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A NOTE ON A
PETTIS-KURZWEIL-HENSTOCK TYPE
INTEGRAL IN RIESZ SPACES

Abstract

Recently a connection has been found between the improper Kurzweil-
Henstock integral on the real line and the integral over a compact space.
In this paper these results are extended to a Pettis-type integral for the
case of functions with values in Riesz spaces with “enough” order con-
tinuous functionals.

1 Introduction.

In [12] two possibilities are mentioned for defining the improper Kurzweil-
Henstock integral on the real line. Their coincidence has been proved in [6].
On the other hand in [1] and [13] the Kurzweil-Henstock integral has been
studied for real functions defined on a compact space. In [5] a natural con-
nection was established between these two situations: the improper integral
on the real line and the integral on a compact space. Here we introduce and
investigate a Pettis-type integral (p-integral) for functions with values in a
Dedekind complete Riesz space R such that the space R* of its order con-
tinuous functionals separates the points of R, and we shall show that the
above mentioned relation holds even for the p-integral. Furthermore, some
convergence-type theorems are proved.
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2 Preliminaries.

Let N be the set of all strictly positive integers, R be the set of the real numbers
and RT be the set of all strictly positive real numbers. We begin with some
preliminary definitions and results.

Definition 2.1. A Riesz space R is said to be Dedekind complete if every
nonempty subset of R, bounded from above, has supremum in R.

Definition 2.2. Let R be a Dedekind complete Riesz space. A sequence
(rn)n of elements of R is said to be bounded if there exist s1, so € R such that
s$1 <1, < 8o for all n € N. Analogously we can define boundedness of a net
(rg)gen of elements of R, where (A,>) # () is a directed set. Given a bounded
sequence (ry,), in R, we define

limsup r, = inf [sup r,,] and liminf r, = sup[inf 7,,].
n . m>n n n m2>n

Given a net (rg)g in R, let

limsup rg = inf [sup r,] and liminf rg = sup [inf r,],
Jé] a>p B g a=p

provided that these quantities exist in R. We say that (rg)g order converges
(or simply (0)-converges ) to r € R if r = limsupg r5 = liminfs r5, and we
write (0) — limgea rg = 7. We say that a bounded sequence (7,), in R order
converges (or simply (0)-converges ) to r € R if r = limsup,, r,, = liminf,, r,,
and we write (o) — lim,, r,, = 7.

Let R be as above. A linear functional g : R — R is said to be positive
if g(r) > 0 for each r € R, r > 0; order continuous, if for every net (rg)g in
R such that (o) — limg rg = 0 we have that limg g(rg) = 0. We note that
a positive functional g is order continuous if and only if 3 | 0 in R implies
g(xzg) | 0in R, and also if and only if 0 < 23 1 x in R implies g(zg) T g(z)
in R. The vector space of all order continuous linear functionals on R will be
denoted by R*. This space is always a Dedekind complete Riesz space (see
[3], p- 55). For example, if 1 < p < 400 and 1/p+1/q =1, then [ = I, and
L,([0,1]) = L9([0,1]). We say that R* separates points of R if for every r € R,
r # 0, there exists g € R* such that g(x) # 0. From now on we always suppose
that R is a Dedekind complete Riesz space, such that R* separates points of
R. An example of a Riesz space R satisfying this property, though R** # R,
is the space ¢g of all sequences of real numbers, convergent to zero (see [8]).
Recall that g1 > g2 in R* means ¢1(z) > ¢g2(z) Vo € R, > 0, and that an
element = € R satisfies > 0 if and only if g(x) > 0 holds for each 0 < g € R*
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(see also [3], Theorem 5.1, p.55). For each € R, an order continuous linear
functional Z can be defined on R* via the formula Z(f) = f(x), f € R*. Thus,
a positive operator x — T can be defined from R into R**. This operator,
which we denote by c, is called the canonical embedding of R into R**. The
map c is one-to-one if and only if R* separate points of R. In economic models,
a way to describe the commodity-price system is the pair (R, R*), in which
the hypothesis that R* separates points of R is essential (see [2], pp. 100 and
115).

3 The p-integral.

Let X be a Hausdorff compact topological space. If A C X, then the interior
of the set A is denoted by int A.

We shall work with a family F of compact subsets of X such that X € F
and closed under intersection and a monotone and additive mapping A : F —
[0,400). The additivity means that

MA(JB) +AMA[B) = A(A) + A\(B)

whenever A, B, A|JB € F.
By a partition (in detail, (F, \)-partition ) of a nonempty set A € F we
mean a finite collection IT = {(A41,&1), ..., (A4q,&;)} such that:

(i) Ar,..., A € F,|J Ai = 4,

(ii) A(A; N A4;) =0 whenever 7 # j,

(i) & €A4;(G=1,....9).

Sometimes, when no confusion can arise, we will indicate by partition of A
a finite collection {A; : j = 1,...,q}, satisfying conditions (i) and (ii). If
F :F — Ris a set function and II = {4; : j = 1,...,¢} is a partition of

q
) £ A € F, we denote by Z F the quantity Z F(A)).
v j=1
We shall assume that F separates points in the following way: to any A € F
there exists a sequence (A,,), of partitions of A such that

(i) A,41 is a refinement of A,

(ii) for any x,y € A, x # y, there exist n € N and B € A,, such that z € B
and y € B.
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We note that this assumption is fulfilled if F consists of all compact sets
and the topological space X is metrizable or it satisfies the second axiom of
countability (see [13]).

A gauge on a set A € F is a mapping ¢ assigning to every point x € A a
neighborhood d(z) of z. We endow the set of all gauges on A with the order

01 §52<:>(51(I) C(SQ(’I}) Ve A

I ={(A1,&),...,(Aq,&)} is a partition of A and J is a gauge on A, then
we say that II is 0-fine if A; C §(&;) for any j =1,2,...,¢.

We obtain a simple example putting X = [a,b] C R with the usual topol-
ogy, F =the family of all closed subintervals of X, A([a,f]) =8 —a,a < a <
B < b. Any gauge can be represented by a real function d : [a,b] — RT, if we
put §(z) = (z — d(z),z + d(x)).

Another example is the unbounded interval [a,+oo] = [a,+00) | J{+00}
considered as the one-point compactification of the locally compact space
[a,+00). The base of open sets consists of open subsets of [a,+00) and the
sets of the type (b, +00) | J{+0o0}, a < b < +00. Any gauge in [a, +00] has the
form §(x) = (x — d(z),z + d(x)), if z € [a, +o0] R, and §(400) = (b, +00] =
(b, +00) J{+0}, where d denotes a positive real-valued function defined on
[a, +00), and b denotes a real number, with b > a.

We now define the p-integral on X. If II = {(A1,&1),...,(A44, &)} is a
partition of a set A € F, and f: X — R, then we define the Riemann sum by

q

S(£,T) =" MA) £(&)-

j=1
We note that the fact that F separates points guarantees the existence of

at least one d-fine partition for any gauge § (see [13], [19]).

Definition 3.1. A function f: X — R is p-integrable on a set A € F, if there
exists I € R such that Ve > 0 and Vg € R* there exists a gauge § on A such
that

lg(S(f, 1)) —g(I)| <€ 1)
whenever II is a é-fine partition of A. We denote I by [ a4t

Remark 3.2. We note that, if I, Ir € R satisfy (1), then I = I5. Indeed,
for all g € R*, g > 0, and for large enough partition II, we get

lg(11) — g(L2)| < |g(I1) — g(S(f, D) + |g(S(f,1T)) — g(L2)| < 2e.  (2)

Since R* separates the points of R, then we get Iy — Iy = 0, that is the
assertion. 0
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Remark 3.3. It is easy to check that, in the case R = R, the p-integral
coincides with the classical Kurzweil-Henstock integral, as introduced in [5].
In this case, we often will use the term “integrable” instead of “p-integrable”.

We now state the main properties of the p-integral.

Proposition 3.4. If fi, fo are p-integrable on A € F and c1,co € R, then
c1 f1 + cofs is p-integrable on A and

/A(01f1+02f2)=Cl/Af1+02/Af2~

The proof is similar to the one of [12], Theorems 2.5.1 and 2.5.3.

Proposition 3.5. If f : X — R is p-integrable on A € F, then for every
g € R* the real-valued map g o f is integrable on A, and

foer=s()

Conversely, if f : X — R is such that g o f is integrable on A € F for each
g € R* and there exists I € R such that

/gof:g(f) Vg e R,
A

then f is p-integrable on A, cmd/ f=1
A

ProoOF. Fix an arbitrary g € R* and a partition IT of A, II = {(4;,&) : i =
1,...,q}. We have

g(S(f,11))

g (Z A(4;) f(&))

. 3)
Z AMAi) g(f(&)) = S(go f,1).

i=1

The assertion follows from (3) and definitions of integrability and p-integrability.
O

Proposition 3.6. If fi and fy are p-integrable on A € F and fi1 < fa, then
fA fl < fA f2-
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PROOF. Fix arbitrarily g € R*, g > 0. Then go f; < go f5. By the first part
of Proposition 3.5 and Proposition 1.4 of [13] we get that go f; and go f5 are

integrable on A, and
[oenz[gop (4)
A A

Again by Proposition 3.5, we have

/AgoleQ(/Afl), l=1,2. (5)

From (4) and (5) it follows that

() =0([5)

The assertion follows from (6) and arbitrariness of g € R*. O

A simple consequence of Proposition 3.6 is the following assertion.

Corollary 3.7. If both f and |f| are p-integrable on A € F, then

TREN

We now state the following results.

Proposition 3.8. Let w € R, u > 0. For every E € F, the function f =
xeu: X — R satisfies the condition

31 € R such that Ve > 0,3 gauged such that |S(f, 1) —I| <eu (7)

for all §-fine partition I of X.

PROOF. It is enough to apply Proposition 1.5., pp. 155-156, of [13], and to
use the same technique as in Theorem 3.18 of [6]. O
Proposition 3.9. Let f : X — R satisfy condition (7) for suitable I and

u € R, u>0. Then f is p-integrable on X, and / f=1
X

ProOF. Let I and u be as in the hypothesis of the proposition. Fix an
arbitrary € > 0 and g € R*, g > 0. Then there exists > 0 such that

ng(u) <e. (8)
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Moreover, by condition (7), in correspondence with 7 there exists a gauge ¢
such that

IS(AT) = Il <nu (9)
for all d-fine partitions II of X. From (8) and (9) it follows that

lg(S(f, 1) —g(D)] < g(nu) =ng(u) < e (10)
for all §-fine partitions IT of X. The assertion follows from (10). O

Proposition 3.10. For every E € F and u € R the function xgu is p-
integrable on X and [y xpu = \E)u.

PROOF. Since R is a Riesz space, we have v = vt — «~, where ut,u~ € R,
ut >0, u~ > 0. So, we can suppose, without loss of generality, that u > 0.
The assertion follows from Propositions 3.8 and 3.9. O

4 Convergence Theorems

The following theorem generalizes to the context of Riesz spaces and our Pettis-
type integral Theorem 3.1 of [5], which was formulated for real-valued func-
tions.

Theorem 4.1. Let X = Xo|J{xzo} be the one-point compactification of a

locally compact space Xo. Let f: X — R be a function such that f(xzq) = 0.

Let (An)n be a sequence of sets, such that A, € F, A, Cint Ani1, Apnt1 \

intA, € F, M4, \int4,) =0 (n = 1,2,...), U A, =Xo. Let f be p-
n=1

integrable on A, (n =1,2,...) and let there exist in R an element I such that,

Ve >0, Vg e R*, there exists an integer ng such that

’/gof—g([)’ﬁa VAEF, Xoo AD A,
A

Then f is p-integrable on X and/ f=1
X
PrOOF. By hypothesis and the first part of Proposition 3.5, we get that go f

is integrable on A, for all g € R*. Moreover, by Theorem 3.1 of [5], go f is
integrable on X and

/ go f=g(). (11)
X
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The assertion follows by (11) and the second part of Proposition 3.5. O

We now state a monotone convergence Levi-type theorem.
Theorem 4.2. Let f, : X — R, n € N be p-integrable, (/ fn> be bounded,
X n

and suppose that for every g € R, g > 0, and Vz € X, g(fo(x)) T g(f(x)).

Then f is p-integrable and sup/ fn :/ I
n Jx X

PRrROOF. Fix an arbitrary g € R*, g > 0. By hypothesis, we get that the

sequence (g (/ fn> ) is bounded. Thus, by [13], Theorem 2.2, pp. 159-
X n

162 and the first part of Proposition 3.5, the real-valued function g o f is
integrable and

/Xg<>f=ligl/xg<>fn=s%p/xg<>fn
b ()] ol )

The assertion follows from (12) and the second part of Proposition 3.5. O
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