
A HYBRID APPROACH FOR HIGH QUALITY REAL-TIME
TERRAIN RENDERING AND OPTIMIZED A-PRIORI ERROR

ESTIMATION

John Doe
Unknown

{jondoe}@mail.com

Keywords: Terrain rendering, level of detail, longest-edge-bisection, refinement criteria, cached geometry, multi-core
CPU.

Abstract: This paper describes a hybrid approach for high-quality real-time terrain rendering which combines the ad-
vantages of fine-grain triangle-based CPU and GPU-optimized patch-based algorithms with regard to terrain
adaptation and CPU-GPU transfer workload. In more detail, our scheme selectively refines a cluster over a
regular domain at the granularity of individual triangles to generate highly-adaptive view-dependent geome-
try. In contrast to pregenerated patches, a substantial reduction of the number of primitives is achieved. To
reduce the CPU-GPU workload inherent in triangle-based algorithms, we exploit frame-to-frame coherences
by caching refined geometry on local VRAM in combination with an optimized error evaluation. Finally, a
significant increase in the performance is reported.
Additionally, our work proposes a per-vertex preprocessing scheme for necessary error-bounds calculation
that massively exploits current multi-core architectures. This scheme is based on the widely applied longest-
edge-bisection approach. Compared to current computationally expensive, recursive procedures utilizing the
aforementioned subdivision scheme, a performance gain of several orders of magnitude is reported.

1 INTRODUCTION

In the last decade, many terrain rendering algorithms
have been developed. Due to the close interrelation
of rendering quality, rendering time and available re-
sources, a compromise between these aspects has to
be found (Löffler et al., 2009). This, in turn, is a com-
plex and challenging task.

To achieve high-quality images in real-time, a
multi-resolution data structure is required, which
is generated in a pre-process prior to rendering.
Since the generation of triangulated irregular net-
works (TIN) commonly entails an exhaustive pre-
process combined with large storage costs, data struc-
tures on a semi-regular basis are utilized in most
cases. This leads to an improved balance in terms
of preprocessing time and height field approximation.
In that context, longest-edge-bisection(Pajarola and
Gobbetti, 2007) represents a widely applied recursive
subdivision scheme. With the help of this scheme, re-
finement criteria are determined on a per-vertex level,

representing the object-space error bounds. With this
data structure, view-dependent rendering is realized
by selectively refining the terrain mesh. This is ac-
complished at the granularity of either triangles on
CPU side or GPU-optimized triangle clusters, called
patches(see(Pajarola and Gobbetti, 2007) for a recent
survey). Given a particular error threshold, triangle-
based CPU algorithms highly adapt the terrain, but
this leads to the well-known CPU-GPU transfer bot-
tleneck. To minimize computational overhead, such
algorithms can benefit from frame-to-frame coher-
ences. In contrast, patch-based methods reduce the
bottleneck by exploiting recent GPU triangle through-
put capabilities, but result in a higher number of ren-
dered triangles. Moreover, most patch-based meth-
ods select the appropriate patches from scratch each
frame, and thus, do not take advantage of frame-to-
frame coherences.

The goal of this work is to combine the advan-
tages of both approaches with regard to terrain adap-
tation and workload reduction. We therefore propose

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357266813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a novel hybrid approach for view-dependent refine-
ment. In more detail, our scheme selectively refines
a patch over a regular domain at the granularity of
individual triangles to generate highly-adaptive view-
dependent geometry. Hence, we are able to drasti-
cally reduce the number of primitives with respect to
a particular error tolerance. Furthermore, we substan-
tially reduce the CPU-GPU bottleneck by exploiting
frame-to-frame coherences in that we cache geome-
try in the GPU memory. We further check the cache
validity by testing one point only instead of evalu-
ating the entire cached geometry. This results in a
significant performance gain. Moreover, we signifi-
cantly accelerate the a-priori refinement criteria deter-
mination by adapting the indexing scheme from (Hwa
et al., 2004). In this way, we are able to massively ex-
ploit multi- and many-core CPU architectures. As a
result, preprocessing time could be significantly de-
creased by several orders of magnitude.

The outline of our approach can be summarized
as follows: Given a regular height-field, we first com-
pute the refinement criteria using our novel a-priori
error estimation scheme characterized in Section 3. A
multi-resolution patch hierarchy is then derived from
both the height field and the criteria. During render-
ing, we select appropriate patches from the hierarchy
followed by dynamic view-dependent refinement of
the selected patches. Furthermore, we exploit frame-
to-frame coherences to reuse cached refinement re-
sults. This novel hybrid approach is presented in Sec-
tion 4 in more detail. The results reported a signif-
icant performance increase with respect to both the
a-priori error estimation and the view-dependent ren-
dering. The results are discussed in Section 5. Before
going into detail, we reflect previous work in the next
section.

2 RELATED WORK

In the last decade, many terrain rendering algorithms
have been proposed. High-quality real-time render-
ing, especially terrain rendering, must deal with very
large data-sets. Hence, multi-resolution data struc-
tures, mostly generated a-priori, are utilized to gain
interactive frame rates. For quality purposes, at the
same time, object space error metrics are applied.
Moreover, the underlying data structures and level–
of–detail (LOD) methods applied distinguish most
terrain rendering approaches (Pajarola and Gobbetti,
2007). As discussed in (Cignoni et al., 2003), the
rapid adaptive construction and display of continu-
ous terrain surfaces can be solved by two types of
data structures: First, techniques that are based on

general, mainly unconstrained, triangulations (TIN),
and second, semi-regular representations. Examples
of the former category are described in (Puppo, 1996;
Cignoni et al., 1997; Hoppe, 1998). Such class of al-
gorithms generates a highly adaptive and high-quality
terrain mesh with regard to the number of triangles
/ error count (Evans et al., 2001a). However, these
algorithms require much more complicated multi-
resolution data structures. Moreover, their a-priori
generation entails an exhaustive pre-process and high
storage costs due to necessary connectivity storage
caused by irregularity. A first GPU-based approach
for such class of LOD algorithm has been proposed
in (Hu et al., 2009).

To gain a better balance of approximation and
preprocessing times, structures of the latter category
are used for terrain rendering (Pajarola and Gobbetti,
2007). For this class of semi-regular algorithms, sev-
eral mesh generation algorithms have been developed
which use the so-called method of longest–edge–
bisection for view-dependent refinement or simplifi-
cation of the terrain mesh (Duchaineau et al., 1997;
Pajarola, 1998; Lindstrom et al., 1996; Röttger et al.,
1998; Evans et al., 2001b; Evans et al., 2001a). The
scheme is as simple as powerful and has been applied
in various forms and data structures. (Duchaineau
et al., 1997; Evans et al., 2001b) use triangle bin-
tree hierarchies and perform split and merge opera-
tions for recursive refinement and simplification, re-
spectively. In order to generate crack-free approxima-
tions, force-split operations are introduced, whereas
(Evans et al., 2001b) proposed further improvements
on efficient representations and mesh traversal. Lind-
strom (Lindstrom and Pascucci, 2002) designed a
method for view-dependent refinement, while (Lind-
strom et al., 1996; Pajarola, 1998) deploy restricted
quad-tree triangulations. Especially the algorithm by
Lindstrom et al. (Lindstrom and Pascucci, 2002) is a
general scheme for terrain mesh simplification. The
method treat the entire per-vertex parent-child rela-
tionships as an implicit vertex-graph representing the
surfaces to be extracted during view-dependent re-
finement. Refinement criteria are determined and sat-
urated over the hierarchy which represents per-vertex
related error of an arbitrary error metric and the radius
of the error spheres. Hence, a hierarchy of nested er-
ror spheres is built. In this way, only position and
refinement criteria are stored per vertex and no ad-
ditional data structures are required. A recursive al-
gorithm generates a view-dependent triangulation of
the height-field. Due to the nesting property, no spe-
cial constraints must be considered to ensure crack-
freeness. Furthermore, the refinement algorithm gen-
erates a triangle-strip which is well suitable for recent



graphics hardware. The computation scheme as well
as the proposed error metric is well designed and has
been used for a wide range of algorithms, for instance
(Cignoni et al., 2003; Bösch et al., 2009). However,
the algorithm generates the triangulation from scratch
for the entire height-field. As a consequence, caching
parts of the geometry on fast local video memory is
not feasible.

In general, all of these algorithms determine on
the CPU the preferably minimum number of trian-
gles to be rendered based on decisions at the trian-
gle/vertex primitive level. Despite these high adap-
tation capabilities given a particular error threshold,
the triangle-based approaches lead to the well-known
CPU-GPU bottleneck (Pajarola and Gobbetti, 2007;
Cignoni et al., 2005).

To overcome this bottleneck and to fully exploit
the capabilities of current graphics hardware, it is
necessary to select and send clusters of geometric
primitives to be rendered with just a few CPU in-
structions (Cignoni et al., 2005). Following this ap-
proach, various GPU-oriented multi-resolution struc-
tures have been recently proposed, based on the idea
of moving the granularity of the representation from
triangles to triangle patches, for instance (Pomeranz,
2000; de Boer, 2000; Cignoni et al., 2003; Hwa et al.,
2004; Bösch et al., 2009). The benefit of these ap-
proaches is that the needed per-triangle workload to
extract a multi-resolution model can be reduced by or-
ders of magnitude. The small patches can be prepro-
cessed and optimized off-line for a more efficient ren-
dering. Especially (Cignoni et al., 2003) combines the
advantages of semi-regular structures and TIN-based
batches for high performance terrain rendering.

A very interesting approach is proposed in (Lev-
enberg, 2002). The CABTT algorithm dynamically
extracts triangle clusters from triangle bin-trees dur-
ing view-dependent rendering and caches the geom-
etry on fast local VRAM. To exploit frame-to-frame
coherences, cached geometry is reused. Therefore, an
aggregated error measure is determined for each clus-
ter, which drives the splitting and merging of clus-
ter. The algorithm reports a significant performance
gain in contrast to ROAM. However, the clusters are
not optimized for recent GPUs and a triangle bin-tree
must be generated for the height-field.

Recent GPU-bounded terrain rendering algo-
rithms take full advantage of semi-regular data struc-
tures and utilize large patches. For an excel-
lent overview, we refer to (Pajarola and Gobbetti,
2007). In general, the consequence of changing multi-
resolution granularity is a reduction of the model flex-
ibility: more triangles than necessary will be rendered
to achieve a given accuracy. However, less CPU per-

formance is required. Due to the fact that patches
are cached in local VRAM, patch-based methods di-
rectly benefit from recent GPU throughput capabili-
ties. Hence, this strategy seems to be a good choice.

3 A-PRIORI ERROR
ESTIMATION

The first step of our approach is the a-priori estima-
tion of error bounds. We therefore present our novel
scheme for parallel refinement criteria determination
in this section. A straight forward approach follows
the recursive subdivision scheme and computes the
refinement criteria of the vertex-graph in a post traver-
sal manner. This is rather slow.

Our goal is to accelerate this process in that we
take advantage of recent multi-core CPU architec-
tures. Therefore, we have to parallelize this process.
However, parallelizing the recursive process is not
trivial due to the dependencies of parent-child rela-
tionships. Hence, our general approach is to substitute
the recursive by an iterative process. Hence, parent-
child relationships must be extractable for arbitrary
positions of one particular level without having to tra-
verse the hierarchy node-by-node in a bottom-up re-
cursive fashion. Our solution is to harness parent-
child relationships from special entities, called dia-
monds. Diamonds can be characterized consisting
of triangles of the same level, which share their ad-
jacent hypotenuse (Hwa et al., 2004). A diamond is
uniquely associated with one vertex (the diamond ver-
tex), one edge, and one quadrilateral face. If a dia-
mond is known, the parents and children of it can be
described using a special indexing scheme (see Sec-
tion 3.1). The idea is now to adapt this scheme to
the vertex graph structure, as each vertex in this graph
represents a diamond. In this way, parent-child rela-
tionships of two consecutive levels can be extracted,
if those of the coarser level are known(see Section
3.2). Furthermore, this approach enables us to con-
sider all vertexes of one level independently of each
other. Hence, we determine the refinement criteria
by sequentially treating the levels bottom-up. Within
one level, the determination of refinement criteria in a
highly-parallel way is feasible.

3.1 Basic Indexing Scheme

Refinement criteria determination implies determina-
tion of parent-child relationships. Following the in-
dexing scheme of (Hwa et al., 2004), the face of
a diamond d is described by the diamond ancestors
a0, . . . ,a4 (see Figure 1). The hypotenuse of the two



Figure 1: A diamond d (yellow) is shown with its ancestors
(left) and its children (right)(Hwa et al., 2004). The green
ancestor is a0, the two parents are a1 and a3 (blue outline).
ds children are c0...3 (red). Note that the orientation is ro-
tated by 45∘ each level.

adjacent triangles, is characterized by the ancestors
a0 and a2 and split by d. Using the locations of the
ancestors, the locations of the child diamonds ci with
i = 0, . . . ,3 can be determined as follows:

ci = (ai +a(i+1) mod 4)/2 (1)

Using this information, we are able to compute and
saturate the refinement criteria of a diamond d as de-
scribed in (Lindstrom and Pascucci, 2002). In the im-
plicit vertex-graph, each vertex represents a diamond.
However, ancestors as well as children are described
by the recursive indexing scheme, rather than by an
explicit definition. In the next section, we describe
how to solve parent-child relationships with regard to
the position of a vertex in the vertex-graph.

3.2 Our General Scheme

To process the refinement criteria in parallel, we must
identify the ancestors of a vertex in the vertex graph
to adapt the index scheme from (Hwa et al., 2004)
described above. For that reason, we position special
diamond kernels on appropriate vertexes. A diamond
kernel with a kernel configuration k and the kernel
position kp provides a computation rule to identify
the four ancestors for a diamond vertex with respect
to several parameters. These parameters are described
in the following.

First, due to alternating diamond orientations,
each level l can be categorized into an even = (n
mod 2 == 0) and an odd = (n mod 2 == 1) level
considering the vertex graph, where 2 ∗ n levels ex-
ist with regard to height field sizes of 2n + 1. Hence,
we introduce two different diamond kernels for even
and odd levels, respectively. The configurations are
illustrated in Figure 2.

Since different levels form different diamond
sizes, the distance s = 2l/2 of parent and child dia-
mond vertexes is required as the second parameter.
Dependent on the level l, the third parameter, bias b,
represents the specific permutation of the ancestors.

Figure 2: Configuration of the diamond kernels for even
(left) and odd (right) levels, respectively.

As can be seen, the permutation of the ancestors a0
and a2 can be neglected, since the order of vertexes is
only relevant for rendering in the sense of back-face
culling. Hence, we derive two cases: Bias b = 1 rep-
resents a horizontally aligned diamond, whereas b= 0
is a vertically aligned diamond. b can be determined
as follows:

b =

{
(kp.x + kp.y) mod 2 l = even
kp.y mod 2 l = odd

}
(2)

With the help of the parameters described above,
the locations of the ancestor ai and the diamond vertex
d can now be determined as follows, where makeIdx
realizes the mapping of a position to an index:

j = (i+b) mod 4 (3)
ai = makeIdx((kp +k.aj)∗ s) (4)
d = makeIdx(kp ∗ s+k.d∗ s) (5)

Due to this scheme, all vertexes on one level can
be processed independently of each other as long as
the child vertexes have already been processed. As
shown in Figure 3, we can now determine the refine-
ment criteria by exploiting diamond parent-child rela-
tionships in a bottom-up fashion. For each level, we
apply the diamond kernels and compute the refine-
ment criteria as exemplarily shown in the figure. Due
to fact that the kernel attributes only depend on the
current level and the position of the kernel, we can
exploit the power of current multi-/many-core archi-
tectures to carry out computation in a parallel fashion.
Results report a significant performance gain in con-
trast to the naive approach as shown in Section 5.

4 OUR HYBRID APPROACH

After describing our novel scheme for efficient er-
ror estimation (see Section 3) as the first step of our
approach, we introduce our novel hybrid method for
view-dependent terrain rendering. The goal is to sig-
nificantly reduce the number of triangles for a given



Figure 3: Processing sequence of a 5x5 height-field. Start-
ing at the finest level, for each diamond on a level the re-
finement criteria are computed and saturated by maximiz-
ing the error over the child vertexes. The vertexes on a level
are processed in parallel. This drastically increases the pro-
cessing performance.

error tolerance and the vast triangle workload dur-
ing the rendering process. The idea is to combine
a triangle-based CPU method with a GPU-optimized
patch-based approach. An overview of the pipeline is
illustrated in Figure 4.

Based on the a-priori error estimation, the next
step is to construct a semi-regular multi-resolution
data structure of patches. For each patch, we must
determine the error metric for view-dependent refine-
ment. For this purpose, we exploit the per-vertex re-
finement criteria from the first step. The construc-
tion of this multi-resolution hierarchy is performed a-
priori and is described in Section 4.1. During view-
dependent rendering, we select appropriate patches.
For each selected patch, a triangulation is generated
by view-dependent refinement at the granularity of
triangles. Due to this method (see Section 4.2), we
drastically reduce the triangle count per patch in con-
trast to the regular patch triangulation while granting a
particular error tolerance. The triangulation of a patch
is cached on local VRAM for fast rendering. We reuse
this cached triangulation to exploit frame-to-frame
coherences. Therefore, the validity of the cached tri-
angulation has to be evaluated for subsequent frames
as described in Section 4.3. Instead of inefficiently
checking the entire triangulation in the sense of eval-
uating each vertex, we introduce a method for test-
ing one point only. As a consequence of our general
approach, the triangle count as well as triangle work-
load is substantially reduced. Hence, rendering per-
formance increases by an order of magnitude as re-
ported in Section 5.

4.1 Patch Hierarchy

In an a-priori step, we construct a multi-resolution hi-
erarchy of patches based on longest–edge–bisection.

Figure 4: Overview of the rendering pipeline of our novel
hybrid approach.

In this case, a cut through the hierarchy represents a
coarse grain triangulation of the terrain, in that each
precomputed patch triangle represents a regular sub-
triangulation. Assuming patches over a regular do-
main, view dependent refinement of a patch can be
deployed by refining the patch triangle (see Figure 5).

Figure 5: A patch in a semi-regular hierarchy over a regu-
lar domain. View-dependent refinement can be applied by
refining the patch triangle.

For each patch, refinement criteria must be de-
termined to select appropriate patches during view-
dependent rendering. Therefore, the refinement crite-
ria from the a-priori error estimation serve as a basis.
A patch must be split, only if a vertex introduced by
its children becomes active and hence, part of the tri-
angulation. Consequentially, we iterate through such
vertexes and estimate the maximum error of the patch.
Thus, we can use the algorithm of (Lindstrom and
Pascucci, 2002) to determine if a patch is active or
not. Due to the nested properties of the vertexes, the
patch hierarchy is also nested.

We choose a diamond-graph of tiles as proposed
in (Hwa et al., 2004) where each tile holds the vertex
or vertex attributes of two triangular patches with an
adjacent hypotenuse. The data structure guarantees
crack-freeness, and patch related vertex data can be
handled and transferred to the GPU efficiently. Fur-
thermore, we harness frame-to-frame coherences to
cache vertex data on the GPU efficiently. During the
rendering, we dynamically generate an optimal view-
dependent triangulation for selected patches, which is
described in the next section.

4.2 View-Dependent Triangulation

To reduce the number of triangles per patch, we re-
fine a patch at the granularity of individual triangles.
We therefore adapt the the algorithm of (Lindstrom
and Pascucci, 2002) for triangular patches over a reg-



ular grid of the size 2n + 1. The algorithm gener-
ates a triangle index-strip during the recursive traver-
sal of the implicit vertex graph. Hence, for a given
patch triangle (vl,va,vr), we determine the midpoint
vm = (vl + vr)/2 and recursively refine the triangles
(vl,vm,va) and (va,vm,vr), respectively. The result-
ing strip is transferred to the graphics board. As the
vertex-data still resist in the local video memory, we
are able to fully exploit the rendering performance
of recent GPUs. Furthermore, CPU-GPU transfer is
reduced to small index-strip packages, in contrast to
a per-vertex transfer. We perform the refinement of
patches and the rendering concurrently. However, the
refinement from scratch of each visible patch in each
frame is a tedious task.

Fortunately, view-dependent triangulation can be
reused for subsequent frames (Levenberg, 2002).
Therefore, the triangulation must be validated. If a tri-
angulation is still valid, we are capable of rendering
the existing triangulation persisting on the graphics
board. Hence, a drastic reduction of CPU-GPU com-
munication and a significant gain in rendering perfor-
mance is expected (Levenberg, 2002). Even though,
this requires a per-vertex evaluation of the current
triangulation. The method guarantees a valid cache
reuse, but requires expensive CPU resources at the
same time. To reduce CPU workload, we use a con-
servative rather than the exact validation. We estimate
the cache validity by determining a region in which
the triangulation is valid in any case. Due to a sim-
ple region check - described in the next section - we
are allowed to substantially reduce per-triangle CPU
workload and CPU-GPU communication.

4.3 Optimized Error Evaluation

A triangulation can be treated as a cut through the im-
plicit vertex-graph. All vertexes on the cut represent
the vertex frontier (Hoppe, 1997). All vertexes on and
”above” the cut are active and thus part of the current
triangulation. A cut is still valid, only if the vertex
frontier is unmodified. In detail: all vertexes on the
frontier must be active, while their children must be
inactive. In our case, we would need an additional
data structure to store the vertex frontier. As described
above, the CPU-workload is expensive in the sense
of evaluating the entire vertex frontier. As a conse-
quence, we try to estimate the cache validity by de-
termining a region of validity for a triangulation. The
idea is to confine the validity evaluation to checking
the new view-point against this region.

Using the refinement criteria, each vertex vi blows
up a spherical region si = (pi,rs

i ). If the view-point e
is located in that sphere, the vertex is active. Hence,

Figure 6: The red region are the spheres of the active ver-
texes and the green ones of the inactive vertexes. The differ-
ence of the intersection of all red and the union of all green
spheres builds the region of validity for a view-point. Only
if subsequent view-points are in that region, the triangula-
tion is valid. ε and the current view-point e represent an
upper estimate of this region.

the region of validity of a cut can now be described as
the difference of the following two regions (see Figure
6):

1. the intersection of all spheres of the vertexes of
the active frontier

2. the union of all spheres of the active frontier child
vertexes

However, the resulting region is very expensive to
evaluate. Hence, we try to simplify this region to a
conservative estimation rather than the exact valida-
tion. During the view-dependent refinement, we iden-
tify the sphere of validity for the current view-point.
The sphere is characterized by the current view-point
e and the minimal distance ε between the view-point
and the region of validity described above. In more
detail, ε is the minimal distance between the view-
point e and any sphere si. To figure out the radius rs

i
of the sphere si with regard to the viewing parameter
K (Lindstrom and Pascucci, 2002), following equa-
tion is used:

rs
i =

δi

K
+ ri (6)

The resulting sphere of validity is an upper esti-
mate of the region described above. Hence, we guar-
antee that a triangulation is always valid, if subse-
quent view-points are inside this sphere. As a con-
sequence, we only need to check ε < ∣∣e− e′∣∣ for the
new viewpoint e′ to validate the triangulation. If a tri-
angulation is valid, the cached geometry is rendered,
otherwise a re-triangulation is initiated. As reported
in the next section, this increases the rendering per-
formance.



Figure 7: Comparison of preprocessed and dynamic triangulation of patches. left: static pre-generated patch triangulation;
middle: textured representation; right: dynamic triangulation generated by our hybrid approach. Notice the significant reduc-
tion of triangle count on the right side.

5 RESULTS

We implemented our approaches using C++ and
OpenGL. We tested height fields with respect to a sin-
gle dimension of 1025, 2049, 4097 and 8193 to mea-
sure the performance of our novel a-priori error esti-
mation scheme. Furthermore, two different hardware
configurations were utilized. These include a single-
core Pentium 4 3 GHz and a Core 2 Quad 2,83 GHz
(quad-core) in order to evaluate hardware parallelism
capabilities. The respective preprocessing times are
shown in Table 1.
The results clearly show that using our parallel error
estimation scheme decreases preprocessing times in
any case. On both configurations, our approach di-
minishes preprocessing time linearly with increasing
height field sizes. However, on the single-core envi-
ronment our approach accelerates the processing by
factor 4-5. Exploiting hardware parallelism the factor
even rises up to 10-12. The results clearly show a sig-
nificant improvement of preprocessing performance
under all circumstances. As a result, our approach is
well-suited for on-the-fly processing of height fields.

The results of our hybrid approach have been cap-
tured on the quad-core configuration equipped with
a GeForce GTX 280. We chose a screen-resolution
of 1280x800. For a quantitative evaluation, we com-
pared our hybrid method with a pre-generated patch-
based method. More precisely, a static patch size
of 65 was considered a good selection according to
(Bösch et al., 2009). As described in (Lindstrom and
Pascucci, 2002), rendering and dynamic tessellation
were driven concurrently. We compared height field
sizes of 1025 (Crater), 2049 (Puget Sound) and 4097
(Kauai). The results are reported in Table 2.
As figured out, our approach significantly reduces the
triangle count per frame. In more detail: our hybrid
approach enables us to decrease the triangle count
by 84% with regard to the minimum error tolerance.
For instance, the pre-computed patches require up to

4,6 million triangles whereas our approach only needs
758 thousand primitives. With small error tolerances
in general, high resolution patches must be selected,
which results in a vast amount of rendered primitives.
In contrast, an entire significant performance gain is
achieved using our method, particularly with increas-
ing error tolerances. This is due to the frequent cache
reuse capability of our algorithm. In terms of min-
imum tolerances, the necessary high re-triangulation
effort affects rendering performance and caching ca-
pabilities.

Height field size
CPU 1k 2k 4k 8k

rpcs ppcs rpcs ppcs rpcs ppcs rpcs ppcs
Single−Core 1,43 0,28 5,17 1,18 20,03 4,71 65,3 16,9
Quad−Core 0,58 0,05 2,27 0,20 9,18 0,76 36,8 3.18

Table 1: Performance comparison of preprocessing times in
seconds for the four height field sizes in regard to the two
hardware configurations. Note that rpcs means the straight
forward recursive computation scheme, while ppcs repre-
sents our novel parallel computation scheme.

Height field size
Error tolerance 1k 2k 4k

f ps num∆ f ps num∆ f ps num∆

Patch-based approach
0,5 284 1082k 143 2732k 82 4642k
1,0 286 1079k 191 1885k 121 3001k
2,0 291 1037k 261 1223k 212 1522k

Our hybrid approach
0,5 299 947k 172 665k 113 758k
1,0 427 472k 343 343k 274 339k
2,0 570 175k 566 147k 497 136k

Table 2: Results of the quad-core test environment with re-
gard to a patch-based implementation in comparison with
our hybrid approach. The table shows the average frame
rate f ps and the average number of rendered triangles
per frame num∆ depending on several error tolerances and
height field sizes.



6 CONCLUSION

We presented a novel approach for a-priori error
estimation scheme exploiting hardware parallelism
which is widely applicable. Furthermore, we pro-
posed a novel hybrid approach for view-dependent re-
finement. This algorithm incorporates the advantages
of both patch-based and triangle-based data structures
with respect to high adaptation capabilities and re-
duced workload. In more detail, we suggested select-
ing appropriate patches from a predetermined patch
hierarchy and refining them on a per-triangle basis.
Additionally, an optimized cache validity evaluation
for reuse of geometry persisting in the GPU memory
was introduced. The results reported improved pre-
process time, reduction of triangles per frames as well
as a gain in rendering performance.

We see the scope of future work in extend-
ing our scheme for out-of-core processing. More-
over, we would further harness heterogeneous hard-
ware platforms in general (for instance, OpenCL).
This includes the a-priori error estimation and view-
dependent refinement. A further point of interest is
to adapt our hybrid method to TINs due to the high
adaption capabilities.

REFERENCES

Bösch, J., Goswami, P., and Pajarola, R. (2009). RASTeR:
Simple and Efficient Terrain Rendering on the GPU.
In Eurographics 2009 - Areas Papers, pages 35–42.
Eurographics Association.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Pon-
chio, F., and Scopigno, R. (2003). BDAM - batched
dynamic adaptive meshes for high performance terrain
visualization. Computer Graphics Forum, 22:505–
514.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Pon-
chio, F., and Scopigno, R. (2005). Batched multi tri-
angulation. IEEE Visualization, 2005. VIS 05, pages
207–214.

Cignoni, P., Puppo, E., and Scopigno, R. (1997). Represen-
tation and visualization of terrain surfaces at variable
resolution. In The Visual Computer, pages 50–68.

de Boer, W. H. (2000). Fast terrain rendering using geomet-
rical mipmapping.

Duchaineau, M. A., Wolinsky, M., Sigeti, D. E., Miller,
M. C., Aldrich, C., and Mineev-Weinstein, M. B.
(1997). Roaming terrain: real-time optimally adapt-
ing meshes. In IEEE Visualization, pages 81–88.

Evans, W., Kirkpatrick, D., and Townsend, G. (2001a).
Right-triangulated irregular networks. Algorithmica,
30(2):264–286.

Evans, W., Kirkpatrick, D., and Townsend, G. (2001b).
Right-triangulated irregular networks. Algorithmica,
30:264–286.

Hoppe, H. (1997). View-dependent refinement of progres-
sive meshes. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and in-
teractive techniques, pages 189–198, New York, NY,
USA. ACM Press/Addison-Wesley Publishing Co.

Hoppe, H. (1998). Smooth view-dependent level-of-detail
control and its application to terrain rendering. Visu-
alization Conference, IEEE, 0:35.

Hu, L., Sander, P., and Hoppe, H. (2009). Parallel view-
dependent refinement of progressive meshes. In Pro-
ceedings of the 2009 symposium on Interactive 3D
graphics and games, pages 169–176. ACM New York,
NY, USA.

Hwa, L. M., Duchaineau, M. A., and Joy, K. I. (2004).
Adaptive 4-8 texture hierarchies. In VIS ’04: Pro-
ceedings of the conference on Visualization ’04, pages
219–226, Washington, DC, USA. IEEE Computer So-
ciety.

Levenberg, J. (2002). Fast view-dependent level-of-detail
rendering using cached geometry. In VIS ’02: Pro-
ceedings of the conference on Visualization ’02, pages
259–266, Washington, DC, USA. IEEE Computer So-
ciety.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F.,
Faust, N., and Turner, G. A. (1996). Real-time, con-
tinuous level of detail rendering of height fields. In
SIGGRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive tech-
niques, pages 109–118, New York, NY, USA. ACM.

Lindstrom, P. and Pascucci, V. (2002). Terrain simpli-
fication simplified: A general framework for view-
dependent out-of-core visualization. IEEE Trans-
actions on Visualization and Computer Graphics,
8(3):239–254.

Löffler, F., Rybacki, S., and Schumann, H. (2009). Error-
Bounded GPU-Supported Terrain Visualisation. In
WSCG’09 Communication Papers Proceedings, pages
47–54. University of West Bohemia.

Pajarola, R. (1998). Large scale terrain visualization us-
ing the restricted quadtree triangulation. Visualization
Conference, IEEE, 0:19.

Pajarola, R. and Gobbetti, E. (2007). Survey on semi-
regular multiresolution models for interactive terrain
rendering. The Visual Computer, 23(8):583–605.

Pomeranz, A. (2000). ROAM Using Surface Triangle Clus-
ters (RUSTiC). PhD thesis, UNIVERSITY OF CALI-
FORNIA.

Puppo, E. (1996). Variable resolution terrain surfaces. In
Proceedings of the 8th Canadian Conference on Com-
putational Geometry, pages 202–210. Carleton Uni-
versity Press.

Röttger, S., Heidrich, W., and Seidel, H.-P. (1998). Real-
time generation of continuous levels of detail for
height fields. pages 315–322.


