work
	Aspect-Oriented Software Development
	Distributed Modeling Approaches
	Databases

	Plans for Validation
	Conclusion/Next steps

