A. Boccuto, Dipartimento di Matematica e Informatica, via Vanvitelli 1, I-06123 Perugia, Italy. e-mail: boccuto@dipmat.unipg.it B. Riečan, Matematický Ústav, Slovenská Akadémia Vied, Štefánikova 49, SK-81473 Bratislava, Slovakia. e-mail: riecan@mat.savba.sk, riecan@fpv.umb.sk

A NOTE ON A PETTIS-KURZWEIL-HENSTOCK TYPE **INTEGRAL IN RIESZ SPACES**

Abstract

Recently a connection has been found between the improper Kurzweil-Henstock integral on the real line and the integral over a compact space. In this paper these results are extended to a Pettis-type integral for the case of functions with values in Riesz spaces with "enough" order continuous functionals.

Introduction. 1

In [12] two possibilities are mentioned for defining the improper Kurzweil-Henstock integral on the real line. Their coincidence has been proved in [6]. On the other hand in [1] and [13] the Kurzweil-Henstock integral has been studied for real functions defined on a compact space. In [5] a natural connection was established between these two situations: the improper integral on the real line and the integral on a compact space. Here we introduce and investigate a Pettis-type integral (p-integral) for functions with values in a Dedekind complete Riesz space R such that the space R^* of its order continuous functionals separates the points of R, and we shall show that the above mentioned relation holds even for the p-integral. Furthermore, some convergence-type theorems are proved.

Key Words: Riesz spaces, compact topological spaces, order continuous linear functionals, Henstock-Kurzweil integral, Pettis integral.

Mathematical Reviews subject classification: 28B15, 28B05, 28B10, 46G10.

Received by the editors July 29, 2002 *This work is supported by CNR (Italian Council of the Researches) and SAV (Slovak Academy of the Sciences).

¹⁵³

2 Preliminaries.

Let \mathbb{N} be the set of all strictly positive integers, \mathbb{R} be the set of the real numbers and \mathbb{R}^+ be the set of all strictly positive real numbers. We begin with some preliminary definitions and results.

Definition 2.1. A Riesz space R is said to be *Dedekind complete* if every nonempty subset of R, bounded from above, has supremum in R.

Definition 2.2. Let R be a Dedekind complete Riesz space. A sequence $(r_n)_n$ of elements of R is said to be *bounded* if there exist $s_1, s_2 \in R$ such that $s_1 \leq r_n \leq s_2$ for all $n \in \mathbb{N}$. Analogously we can define boundedness of a net $(r_{\beta})_{\beta \in \Lambda}$ of elements of R, where $(\Lambda, \geq) \neq \emptyset$ is a directed set. Given a bounded sequence $(r_n)_n$ in R, we define

$$\limsup_{n} r_{n} = \inf_{n} [\sup_{m \ge n} r_{m}] \text{ and } \liminf_{n} r_{n} = \sup_{n} [\inf_{m \ge n} r_{m}].$$

Given a net $(r_{\beta})_{\beta}$ in R, let

$$\limsup_{\beta} r_{\beta} = \inf_{\beta} [\sup_{\alpha \ge \beta} r_{\alpha}] \text{ and } \liminf_{\beta} r_{\beta} = \sup_{\beta} [\inf_{\alpha \ge \beta} r_{\alpha}],$$

provided that these quantities exist in R. We say that $(r_{\beta})_{\beta}$ order converges (or simply (o)-converges) to $r \in R$ if $r = \limsup_{\beta} r_{\beta} = \liminf_{\beta} r_{\beta}$, and we write (o) $-\lim_{\beta \in \Lambda} r_{\beta} = r$. We say that a bounded sequence $(r_n)_n$ in R order converges (or simply (o)-converges) to $r \in R$ if $r = \limsup_n r_n = \liminf_n r_n$, and we write (o) $-\lim_n r_n = r$.

Let R be as above. A linear functional $g: R \to \mathbb{R}$ is said to be positive if $g(r) \geq 0$ for each $r \in R, r \geq 0$; order continuous, if for every net $(r_\beta)_\beta$ in R such that $(o) - \lim_\beta r_\beta = 0$ we have that $\lim_\beta g(r_\beta) = 0$. We note that a positive functional g is order continuous if and only if $x_\beta \downarrow 0$ in R implies $g(x_\beta) \downarrow 0$ in \mathbb{R} , and also if and only if $0 \leq x_\beta \uparrow x$ in R implies $g(x_\beta) \uparrow g(x)$ in \mathbb{R} . The vector space of all order continuous linear functionals on R will be denoted by R^* . This space is always a Dedekind complete Riesz space (see [3], p. 55). For example, if $1 \leq p < +\infty$ and 1/p + 1/q = 1, then $l_p^* = l_q$ and $L_p([0, 1]) = L^q([0, 1])$. We say that R^* separates points of R if for every $r \in R$, $r \neq 0$, there exists $g \in R^*$ such that $g(x) \neq 0$. From now on we always suppose that R is a Dedekind complete Riesz space, such that R^* separates points of R. An example of a Riesz space R satisfying this property, though $R^{**} \neq R$, is the space c_0 of all sequences of real numbers, convergent to zero (see [8]). Recall that $g_1 \geq g_2$ in R^* means $g_1(x) \geq g_2(x) \ \forall x \in R, x \geq 0$, and that an element $x \in R$ satisfies $x \geq 0$ if and only if $g(x) \geq 0$ holds for each $0 \leq g \in R^*$ (see also [3], Theorem 5.1, p.55). For each $x \in R$, an order continuous linear functional \hat{x} can be defined on R^* via the formula $\hat{x}(f) = f(x), f \in R^*$. Thus, a positive operator $x \mapsto \hat{x}$ can be defined from R into R^{**} . This operator, which we denote by c, is called the *canonical embedding* of R into R^{**} . The map c is one-to-one if and only if R^* separate points of R. In economic models, a way to describe the commodity-price system is the pair (R, R^*) , in which the hypothesis that R^* separates points of R is essential (see [2], pp. 100 and 115).

3 The p-integral.

Let X be a Hausdorff compact topological space. If $A \subset X$, then the interior of the set A is denoted by int A.

We shall work with a family \mathcal{F} of compact subsets of X such that $X \in \mathcal{F}$ and closed under intersection and a monotone and additive mapping $\lambda : \mathcal{F} \to [0, +\infty)$. The additivity means that

$$\lambda(A \bigcup B) + \lambda(A \bigcap B) = \lambda(A) + \lambda(B)$$

whenever $A, B, A \bigcup B \in \mathcal{F}$.

By a partition (in detail, (\mathcal{F}, λ) -partition) of a nonempty set $A \in \mathcal{F}$ we mean a finite collection $\Pi = \{(A_1, \xi_1), \ldots, (A_q, \xi_q)\}$ such that:

- (i) $A_1, \ldots, A_q \in \mathcal{F}, \bigcup_{i=1}^q A_i = A,$
- (ii) $\lambda(A_i \bigcap A_j) = 0$ whenever $i \neq j$,
- (iii) $\xi_j \in A_j \ (j = 1, \dots, q).$

Sometimes, when no confusion can arise, we will indicate by *partition of* A a finite collection $\{A_j : j = 1, ..., q\}$, satisfying conditions (i) and (ii). If $F : \mathcal{F} \to \mathbb{R}$ is a set function and $\Pi = \{A_j : j = 1, ..., q\}$ is a partition of

$$\emptyset \neq A \in \mathcal{F}$$
, we denote by $\sum_{\Pi} F$ the quantity $\sum_{j=1}^{j=1} F(A_j)$.
We shall accume that \mathcal{F} concretes maintain the following

We shall assume that \mathcal{F} separates points in the following way: to any $A \in \mathcal{F}$ there exists a sequence $(\mathcal{A}_n)_n$ of partitions of A such that

- (i) \mathcal{A}_{n+1} is a refinement of \mathcal{A}_n ,
- (ii) for any $x, y \in A$, $x \neq y$, there exist $n \in \mathbb{N}$ and $B \in \mathcal{A}_n$ such that $x \in B$ and $y \notin B$.

We note that this assumption is fulfilled if \mathcal{F} consists of all compact sets and the topological space X is metrizable or it satisfies the second axiom of countability (see [13]).

A gauge on a set $A \in \mathcal{F}$ is a mapping δ assigning to every point $x \in A$ a neighborhood $\delta(x)$ of x. We endow the set of all gauges on A with the order

$$\delta_1 \le \delta_2 \Longleftrightarrow \delta_1(x) \subset \delta_2(x) \quad \forall x \in A.$$

If $\Pi = \{(A_1, \xi_1), \dots, (A_q, \xi_q)\}$ is a partition of A and δ is a gauge on A, then we say that Π is δ -fine if $A_j \subset \delta(\xi_j)$ for any $j = 1, 2, \dots, q$.

We obtain a simple example putting $X = [a, b] \subset \mathbb{R}$ with the usual topology, \mathcal{F} =the family of all closed subintervals of X, $\lambda([\alpha, \beta]) = \beta - \alpha$, $a \leq \alpha < \beta \leq b$. Any gauge can be represented by a real function $d : [a, b] \to \mathbb{R}^+$, if we put $\delta(x) = (x - d(x), x + d(x))$.

Another example is the unbounded interval $[a, +\infty] = [a, +\infty) \bigcup \{+\infty\}$ considered as the one-point compactification of the locally compact space $[a, +\infty)$. The base of open sets consists of open subsets of $[a, +\infty)$ and the sets of the type $(b, +\infty) \bigcup \{+\infty\}$, $a \le b < +\infty$. Any gauge in $[a, +\infty]$ has the form $\delta(x) = (x - d(x), x + d(x))$, if $x \in [a, +\infty] \cap \mathbb{R}$, and $\delta(+\infty) = (b, +\infty] =$ $(b, +\infty) \bigcup \{+\infty\}$, where d denotes a positive real-valued function defined on $[a, +\infty)$, and b denotes a real number, with $b \ge a$.

We now define the p-integral on X. If $\Pi = \{(A_1, \xi_1), \dots, (A_q, \xi_q)\}$ is a partition of a set $A \in \mathcal{F}$, and $f: X \to R$, then we define the Riemann sum by

$$S(f,\Pi) = \sum_{j=1}^{q} \lambda(A_j) f(\xi_j).$$

We note that the fact that \mathcal{F} separates points guarantees the existence of at least one δ -fine partition for any gauge δ (see [13], [19]).

Definition 3.1. A function $f: X \to R$ is *p*-integrable on a set $A \in \mathcal{F}$, if there exists $I \in R$ such that $\forall \varepsilon > 0$ and $\forall g \in R^*$ there exists a gauge δ on A such that

$$|g(S(f,\Pi)) - g(I)| \le \varepsilon \tag{1}$$

whenever Π is a δ -fine partition of A. We denote I by $\int_A f$.

Remark 3.2. We note that, if I_1 , $I_2 \in R$ satisfy (1), then $I_1 = I_2$. Indeed, for all $g \in R^*$, $g \ge 0$, and for large enough partition Π , we get

$$|g(I_1) - g(I_2)| \le |g(I_1) - g(S(f, \Pi))| + |g(S(f, \Pi)) - g(I_2)| \le 2\varepsilon.$$
(2)

Since R^* separates the points of R, then we get $I_1 - I_2 = 0$, that is the assertion.

Pettis-Kurzweil-Henstock Type Integral

Remark 3.3. It is easy to check that, in the case $R = \mathbb{R}$, the p-integral coincides with the classical Kurzweil-Henstock integral, as introduced in [5]. In this case, we often will use the term "integrable" instead of "p-integrable".

We now state the main properties of the p-integral.

Proposition 3.4. If f_1, f_2 are p-integrable on $A \in \mathcal{F}$ and $c_1, c_2 \in \mathbb{R}$, then $c_1 f_1 + c_2 f_2$ is p-integrable on A and

$$\int_{A} (c_1 f_1 + c_2 f_2) = c_1 \int_{A} f_1 + c_2 \int_{A} f_2.$$

The proof is similar to the one of [12], Theorems 2.5.1 and 2.5.3.

Proposition 3.5. If $f : X \to R$ is p-integrable on $A \in \mathcal{F}$, then for every $g \in R^*$ the real-valued map $g \circ f$ is integrable on \mathcal{A} , and

$$\int_A g \circ f = g\left(\int_A f\right).$$

Conversely, if $f : X \to R$ is such that $g \circ f$ is integrable on $A \in \mathcal{F}$ for each $g \in R^*$ and there exists $I \in R$ such that

$$\int_A g \circ f = g(I) \quad \forall \, g \in R^*,$$

then f is p-integrable on A, and $\int_A f = I$.

PROOF. Fix an arbitrary $g \in R^*$ and a partition Π of A, $\Pi = \{(A_i, \xi_i) : i = 1, \ldots, q\}$. We have

$$g(S(f,\Pi)) = g\left(\sum_{i=1}^{q} \lambda(A_i) f(\xi_i)\right)$$

= $\sum_{i=1}^{q} \lambda(A_i) g(f(\xi_i)) = S(g \circ f, \Pi).$ (3)

The assertion follows from (3) and definitions of integrability and p-integrability. $\hfill \Box$

Proposition 3.6. If f_1 and f_2 are *p*-integrable on $A \in \mathcal{F}$ and $f_1 \leq f_2$, then $\int_A f_1 \leq \int_A f_2$.

PROOF. Fix arbitrarily $g \in R^*$, $g \ge 0$. Then $g \circ f_1 \le g \circ f_2$. By the first part of Proposition 3.5 and Proposition 1.4 of [13] we get that $g \circ f_1$ and $g \circ f_2$ are integrable on A, and

$$\int_{A} g \circ f_1 \le \int_{A} g \circ f_2. \tag{4}$$

Again by Proposition 3.5, we have

$$\int_{A} g \circ f_{l} = g\left(\int_{A} f_{l}\right), \quad l = 1, 2.$$
(5)

From (4) and (5) it follows that

$$g\left(\int_{A} f_{1}\right) \leq g\left(\int_{A} f_{2}\right).$$
 (6)

The assertion follows from (6) and arbitrariness of $g \in R^*$.

A simple consequence of Proposition 3.6 is the following assertion.

Corollary 3.7. If both f and |f| are p-integrable on $A \in \mathcal{F}$, then

$$\left| \int_A f \right| \le \int_A |f|.$$

We now state the following results.

Proposition 3.8. Let $u \in R$, $u \ge 0$. For every $E \in \mathcal{F}$, the function $f = \chi_E u : X \to R$ satisfies the condition

 $\exists I \in R \text{ such that } \forall \varepsilon > 0, \exists \text{ gauge } \delta \text{ such that } |S(f, \Pi) - I| \le \varepsilon u$ (7)

for all δ -fine partition Π of X.

PROOF. It is enough to apply Proposition 1.5., pp. 155–156, of [13], and to use the same technique as in Theorem 3.18 of [6]. $\hfill \Box$

Proposition 3.9. Let $f : X \to R$ satisfy condition (7) for suitable I and $u \in R, u \ge 0$. Then f is p-integrable on X, and $\int_X f = I$.

PROOF. Let I and u be as in the hypothesis of the proposition. Fix an arbitrary $\varepsilon > 0$ and $g \in R^*$, $g \ge 0$. Then there exists $\eta > 0$ such that

$$\eta g(u) \le \varepsilon. \tag{8}$$

Pettis-Kurzweil-Henstock Type Integral

Moreover, by condition (7), in correspondence with η there exists a gauge δ such that

$$|S(f,\Pi) - I| \le \eta \, u \tag{9}$$

for all δ -fine partitions Π of X. From (8) and (9) it follows that

$$|g(S(f,\Pi)) - g(I)| \le g(\eta \, u) = \eta \, g(u) \le \varepsilon \tag{10}$$

for all δ -fine partitions Π of X. The assertion follows from (10).

Proposition 3.10. For every $E \in \mathcal{F}$ and $u \in R$ the function $\chi_E u$ is pintegrable on X and $\int_X \chi_E u = \lambda(E) u$.

PROOF. Since R is a Riesz space, we have $u = u^+ - u^-$, where $u^+, u^- \in R$, $u^+ \ge 0$, $u^- \ge 0$. So, we can suppose, without loss of generality, that $u \ge 0$. The assertion follows from Propositions 3.8 and 3.9.

4 Convergence Theorems

The following theorem generalizes to the context of Riesz spaces and our Pettistype integral Theorem 3.1 of [5], which was formulated for real-valued functions.

Theorem 4.1. Let $X = X_0 \bigcup \{x_0\}$ be the one-point compactification of a locally compact space X_0 . Let $f : X \to R$ be a function such that $f(x_0) = 0$. Let $(A_n)_n$ be a sequence of sets, such that $A_n \in \mathcal{F}$, $A_n \subset \operatorname{int} A_{n+1}, A_{n+1} \setminus \operatorname{int} A_n \in \mathcal{F}$, $\lambda(A_n \setminus \operatorname{int} A_n) = 0$ $(n = 1, 2, \ldots)$, $\bigcup_{n=1}^{\infty} A_n = X_0$. Let f be p-

integrable on A_n (n = 1, 2, ...) and let there exist in R an element I such that, $\forall \varepsilon > 0, \forall g \in R^*$, there exists an integer n_0 such that

$$\left| \int_{A} g \circ f - g(I) \right| \leq \varepsilon \quad \forall A \in \mathcal{F}, X_0 \supset A \supset A_{n_0}.$$

Then f is p-integrable on X and $\int_X f = I$.

PROOF. By hypothesis and the first part of Proposition 3.5, we get that $g \circ f$ is integrable on A_n for all $g \in R^*$. Moreover, by Theorem 3.1 of [5], $g \circ f$ is integrable on X and

$$\int_X g \circ f = g(I). \tag{11}$$

The assertion follows by (11) and the second part of Proposition 3.5. $\hfill \Box$

We now state a monotone convergence Levi-type theorem.

Theorem 4.2. Let $f_n : X \to R$, $n \in \mathbb{N}$ be *p*-integrable, $\left(\int_X f_n\right)_n$ be bounded, and suppose that for every $g \in R$, $g \ge 0$, and $\forall x \in X$, $g(f_n(x)) \uparrow g(f(x))$. Then f is *p*-integrable and $\sup_n \int_X f_n = \int_X f$.

PROOF. Fix an arbitrary $g \in R^*$, $g \ge 0$. By hypothesis, we get that the sequence $\left(g\left(\int_X f_n\right)\right)_n$ is bounded. Thus, by [13], Theorem 2.2, pp. 159–162 and the first part of Proposition 3.5, the real-valued function $g \circ f$ is integrable and

$$\int_{X} g \circ f = \lim_{n} \int_{X} g \circ f_{n} = \sup_{n} \int_{X} g \circ f_{n}$$
$$= \sup_{n} \left[g \left(\int_{X} f_{n} \right) \right] = g \left(\sup_{n} \int_{X} f_{n} \right).$$
(12)

The assertion follows from (12) and the second part of Proposition 3.5.

References

- S. I. Ahmed, W. F. Pfeffer, A Riemann integral in a locally compact Hausdorff space, J. Australian Math. Soc., 41 (1986), 115–137.
- [2] Ch. D. Aliprantis, D. J. Brown, O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer-Verlag, 1990.
- [3] Ch. D. Aliprantis, O. Burkinshaw, *Positive Operators*, Academic Press Inc., 1985.
- [4] A. Boccuto, Differential and integral calculus in Riesz spaces, Tatra Mountains Math. Publ., 14 (1998), 293–323.
- [5] A. Boccuto, B. Riečan, A note on the improper Kurzweil-Henstock integral, Acta Univ. Mathaei Belii, 9, (2002), 7–12.
- [6] A. Boccuto, B. Riečan, On the Henstock-Kurzweil integral for Riesz-spacevalued functions defined on unbounded intervals, Czech. Math. J., (2002), to appear.

- [7] M. Duchoň, B. Riečan, On the Kurzweil-Stieltjes integral in ordered spaces, Tatra Mountains Math. Publ., 8 (1996), 133–141.
- [8] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, 1974.
- [9] R. Henstock, The general theory of integration, Clarendon Press, Oxford, 1991.
- [10] J. Kurzweil, Nicht absolut-konvergente Integrale, Teubner, Leipzig, 1980.
- [11] P. Y. Lee, Lanzhou Lectures on Henstock integration, World Scientific Publishing Co., 1989.
- [12] P. Y. Lee, R. Výborný, The integral: An easy approach after Kurzweil and Henstock, Cambridge Univ. Press, 2000.
- B. Riečan, On the Kurzweil integral in compact topological spaces, Rad. Mat. 2 (1986), 151–163.
- [14] B. Riečan, On the Kurzweil integral for functions with values in ordered spaces, I, Acta Math. Univ. Comenian. 56-57 (1989), 75-83.
- [15] B. Riečan, T. Neubrunn, Integral, Measure and Ordering, Kluwer, Dordrecht, and Ister, Bratislava, 1997.
- [16] B. Riečan, M. Vrábelová, On the Kurzweil integral for functions with values in ordered spaces, II, Math. Slovaca, 43 (1993), 471–475.
- [17] B. Riečan, M. Vrábelová, On integration with respect to operator valued measures in Riesz spaces, Tatra Mountains Math. Publ., 2 (1993), 149– 165.
- [18] B. Riečan, M. Vrábelová, On the Kurzweil integral for functions with values in ordered spaces, III, Tatra Mountains Math. Publ. 8 (1996), 93–100.
- [19] B. Riečan, M. Vrábelová, The Kurzweil construction of an integral in ordered spaces, Czechoslovak Math. J. 48 (123) (1998), 565–574.
- [20] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy sets and systems, 120 (2001), 523–532.