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1 Introduction

As is well understood among clinical researchers, medical diagnoses often suf-
fer from substantial measurement error. This is particularly true for mental
health diagnoses.1 Reliance on inaccurate diagnosis indicators can substantially
compromise researchers’ and clinicians’ ability to reliably evaluate treatment
approaches, measure clinical progress, or estimate relationships between patient
attributes and various outcome measures of interest (such as expected treat-
ment costs, hospital and community tenure, or ability to participate in the
labor force). Assessing the generalizability of treatment interventions across
patient types, for example, is problematic given limitations in the accuracy of
diagnosis information.
Although much e¤ort has been put into developing better diagnosis instru-

ments and into encouraging the use of standardized codes, the nature of the
measurement error problem is such that it will always exist as long as researchers
must rely on clinical evaluation or research instruments. While “gold standard”
references in the literature (e.g., Roy, et. al, 1997) provide useful benchmarks
for comparing measures of “reliability” and “validity” across diagnostic instru-
ments, even instruments meeting these gold standards are likely contaminated
with substantial errors. Moreover, even if all diagnosis variables were measured
without error, any measurement error in auxiliary control variables correlated
with the diagnosis indicators (such as comorbidity or severity) would spill over
into inferences about the health e¤ects.
The standard approach for handling measurement error in statistical models

involves instrumental variables (IV) estimation.2 Suppose we wish to estimate

1For the case of research instruments, there are a number of sources of measurement error
including incorrectly answered questions, subjective decision-making or interpretation on the
part of the professional administering the instrument, incomplete surveys, and suboptimal
weighting of answers to construct diagnosis measures.

2 IV estimation has recently been used in health research to control for endogenous re-
gressors (see, for example, Newhouse and McClellan, 1998). While there are mathematical
similarities between the endogenous regressors problem and the mismeasured regressors prob-
lem, they have di¤erent causes, di¤erent e¤ects, instrument selection rules di¤er.
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the e¤ects of health conditions on medical expenditures. In this context, a re-
searcher might instrument one badly measured diagnosis indicator (a vector of
possible diagnoses) with another in attempts to obtain consistent estimates of
these health e¤ects. In most widely used secondary data sets, however, multiple
indicators of a patient’s diagnosis are unlikely to be independent of each other as
required for the classical IV method to work. For example, two diagnosers may
partially rely on the same written medical history when forming their conclu-
sions. A primary contribution of our research involves a proposed generalized IV
approach that …rst identi…es and measures the biases resulting from dependent
diagnoses indicators, then o¤ers a method for constructing estimators purged
of these biases.
Constructing such an estimator requires construction of the “covariance ma-

trix” of the measurement errors, a rich measure of the magnitudes and directions
of measurement errors in the diagnosis data. Our approach allows for very gen-
eral error structures. Implicit in the construction of such a matrix for clinical
evaluation is a model of how physicians and other health professionals make
diagnoses. We present a series of such models and discuss their implications for
the structure of measurement error. While this proposal focuses on the simplest
case of a single primary diagnosis, our approach extends in a straightforward
manner to allow for comorbidity.

2 Methodology

2.1 Intuition

We start o¤ with an overly simpli…ed example to provide the reader with some
basic intuition. Once the basic intuition is developed, we discuss more inter-
esting and realistic cases.
Consider a simple equation where some outcome variable for person i, yi,

is a¤ected by whether person i has a psychiatric illness. Such an outcome
variable could be medical expenses in a given year. We assume, for now, that
the outcome variable is a¤ected only by psychiatric illness according to the linear
equation,

yi = ¯qi + ´i; i = 1; 2; ::; N (1)

where qi is a continuous measure of person i’s illness, 0 · qi · 1, ¯ is the
e¤ect of psychiatric illness on yi, and ´i is a random error term with zero mean,
uncorrelated with qi. Assume that, instead of being able to observe qi in the
data, the investigator observes only an imperfect measure of qi, x1i, with

Pr [x1i = 1 j qi] = qi; (2)

Pr [x1i = 0 j qi] = 1¡ qi:
Then, we can write

x1i = qi + À1i (3)
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with

Pr [À1i = 1¡ qi j qi] = qi;

Pr [À1i = ¡qi j qi] = 1¡ qi;

E [À1i j qi] = qi (1¡ qi)¡ (1¡ qi) qi = 0;
V ar [À1i j qi] = qi (1¡ qi)2 + (1¡ qi) q2i

= qi (1¡ qi) :
Then, if the investigator estimates the equation

yi = bx1i + ei

using ordinary least squares (OLS),

bbOLS = N¡1PN
i=1 x1iyi

N¡1PN
i=1 x

2
1i

;

the estimator bbOLS converges (as N !1) to

plimb̄OLS =
plim 1

n

P
i xjiyi

plim 1
n

P
i x

2
ji

=
plim 1

n

P
i (qi + eji) (¯qi + ui)

plim 1
n

P
i (qi + eji)

2

=
¯¾2q

¾2q +
R
q (1¡ q) f (q) dq

where ¾2q =plim N¡1PN
i=1 q

2
i . Since EqiÀ1i = Eqi´i = EÀ1i´i = 0; i.e., errors

are uncorrelated with true diagnosis and with each other,

plim bbOLS = ¯ ¾2q
¾2q +

R
q (1¡ q) f (q) dq :

Since

0 <
¾2q

¾2q +
R
q (1¡ q) f (q) dq < 1;

the OLS estimator converges to a number biased towards zero;
¯̄̄
plim bbOLS ¯̄̄ <

j¯j. Thus, the investigator will tend to underestimate the e¤ect of the health
condition on the outcome of interest when relying on OLS. This is the standard
problem when explanatory variables are measured with error. The directions
of bias cannot easily be determined a priori when equation (1) is generalized to
allow for more than one poorly measured explanatory variable. Nevertheless,
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in general, OLS estimates will be biased in the presence of measurement error
in explanatory variables.
Now, assume that there is another imperfect measure of qi, x2i, with same

properties as x1i described in equation (2) but independent of x1i; i.e., À2i and
À1i are independent. Then, the investigator can use x2i as an instrument for
x1i in an instrumental variables (IV) estimator of ¯:

bbIV = N¡1PN
i=1 x2iyi

N¡1PN
i=1 x2ix1i

:

Note that bbIV converges to
plim bbIV =

plim N¡1PN
i=1 x2iyi

plim N¡1PN
i=1 x2ix1i

(4)

=
plim N¡1PN

i=1 (qi + À2i) (¯qi + ´i)

plim N¡1PN
i=1 (qi + À2i) (qi + À1i)

=
plim N¡1PN

i=1

£
¯q2i + qi (¯À2i + ´i) + À2i´i

¤
plim N¡1PN

i=1 [q
2
i + qi (À2i + À1i) + À2iÀ1i]

:

As long as EqiÀ1i = EqiÀ2i = EÀ2i´i = EÀ2iÀ1i = 0; i.e., errors are uncorre-
lated with true diagnosis and with each other, equation (4) simpli…es to

plim bbIV = plim N¡1PN
i=1 ¯q

2
i

plim N¡1PN
i=1 q

2
i

= ¯:

Thus, the IV estimator converges to the true e¤ect. This method of dealing
with measurement error in explanatory variables is well known in econometrics
(e.g., Greene, 1997, p. 440).

2.2 The Basic Problem with Independent Measurement
Errors

It is now appropriate to add important characteristics of the problem speci…c
to the application at hand. First of all, it may be the case that, instead of the
existence of a psychiatric illness being the explanatory variable of interest, it is
the type of psychiatric illness that is of interest. We generalize equation (1) to

yi =
KX
k=1

¯kg (qik) +
MX
k=1

zik°k + ´i (5)

where qi = (qi1; qi2; ::; qiK)
0 is a vector of sizeK measuring the severity/existence

of di¤erent psychiatric conditions, g (²) is some speci…ed function translating
diagnoses into outcomes, and zi = (zi1; zi2; ::; ziM)

0 is a vector of other exogenous
covariates such as race, sex, and age to control for. We assume throughout that
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zi is measured without error. Assume that xijk, j = 1; 2, is an independent
discrete indicator of qik measured with error such that

P
k xijk = 1 and

pik = Pr [xijk = 1 j qi] = exp fqikgP
l exp fqilg

: (6)

Constructing such a vector requires the investigator to commit to a method of
aggregating psychiatric diagnoses into a relatively small class of K diagnoses.
Though there are important issues to address associated with optimal aggrega-
tion, we assume them away and condition on a chosen aggregation method. We
can generalize the speci…cation of xijk easily to allow for multiple (comorbid)
diagnoses. Then, as before, we can write

xijk = pik + Àijk

with

Pr [Àijk = 1¡ pik j pik] = pik;

Pr [Àijk = ¡pik j pik] = 1¡ pik;

E [Àijk j pik] = 0; (7)

Cov [Àijk; Àijl j pi] =

½
pik (1¡ pik) for k = l
¡pikpil for k 6= l ;

Cov [Àijk; Àij0k0 j pi] = 0 for all j 6= j0:

De…ning xij = (xij1; xij2; :::; xijK)
0, X

0
ij =

¡
x0ij ; z0i

¢
, ¯ = (¯1; ¯2; ::; ¯K)

0,
° = (°1; °2::; °M), and µ =

¡
¯0; °0

¢0
,

bµIV = " 1
n

X
i

Xi2X
0
i1

#¡1 "
1

n

X
i

Xi2yi

#
(8)

with

plimbµIV =

"
plim

1

n

X
i

Xi2X
0
i1

#¡1 "
plim

1

n

X
i

Xi2yi

#

=

"
plim

1

n

X
i

Ã
(pi + Ài2) (pi + Ài1)

0
(pi + Ài2) z

0
i

zi (pi + Ài1)
0

ziz
0
i

!#¡1
²"

plim
1

n

X
i

µ
(pi + Ài2) [g (qi)¯ + zi° + ´i]
zi [g (qi)¯ + zi° + ´i]

¶#

=

·ZZ µ
p (q) p

0
(q) p (q) z

0

zp
0
(q) zz

0

¶
f (q; z) dqdz

¸¡1
²·ZZ µ

p (q) g0 (q) p (q) z0

zg0 (q) zz0

¶
f (q; z) dqdz

¸µ
¯
°

¶
:
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If p (q) = g (q), then plimbµIV = µ. Otherwise, in general, there is a proportional
bias equal to·ZZ µ

p (q) p
0
(q) p (q) z

0

zp
0
(q) zz

0

¶
f (q; z) dqdz

¸¡1 ·ZZ µ
p (q) g0 (q) p (q) z0

zg0 (q) zz0

¶
f (q; z) dqdz

¸

which is the plim of a regression of g (q) on p (q) and z. In general, since g (²)
can not be identi…ed without observing q, we assume that p (q) = g (q) and
recognize that results should be interpreted in light of the possibility that it is
probably not so.

2.3 The Basic Problem with Correlated Measurement Er-
rors

Now, consider the case where Cov [Àijk; Àij0k0 j pi] 6= 0 for all j 6= j0. Mechani-
cally, we could cause correlation by adjusting equation (6) to

pik = Pr [xijk = 1 j qi] = exp fqik + uikgP
l exp fqil + uilg

(9)

where ui = (ui1; ui2; ::; uiK)
0 is a vector of errors constant across j. Let

m (µ) =
1

n

X
i

Xi2 (yi ¡X 0
i1µ)

be the set of moment conditions for instrumental variables estimation. Then

plim m (µ) = plim
1

n

X
i

·
p (qi) + Ài2
zi

¸
[p0 (qi)¯ + z0i° + ´i ¡ p0 (qi)¯ ¡ À0i1¯ ¡ z0i°]0

= plim
1

n

X
i

·
p (qi) + Ài2
zi

¸
[¡À0i1¯ + ´i]0

=

µ ¡plim 1
n

P
i Ài2À

0
i1¯

0

¶
=

µ ¡­¯
0

¶
where

­ =

Z
E [Ài2À

0
i1 j q] f (q) dq:

If we could estimate ­ consistently, then we could rede…ne our moment condi-
tions as

em (µ) = 1

n

X
i

Xi2 (yi ¡X0
i1µ) +

µ
­¯
0

¶
; (10)
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and the value of µ that set em (µ) = 0 would be a consistent estimate of µ. In
particular,

bµIV = " 1
n

X
i

µ
xi2x

0
i1 xi2z

0
i

zix
0
i1 ziz

0
i

¶
¡
µ b­ 0
0 0

¶#¡1 "
1

n

X
i

µ
xi2
zi

¶
yi

#
:

(11)

Note that, in general, the adjustment term in the inverse,
µ b­ 0
0 0

¶
, decreases

the inverse and therefore increases the magnitude of the IV estimator (counter-
acting the e¤ect of correlated measurement error). Also note that, if b­ = 0, thebµIV is equivalent to the IV estimator in equation (8) which is consistent when
measurement errors are uncorrelated.

2.4 Estimating the Measurement Error Covariance Ma-
trix

The method discussed above requires having a consistent estimate of the covari-
ance matrix of the diagnosis measurement errors, ­. In this section, …rst we
discuss what is meant by this covariance matrix, and then we discuss various
ways that one might estimate it. One way to obtain an estimate of ­ is to
estimate the covariance matrix of the elements of xij :

V =

0BBB@
V ar (xij1) Cov (xij1;xij2) ¢ ¢ ¢ Cov (xij1;xijK)
Cov (xij1; xij2) V ar (xij2) ¢ ¢ ¢ Cov (xij2; xijK)
...

...
. . .

...
Cov (xij1; xijK) Cov (xij2; xijK) ¢ ¢ ¢ V ar (xijK)

1CCCA (12)

with a separate source of data. We distinguish between this special data source
(“special data source”) and the data used to estimate µ (“estimation data”).
The ideal special data source would be one where we have N individuals each
of whom is independently diagnosed by H “diagnosers.” A diagnoser is a
mental health professional (e.g., psychiatrist, psychologist, or social worker)
who diagnoses individuals similar in characteristics to the diagnosers in the
data used to estimate equation (5).3 A consistent estimate of V when H = 2 is

bV = 1

N

X
i;h

!i (xi2 ¡ x²2) (xi1 ¡ x²1)0

where !i is a weight given to observation i so that the weighted special data
has the same distribution of observed explanatory variables as the estimation

3 It is important to use the same kind of diagnosers in the special data source as those used
in the estimation data. Characteristics of measurement probably vary signi…cantly across
di¤erent types of diagnosers.
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data and

x²h =
1

N

X
i

!ixih

is the average diagnosis in the special sample for diagnoser h.4 With a consistent
estimate of V , we can compute the covariance matrix for equation (11) by

b­ = 1

n

X
i

!i (xi2 ¡ x²2) (xi1 ¡ x²1)0 ¡ bV: (13)

Intuitively, there are three sources of variation in xij : a) variation due to vari-
ation in true condition qi; b) variation due to measurement error independent
across diagnosers, and c) measurement error common across diagnosers. The
…rst term in equation (13) includes variation due to variation of types (a) and
(c), and the second term includes variation of type (a). Subtraction leaves only
randomness due to variation of type (c).

[Discussion of how to collect special sample: do
such data sets already exist; problem of indepen-
dence; cost of collecting data; data speci…c to di-
agnoser type]
Alternatively, one could possibly estimate ­ by using a panel of “experts”

to construct ­ using the “Delphi method” (e.g., Kahan, et. al 1994). One
could measure how much con…dence to put in the “Delphi estimate” of ­ by
measuring the variance of the estimate across the experts in early rounds of the
process.
In general, to the degree on replaces ­ in equation (10) with a consistent

estimate of ­, one adds randomness to the estimator of µ in equation (11). In
fact, with an imprecise estimate of ­, it is easy for the con…dence region of bµIV
to explode. The Monte Carlo experiments reported below are suggestive on this
point.

3 Models of Diagnosis

The structure of the covariance matrix of diagnosis error may depend upon our
model of how diagnosers make diagnoses. Basically, our model may impose
some structure on the covariance matrix and help us get more precise estimates
of its elements. Below we consider two such models and describe how they
a¤ect our estimates.

4When H > 2, one has to decide how to use the extra diagnosers to increase precision of
the estimator of V .
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3.1 A Simple Model of Diagnosis

Let xi1 = 1 if and only if doctor 1 diagnoses a health condition for person i.
Assume x¤i1 is a latent random variable such that

xi1 = 1 i¤ x¤i1 > 0: (14)

Let

x¤i1 = qi + »i1 (15)

where qi is the “truth” and x¤i1 is doctor 1’s diagnosis. Assume

»i1 = ³i + "i1

where

³i » iid N
¡
0; ¾2³

¢
;

"i1 » iid Extreme Value.

Consider the properties of xi1. First,

pi1 = E (xi1 j qi) =
ZZ

1 (x¤i1 > 0) dF"("i1)dF³ (³i) (16)

=

ZZ
1 (qi + ³i + "i1 > 0) dF"("i1)dF³ (³i)

=

Z
exp (qi + ³i)

1 + exp (qi + ³i)
dF³ (³i) :

We have to make an assumption about the distribution of qi: qi » iid N(¹;§).
We can also easily simulate

E (xi1 ¡ pi1) (xi2 ¡ pi2) :
Consider a representative element,

E (xi1 ¡ pi1) (xi2 ¡ pi2) (17)

=

ZZZ
[1 (x¤i1 > 0)¡ pi1] [1 (x¤i2 > 0)¡ pi2] dF"("i1)dF" ("i2) dF³ (³i)

=

Z ·
exp (qi + ³i)

1 + exp (qi + ³i)
¡ pi1

¸·
exp (qi + ³i)

1 + exp (qi + ³i)
¡ pi2

¸
dF³ (³i)

¡
Z

[exp (qi + ³i)]
2

[1 + exp (qi + ³i)]
2 dF³ (³i) :

In our instrumental variables estimation method, we need to know

E (xi1 ¡ qi) (xi2 ¡ qi) (18)

= E (xi1 ¡ pi1 + pi1 ¡ qi) (xi2 ¡ pi2 + pi2 ¡ qi)
= E (xi1 ¡ pi1) (xi2 ¡ pi2) + 2E (xi1 ¡ pi1) (pi2 ¡ qi) +E (pi1 ¡ qi) (pi2 ¡ qi) :
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Each of these terms is easy to simulate. But we cannot identify ¾2³ because we
never see the true diagnosis. However, if we also observe a set of data where
the random component ³ is independent over doctors, i.e.,

»ij = ³ij + "ij ;

then equation (16) does not change, but equation (17) becomes

E (xi1 ¡ pi1) (xi2 ¡ pi2)
=

ZZZ
[1 (x¤i1 > 0)¡ pi1] [1 (x¤i2 > 0)¡ pi2]dF"("i1)dF³(³i1)dF" ("i2) dF³ (³i2)

which is equal to zero if j 6= k and is equal to equation (17) if j = k. The
di¤erences in covariance matrices between the two samples, one with correlated
errors and one without allows us to identify ¾2³ and, therefore, all other terms
given the usual quali…cations.

3.2 A Better Model of Diagnosis

We can generalize the model to allow for multiple potential diagnoses and co-
morbidity. But missing from this structure is any notion of how diagnosers
actually use prior information to make new diagnoses. Let x¤¤ij be a latent
measure of the information that diagnoser j directly observes about patient i
where x¤¤ij is conditionally distributed iidFx (² j qi) with E

£
x¤¤ij j qi

¤
= qi. Di-

agnoser j also observes information collected by previous diagnosers fx¤¤ik gj¡1k=1.
Given the information available to him, he constructs a continuous measure of
his beliefs about patient i captured in x¤ij . We assume that his updating rule
can be represented as

x¤ij = ®jx
¤¤
ij + (1¡ ®j)x¤i;j¡1 (19)

with ®1 = 1. Special cases of the updating rule in equation (19) include ignoring
previous information (®j = 1) and equal weighting of previous information
(®j = 1=j).5 Some updating rules such as ®j = 1=j imply that

lim
j!1

x¤ij = qi;

others with limj!1 ®j > 0 do not converge as j ! 1. Given x¤ij , diagnoser
reports a binary diagnosis according to equation (14).
Now consider the properties of xij . First,

pij = E (xij j qi) =
ZZZ

1
¡
x¤ij > 0

¢ jY
k=1

dFx (x
¤
ik j qi) : (20)

5 Implicit in the structure of equation (19) is a strong symetry restriction; i.e. every diag-
noser has to value all other diagnosers similarly. However, we can generalize at the cost of
more cumbersome notation.
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While equation (20) is very di¢cult to evaluate analytically, it is straightforward
to simulate as soon as we make an assumption about Fx (² j qi).
Neither of the diagnosis models speci…ed in this section led to simple (e.g.,

factor analytic) structures for ­. To the degree that one wants to impose re-
strictions on the structure of ­, they should be grounded in a theoretically
consistent model of diagnosis. Otherwise, there is no reason to believe the re-
strictions imposed on ­. Thus, it worth developing better models of diagnosis.

4 Empirical Examples

4.1 First Example

Our …rst example uses simulated data from a contrived example that is easy to
manipulate and examine. We consider a model of the form in equation (5) In
particular, g (qik) = pk (qi) and is de…ned as

pk (qi) =
exp fqikgP
l exp fqilg

with

qik = uik + 3¶ik;

uik » U (0; 1) ;

¶ik =

½
1 with probability 1=13
0 with probability 12=13

:

The speci…cation for qik ensures that qik is continuous and yet that one diagnosis
dominates the others. The other explanatory variables

zik » U (0; 1) :
Measurement error occurs according to

Pr [xijk = 1 j qi] = pk (qi) + ¾m#ik
¾m +

P
l pl (qi)

:

Note that #ik does not vary with diagnosers j, and therefore, as long as ¾m >
0, there is positive correlation in diagnosers’ diagnoses. We set ¾m =0:8.
When pk (qi) is directly observed, there is no measurement error, OLS and IV
should both produce consistent estimates of µ, and OLS should be e¢cient.
When only xijk is observed but ¾m = 0, there is uncorrelated measurement
error, OLS should provide inconsistent estimates, and IV should provide con-
sistent estimates. When only xijk is observed amd ¾m > 0, there is correlated
measurement error, both OLS and IV should provide inconsistent estimates.
But the asymptotic bias for IV should be smaller than for OLS, and the cor-
rected IV estimates should be consistent. Table 1 provides results for a Monte
Carlo experiment with 4 z-variables, 13 x-variables, an error with a standard
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deviation of 0:05, and a sample size of 10; 000. There are 100 independent
draws of the data for each Monte Carlo experiment.
In the Panel A of Table 1, we see that, for this example, OLS provides

unbiased and very precise estimates of the parameters when there is no mea-
surement error. However, once we add measurement error, OLS estimates of
the x variable coe¢cients become signi…cantly biased towards zero as seen in
Panel B. The estimates of the z variable coe¢cients are not biased because the
z-variables are uncorrelated with the x-variables. Panel C shows that classical
IV estimates (without correction for correlation) are also signi…cantly biased
towards zero, but that the bias is much smaller than in the OLS estimates.
Panels D, E, and F report results for IV corrected for correlation. In all

three, asymptotic biases are very small and statistically insigni…cant. The three
panels vary, however, with respect to characteristics of the special sample used
to estimate ­. In Panel D, N = 1000 and H = 3;6 i.e., the sample is of
1000 patients each independently diagnosed by 3 diagnosers. Even though the
estimates in Panel D exhibit no bias, 80% con…dence intervals are much larger
than they were in previous panels. In Panels E and F, we try di¤erent methods
to increase the accuracy of b­ and therefore our IV estimators. In Panel E, we
increase H from 3 to 5, while, in Panel F, we increase N from 1000 to 5000.
Increasing H has no appreciable e¤ect, while increasing N does. This suggests
that an optimal design for a special sample used to estimate V in equation (12)
should have a large N but does not require a large H.

4.2 Second Example

Our second example uses simulated data to examine how inferences about the
e¤ects of mismeasured mental health conditions depend on the estimation ap-
proach. Our outcome measure of interest is hospital length of stay. We simulated
a large sample (N = 10; 000) of patients such that their characteristics match
well with the set of 6498 patients actually admitted to a Virginia state psychi-
atric hospital in 1980. Characteristics of the data are reported in Table 2.7 In
particular, our simulated sample matches the characteristics of a subset of 4893
patients for whom information was available on length of stay, initial and …nal
diagnosis, race, gender, age, and health care facility.
A simulated patient is assumed to be diagnosed with one of 13 primary

mental health conditions8 according to equation (9). We constructed a model

6The three diagnosers are used so that the …rst one is a realization of xi1 and the next
two are averaged for a realization of xi2. The appropriate adjustment is made due to the fact
that xi2 is an average. No weighting is necessary because the two data sets have the same
distribution.

7 See Holt, Merwin and Stern (1999) for a full description of the Virginia data.
8The possible conditions include substance abuse, alcoholism, organic, schizophrenia,

schizo-a¤ective, paranoia, other psychological disorders, bipolar, depression, personality, ad-
justment, dementia, and other.
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of true diagnosis where qik in equation (5) is modeled as

qik =
exp fzi®k + eikgP
l exp fzi®l + eilg

(21)

with eik: » iidN
¡
0; ¾2e

¢
: The existence of the eik: in equation (21) allows for

variation in true medical conditions even after conditioning on observed covari-
ates zi. Equations (9) and (21) are used to simulate xij ; j = 1; 2, where it is
assumed that uik » iidN

¡
0; ¾2u

¢
. If uik varied independently over diagnosers j,

then OLS estimates would still be inconsistent (because there is measurement
error), but classical IV estimators would be consistent (because the measure-
ment error in xi1k would be independent of the measurement error in xi2k).
“True” values of (®; ¯; °; ¾u; ¾e) are estimated by matching moments of the

simulated data to moments in the Virginia state psychiatric hospital data and
matching simulated { (kappa) statistics9 to { statistics found in the literature
(e.g., Stravynski, Lamontagne, and Lavallee 1986; Riskind et. al 1987; Clark,
et. al 1993; Fennig, et. al 1994; Hiller et. al 1994; McGorry et. al 1995; Kelly
and Mann 1996; Parker et. al 1997; Rosenman, Korten, and Levings 1997; Roy
et. al 1997; Usten et. al 1997; Clarke, Smith, and Hermann 1998).10 Estimates
of the “true” parameters are reported in Table 3. Once we have “true values”
of (®; ¯; °; ¾u; ¾e), we can simulate data samples from the “true distribution”
of observations, estimate the model parameters for each draw of the data, and
compute the distribution of our estimators.
The results of this Monte Carlo experiment are recorded in Table 4. OLS

produces biased estimates when we introduce measurement error into the ex-
planatory variables. Table 4 shows that all of the OLS estimates are severely
biased in that the magnitude of the median bias is typically the same size as the
“true value” of the parameter and the 80% con…dence interval typically does not
include the “truth.” Classical IV estimates will also produce biased estimates
if diagnosis errors for a patient are correlated across physicians, which, we have
argued, will be the case in most administrative data sets. As discussed earlier,
however, classic IV will still generally lead to better estimates than OLS. This
is seen very clearly in Table 4 in that median biases are uniformly the same sign
as the OLS median biases, but they are uniformly a fraction of the size of the
OLS median biases. Also, frequently the 80% con…dence interval includes the
“truth.”
The corrected IV estimates should be consistent, but they can have reduced

precision because ­ must be estimated. It can be estimated under various

9The { statistic is a measure of agreement and is equal to
po ¡ pc
1¡ pc

where .po is the proportion of observations where there is agreement and pc is the proportion
of observations where there would have been agreement by chance. See Cohen (1960).
10¾u and ¾e are identi…ed by deviations between correlations across diagnoses in the Virginia

data and what they would be if ¾u = 0 and matching { statistics. We assume { = 0:7 for all
conditions.
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assumptions about the structure of the errors. For this particular application,
the corrected IV approach did not produce worthwhile results when we allowed
all the elements of ­ to be unrestricted. In particular, the biases were not much
di¤erent from the OLS case and the con…dence intervals became very large.
However, we can improve on these estimates by imposing some structure on ­:
In many cases, it is feasible to specify ­ as a function of a small number of

parameters. In our application, for example, we can write ­ as a function of
only two parameters, ¾e and ¾u. Our correction method in this case involves
estimating ¾e and ¾u along with the other parameters in µ. To the extent
that this structure is correct (which it is by construction in this simulation), we
obtain a more e¢cient estimate of ­ and improve the coe¢cient estimates.The
last column of Table 4 shows that, even in this case, the correction tends to
overcorrect so that the median biases are away from zero. Also, 80% con…dence
intervals are quite large. This suggests that further analysis of small sample
properties of the IV correction could lead to a rule of thumb for adjusting b­ by
multiplying by a constant, 0 < ½ < 1, to both reduce the size of the correction
and its a¤ect on the width of the con…dence interval. We have not yet performed
such an analysis.

5 Conclusions

The analytical results in this paper suggest a feasible approach to correct the bias
caused by measurement error in explanatory variables. The results suggest that
classical instrumental variables will almost always reduce the bias. However, in
the typical case where the instrument is correlated with the explanatory variable
measured with error, it will not completely delete the bias. We suggest a feasible
correction that deletes the bias asymptotically.
Our empirical results con…rm our analytical results with respect to the rela-

tionship between OLS and classical IV. They also suggest that estimation error
associated with b­ can have serious e¤ects on small sample bias and con…dence
interval sizes. They suggest that one might reduce these unfortunate e¤ects by
adjusting the correction by a proportionality factor. It is left to future research
to determine how to choose a proportionality factor optimally (if at all).
Our empirical results are quite di¤erent across examples We do not yet un-

derstand what characteristics of the examples caused the corrected IV estimates
in Example 1 to perform so much better than those in Example 2. It is also
left to further analytical and empirical research to understand better in what
circumstances corrected IV will perform well.
Finally, in these arti…cial examples, we assumed away all real-world prob-

lems associated with estimating V in equation (12). In reality, it is impossible
for two or more diagnosers to independently diagnose a patient if, for no other
reason, they rely on (possibly inaccurate) information provided by the patient.
Important topics for future research include the best ways to minimize correla-
tion in diagnoses and to measure the sensitivity of the corrected IV estimates’
properties to small, contaminating amounts of correlation in estimates of V .
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6 Tables

Table 1
Monte Carlo Results for the First Experiment
Panel A: OLS Estimates When There is no

Measurement Error

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

z1 0.050
0.000

(-0.003,0.002)
z2 0.030

0.000
(-0.002,0.002)

z3 0.120
0.000

(-0.003,0.002)
z4 0.090

0.000
(-0.002,0.002)

x1 0.110
0.000

(-0.005,0.005)
x2 0.120

0.000
(-0.005,0.004)

x3 0.130
-0.001

(-0.005,0.005)
x4 0.140

0.000
(-0.005,0.005)

x5 0.050
0.000

(-0.004,0.005)
x6 0.060

0.001
(-0.003,0.004)

x7 0.070
0.000

(-0.005,0.005)
x8 0.080

-0.001
(-0.005,0.004)

x9 -0.090
0.000

(-0.005,0.005)
x10 -0.100

0.000
(-0.005,0.004)

x11 -0.110
0.000

(-0.005,0.004)
x12 -0.120

0.000
(-0.005,0.004)

x13 -0.130
0.000

(-0.004,0.004)
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Panel B: OLS Estimates When There is Measurement Error

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

z1 0.050
0.000

(-0.003,0.002)
z2 0.030

0.000
(-0.004,0.003)

z3 0.120
-0.001

(-0.003,0.003)
z4 0.090

0.000
(-0.003,0.003)

x1 0.110
-0.064

(-0.068,-0.061)
x2 0.120

-0.071
(-0.076,-0.066)

x3 0.130
-0.076

(-0.080,-0.071)
x4 0.140

-0.084
(-0.089,-0.080)

x5 0.050
-0.025

(-0.029,-0.021)
x6 0.060

-0.030
(-0.034,-0.025)

x7 0.070
-0.037

(-0.042,-0.033)
x8 0.080

-0.045
(-0.050,-0.041)

x9 -0.090
0.066

(0.062,0.070)
x10 -0.100

0.075
(0.070,0.080)

x11 -0.110
0.082

(0.077,0.086)
x12 -0.120

0.086
(0.081,0.090)

x13 -0.130
0.085

(0.082,0.089)
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Panel C: IV Estimates When There is Measurement
Error Without Correction

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

z1 0.050
0.000

(-0.003,0.004)
z2 0.030

0.000
(-0.004,0.004)

z3 0.120
-0.001

(-0.003,0.003)
z4 0.090

0.001
(-0.003,0.004)

x1 0.110
-0.027

(-0.035,-0.021)
x2 0.120

-0.029
(-0.039,-0.021)

x3 0.130
-0.031

(-0.038,-0.023)
x4 0.140

-0.036
(-0.044,-0.030)

x5 0.050
-0.012

(-0.018,-0.005)
x6 0.060

-0.011
(-0.018,-0.005)

x7 0.070
-0.015

(-0.023,-0.008)
x8 0.080

-0.019
(-0.028,-0.012)

x9 -0.090
0.028

(0.021,0.033)
x10 -0.100

0.033
(0.024,0.041)

x11 -0.110
0.035

(0.027,0.042)
x12 -0.120

0.035
(0.027,0.044)

x13 -0.130
0.033

(0.027,0.040)
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Panel D: IV Estimates When There is Measurement
Error With Correction
with N = 1000 and H = 3

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

z1 0.050
0.000

(-0.004,0.005)
z2 0.030

0.000
(-0.004,0.004)

z3 0.120
0.000

(-0.004,0.004)
z4 0.090

0.001
(-0.004,0.005)

x1 0.110
-0.004

(-0.025,0.032)
x2 0.120

0.001
(-0.031,0.040)

x3 0.130
0.002

(-0.033,0.035)
x4 0.140

-0.004
(-0.033,0.036)

x5 0.050
0.001

(-0.024,0.026)
x6 0.060

0.002
(-0.025,0.027)

x7 0.070
0.002

(-0.026,0.029)
x8 0.080

0.006
(-0.024,0.043)

x9 -0.090
0.002

(-0.030,0.025)
x10 -0.100

0.001
(-0.041,0.030)

x11 -0.110
-0.006

(-0.034,0.033)
x12 -0.120

-0.006
(-0.037,0.023)

x13 -0.130
-0.002

(-0.034,0.019)
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Panel E: IV Estimates When There is Measurement
Error With Correction
with N = 1000 and H = 5

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

z1 0.050
-0.001

(-0.005,0.005)
z2 0.030

0.001
(-0.005,0.004)

z3 0.120
0.000

(-0.005,0.004)
z4 0.090

0.000
(-0.005,0.004)

x1 0.110
0.006

(-0.023,0.048)
x2 0.120

0.000
(-0.034,0.033)

x3 0.130
0.004

(-0.022,0.035)
x4 0.140

0.001
(-0.032,0.035)

x5 0.050
0.001

(-0.017,0.022)
x6 0.060

-0.002
(-0.025,0.023)

x7 0.070
0.001

(-0.028,0.027)
x8 0.080

-0.001
(-0.029,0.025)

x9 -0.090
-0.001

(-0.027,0.025)
x10 -0.100

-0.002
(-0.035,0.027)

x11 -0.110
0.003

(-0.054,0.029)
x12 -0.120

-0.002
(-0.041,0.032)

x13 -0.130
-0.005

(-0.038,0.023)
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Panel F: IV Estimates When There is Measurement
Error With Correction
with N = 5000 and H = 3

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

Variable
True
Value

Median Bias
and 80%
Con…dence Interval

z1 0.050
0.000

(-0.005,0.004)
z2 0.030

0.0000
(-0.005,0.004)

z3 0.120
0.000

(-0.005,0.004)
z4 0.090

0.000
(-0.003,0.005)

x1 0.110
0.000

(-0.015,0.016)
x2 0.120

0.002
(-0.015,0.020)

x3 0.130
-0.002

(-0.015,0.017)
x4 0.140

0.000
(-0.019,0.019)

x5 0.050
0.000

(-0.013,0.013)
x6 0.060

0.000
(-0.013,0.013)

x7 0.070
0.001

(-0.011,0.016)
x8 0.080

-0.001
(-0.016,0.017)

x9 -0.090
-0.001

(-0.018,0.013)
x10 -0.100

0.000
(-0.016,0.015)

x11 -0.110
0.000

(-0.022,0.015)
x12 -0.120

0.001
(-0.018,0.016)

x13 -0.130
-0.002

(-0.017,0.011)
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Table 2
Characteristics of 1980 Virginia Data

Variable Mean St. Dev. De…nition
LNSPELL 3.27 1.56 Ln Spell Length
BLACK 0.31 0.46 Dummy for Black Race
FEMALE 0.40 0.49 Dummy for Female
FACID1 0.16 0.37 Dummy for Facility 1
FACID2 0.10 0.30 Dummy for Facility 2
FACID3 0.12 0.32 Dummy for Facility 3
FACID4 0.24 0.43 Dummy for Facility 4
FACID5 0.21 0.41 Dummy for Facility 5
FACID6 0.10 0.30 Dummy for Facility 6
FACID7 0.05 0.23 Dummy for Facility 7
FACID8 0.02 0.13 Dummy for Facility 8
MARRY 0.15 0.36 Dummy for married
AGE 39.11 15.19 Age
DEMENT 0.03 0.17 Dummy for diagnosis = Dementia
SUBABU 0.05 0.21 Dummy for diagnosis = Substance Abuse
ALCOHOL 0.15 0.36 Dummy for diagnosis = Alcohol Abuse
ORGANIC 0.06 0.25 Dummy for diagnosis = Organic
SCHIZO 0.22 0.42 Dummy for diagnosis = Schizophrenia
SCHIZAFF 0.08 0.27 Dummy for diagnosis = Schizoa¤ective
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Table 2 (continued)
Variable Mean St. Dev. De…nition
PARAN 0.01 0.10 Dummy for diagnosis = Paranoid
OTHPSY 0.06 0.23 Dummy for diagnosis = Other Psychotic
BIPOLAR 0.11 0.31 Dummy for diagnosis = Bipolar
DEPRESS 0.11 0.31 Dummy for diagnosis = Depression
PERSON 0.02 0.14 Dummy for diagnosis = Personality problem
ADJUST 0.07 0.25 Dummy for diagnosis = Adjustment problem
OTHERD 0.04 0.19 Dummy for diagnosis = Other
NPRHST 2.91 3.43 Number of Previous Hospital Stays since 1978
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Table 3
IV Estimates of Model Parameters from 1980 Virginia

Data
Variable Estimate Variable Estimate

BLACK
-0.057
(0.050)

FEMALE
0.021
(0.047)

FACID1
4.215*
(0.274)

FACID2
4.069*
(0.279)

FACID3
4.161*
(0.279)

FACID4
4.397*
(0.271)

FACID5
4.292*
(0.278)

FACID6
4.846*
(0.280)

FACID7
4.683*
(0.270)

FACID8
5.052*
(0.302)

MARRY
-0.279*
(0.059)

AGE
0.0078*
(0.0020)

DEMENT 0.000 SUBABU
-2.538*
(0.285)

ALCOHOL
-3.361*
(0.234)

ORGANIC
-0.057
(0.341)

SCHIZO
-0.659*
(0.238)

SCHIZAFF
-0.656*
(0.271)

PARAN
-1.384*
(0.633)

OTHPSY
-0.855*
(0.351)

BIPOLAR
-1.135*
(0.242)

DEPRESS
-0.957*
(0.249)

PERSON
-1.208*
(0.415)

ADJUST
-2.903*
(0.290)

OTHERD
-1.593*
(0.361)

NPRHST
0.023*
(0.007)

¾u exp f2:239g ¾e exp f1:326g

Notes:

1. Starred items are signi…cant at the 5% level.

2. Numbers in parentheses are standard errors.

3. DEMENT is restricted to be zero.

4. No standard errors have yet been estimated for b¾u and b¾e
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Table 4
Results of Monte Carlo Experiment

Median Bias and 80% Con…dence Interval for Bias
Variable Truth OLS Classical IV Corrected IV

BLACK -0.057
0.197

(0.159,0.234)
0.033

(-0.015,0.079)
-0.017

(-0.068,0.032)

FEMALE 0.021
0.215

(0.173,0.250)
0.031

(-0.020,0.068)
0.000

(-0.060,0.047)

FACID1 4.215
-1.555

(-1.718,-1.412)
-0.398

(-0.775,-0.066)
0.638

(-0.218,1.367)

FACID2 4.069
-1.562

(-1.720,-1.412)
-0.408

(-0.826,-0.056)
0.637

(-0.225,1.439)

MARRY -0.279
-0.005

(-0.058,0.057)
-0.002

(-0.064,0.068)
-0.002

(-0.065,0.065)

AGE 0.008
0.008

(0.007,0.010)
0.002

(-0.001,0.004)
-0.002

(-0.005,0.001)

SUBABU -2.538
1.784

(1.643,1.913)
0.445

(0.063,0.813)
-0.644

(-1.409,0.168)

ALCOHOL -3.361
2.027

(1.917,2.146)
0.401

(0.134,0.738)
-0.605

(-1.302,0.079)

ORGANIC -0.057
0.407

(0.285,0.550)
0.239

(-0.093,0.644)
-0.553

(-1.249,0.189)

SCHIZO -0.659
0.768

(0.657,0.874)
0.299

(-0.001,0.621)
-0.565

(-1.276,0.201)

SCHIZAFF -0.656
0.692

(0.586,0.815)
0.269

(-0.015,0.607)
-0.595

(-1.143,0.186)

PARAN -1.384
1.168

(0.998,1.322)
0.354

(-0.358,1.104)
-0.619

(-1.753,0.428)

BIPOLAR -1.135
0.988

(0.870,1.088)
0.315

(0.014,0.639)
-0.516

(-1.186,0.154)

ADJUST -2.903
1.966

(1.857,2.084)
0.315

(0.014,0.639)
-0.625

(-1.369,0.072)

Notes:

1. Reported statistics are
median bias

(80% con…dence interval)
.

2. Statistics for some variables are not reported to save space.
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