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A NOTE ON A
PETTIS-KURZWEIL-HENSTOCK TYPE

INTEGRAL IN RIESZ SPACES

Abstract

Recently a connection has been found between the improper Kurzweil-
Henstock integral on the real line and the integral over a compact space.
In this paper these results are extended to a Pettis-type integral for the
case of functions with values in Riesz spaces with “enough” order con-
tinuous functionals.

1 Introduction.

In [12] two possibilities are mentioned for defining the improper Kurzweil-
Henstock integral on the real line. Their coincidence has been proved in [6].
On the other hand in [1] and [13] the Kurzweil-Henstock integral has been
studied for real functions defined on a compact space. In [5] a natural con-
nection was established between these two situations: the improper integral
on the real line and the integral on a compact space. Here we introduce and
investigate a Pettis-type integral (p-integral) for functions with values in a
Dedekind complete Riesz space R such that the space R∗ of its order con-
tinuous functionals separates the points of R, and we shall show that the
above mentioned relation holds even for the p-integral. Furthermore, some
convergence-type theorems are proved.

Key Words: Riesz spaces, compact topological spaces, order continuous linear function-
als, Henstock-Kurzweil integral, Pettis integral.

Mathematical Reviews subject classification: 28B15, 28B05, 28B10, 46G10.
Received by the editors July 29, 2002

∗This work is supported by CNR (Italian Council of the Researches) and SAV (Slovak
Academy of the Sciences).

153



154 A. Boccuto and B. Riečan

2 Preliminaries.

Let N be the set of all strictly positive integers, R be the set of the real numbers
and R+ be the set of all strictly positive real numbers. We begin with some
preliminary definitions and results.

Definition 2.1. A Riesz space R is said to be Dedekind complete if every
nonempty subset of R, bounded from above, has supremum in R.

Definition 2.2. Let R be a Dedekind complete Riesz space. A sequence
(rn)n of elements of R is said to be bounded if there exist s1, s2 ∈ R such that
s1 ≤ rn ≤ s2 for all n ∈ N. Analogously we can define boundedness of a net
(rβ)β∈Λ of elements of R, where (Λ,≥) 6= ∅ is a directed set. Given a bounded
sequence (rn)n in R, we define

lim sup
n

rn = inf
n

[ sup
m≥n

rm] and lim inf
n

rn = sup
n

[ inf
m≥n

rm].

Given a net (rβ)β in R, let

lim sup
β

rβ = inf
β

[sup
α≥β

rα] and lim inf
β

rβ = sup
β

[ inf
α≥β

rα],

provided that these quantities exist in R. We say that (rβ)β order converges
(or simply (o)-converges ) to r ∈ R if r = lim supβ rβ = lim infβ rβ , and we
write (o)− limβ∈Λ rβ = r. We say that a bounded sequence (rn)n in R order
converges (or simply (o)-converges ) to r ∈ R if r = lim supn rn = lim infn rn,
and we write (o)− limn rn = r.

Let R be as above. A linear functional g : R → R is said to be positive
if g(r) ≥ 0 for each r ∈ R, r ≥ 0; order continuous, if for every net (rβ)β in
R such that (o) − limβ rβ = 0 we have that limβ g(rβ) = 0. We note that
a positive functional g is order continuous if and only if xβ ↓ 0 in R implies
g(xβ) ↓ 0 in R, and also if and only if 0 ≤ xβ ↑ x in R implies g(xβ) ↑ g(x)
in R. The vector space of all order continuous linear functionals on R will be
denoted by R∗. This space is always a Dedekind complete Riesz space (see
[3], p. 55). For example, if 1 ≤ p < +∞ and 1/p + 1/q = 1, then l∗p = lq and
Lp([0, 1]) = Lq([0, 1]). We say that R∗ separates points of R if for every r ∈ R,
r 6= 0, there exists g ∈ R∗ such that g(x) 6= 0. From now on we always suppose
that R is a Dedekind complete Riesz space, such that R∗ separates points of
R. An example of a Riesz space R satisfying this property, though R∗∗ 6= R,
is the space c0 of all sequences of real numbers, convergent to zero (see [8]).
Recall that g1 ≥ g2 in R∗ means g1(x) ≥ g2(x) ∀x ∈ R, x ≥ 0, and that an
element x ∈ R satisfies x ≥ 0 if and only if g(x) ≥ 0 holds for each 0 ≤ g ∈ R∗
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(see also [3], Theorem 5.1, p.55). For each x ∈ R, an order continuous linear
functional x̂ can be defined on R∗ via the formula x̂(f) = f(x), f ∈ R∗. Thus,
a positive operator x 7→ x̂ can be defined from R into R∗∗. This operator,
which we denote by c, is called the canonical embedding of R into R∗∗. The
map c is one-to-one if and only if R∗ separate points of R. In economic models,
a way to describe the commodity-price system is the pair (R,R∗), in which
the hypothesis that R∗ separates points of R is essential (see [2], pp. 100 and
115).

3 The p-integral.

Let X be a Hausdorff compact topological space. If A ⊂ X, then the interior
of the set A is denoted by int A.

We shall work with a family F of compact subsets of X such that X ∈ F
and closed under intersection and a monotone and additive mapping λ : F →
[0,+∞). The additivity means that

λ(A
⋃

B) + λ(A
⋂

B) = λ(A) + λ(B)

whenever A,B,A
⋃

B ∈ F .
By a partition (in detail, (F , λ)-partition ) of a nonempty set A ∈ F we

mean a finite collection Π = {(A1, ξ1), . . . , (Aq, ξq)} such that:

(i) A1, . . . , Aq ∈ F ,

q⋃
i=1

Ai = A,

(ii) λ(Ai

⋂
Aj) = 0 whenever i 6= j,

(iii) ξj ∈ Aj (j = 1, . . . , q).

Sometimes, when no confusion can arise, we will indicate by partition of A
a finite collection {Aj : j = 1, . . . , q}, satisfying conditions (i) and (ii). If
F : F → R is a set function and Π = {Aj : j = 1, . . . , q} is a partition of

∅ 6= A ∈ F , we denote by
∑
Π

F the quantity
q∑

j=1

F (Aj).

We shall assume that F separates points in the following way: to any A ∈ F
there exists a sequence (An)n of partitions of A such that

(i) An+1 is a refinement of An,

(ii) for any x, y ∈ A, x 6= y, there exist n ∈ N and B ∈ An such that x ∈ B
and y 6∈ B.
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We note that this assumption is fulfilled if F consists of all compact sets
and the topological space X is metrizable or it satisfies the second axiom of
countability (see [13]).

A gauge on a set A ∈ F is a mapping δ assigning to every point x ∈ A a
neighborhood δ(x) of x. We endow the set of all gauges on A with the order

δ1 ≤ δ2 ⇐⇒ δ1(x) ⊂ δ2(x) ∀x ∈ A.

If Π = {(A1, ξ1), . . . , (Aq, ξq)} is a partition of A and δ is a gauge on A, then
we say that Π is δ-fine if Aj ⊂ δ(ξj) for any j = 1, 2, . . . , q.

We obtain a simple example putting X = [a, b] ⊂ R with the usual topol-
ogy, F =the family of all closed subintervals of X, λ([α, β]) = β − α, a ≤ α <
β ≤ b. Any gauge can be represented by a real function d : [a, b] → R+, if we
put δ(x) = (x− d(x), x + d(x)).

Another example is the unbounded interval [a,+∞] = [a,+∞)
⋃
{+∞}

considered as the one-point compactification of the locally compact space
[a,+∞). The base of open sets consists of open subsets of [a,+∞) and the
sets of the type (b, +∞)

⋃
{+∞}, a ≤ b < +∞. Any gauge in [a,+∞] has the

form δ(x) = (x− d(x), x + d(x)), if x ∈ [a,+∞]
⋂

R, and δ(+∞) = (b, +∞] =
(b, +∞)

⋃
{+∞}, where d denotes a positive real-valued function defined on

[a,+∞), and b denotes a real number, with b ≥ a.
We now define the p-integral on X. If Π = {(A1, ξ1), . . . , (Aq, ξq)} is a

partition of a set A ∈ F , and f : X → R, then we define the Riemann sum by

S(f,Π) =
q∑

j=1

λ(Aj) f(ξj).

We note that the fact that F separates points guarantees the existence of
at least one δ-fine partition for any gauge δ (see [13], [19]).

Definition 3.1. A function f : X → R is p-integrable on a set A ∈ F , if there
exists I ∈ R such that ∀ ε > 0 and ∀ g ∈ R∗ there exists a gauge δ on A such
that

|g(S(f,Π))− g(I)| ≤ ε (1)

whenever Π is a δ-fine partition of A. We denote I by
∫

A
f.

Remark 3.2. We note that, if I1, I2 ∈ R satisfy (1), then I1 = I2. Indeed,
for all g ∈ R∗, g ≥ 0, and for large enough partition Π, we get

|g(I1)− g(I2)| ≤ |g(I1)− g(S(f,Π))|+ |g(S(f,Π))− g(I2)| ≤ 2 ε. (2)

Since R∗ separates the points of R, then we get I1 − I2 = 0, that is the
assertion.
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Remark 3.3. It is easy to check that, in the case R = R, the p-integral
coincides with the classical Kurzweil-Henstock integral, as introduced in [5].
In this case, we often will use the term “integrable” instead of “p-integrable”.

We now state the main properties of the p-integral.

Proposition 3.4. If f1, f2 are p-integrable on A ∈ F and c1, c2 ∈ R, then
c1 f1 + c2f2 is p-integrable on A and∫

A

(c1 f1 + c2 f2) = c1

∫
A

f1 + c2

∫
A

f2.

The proof is similar to the one of [12], Theorems 2.5.1 and 2.5.3.

Proposition 3.5. If f : X → R is p-integrable on A ∈ F , then for every
g ∈ R∗ the real-valued map g ◦ f is integrable on A, and∫

A

g ◦ f = g

(∫
A

f

)
.

Conversely, if f : X → R is such that g ◦ f is integrable on A ∈ F for each
g ∈ R∗ and there exists I ∈ R such that∫

A

g ◦ f = g(I) ∀ g ∈ R∗,

then f is p-integrable on A, and
∫

A

f = I.

Proof. Fix an arbitrary g ∈ R∗ and a partition Π of A, Π = {(Ai, ξi) : i =
1, . . . , q}. We have

g(S(f,Π)) =g

(
q∑

i=1

λ(Ai) f(ξi)

)

=
q∑

i=1

λ(Ai) g(f(ξi)) = S(g ◦ f,Π).

(3)

The assertion follows from (3) and definitions of integrability and p-integrability.

Proposition 3.6. If f1 and f2 are p-integrable on A ∈ F and f1 ≤ f2, then∫
A

f1 ≤
∫

A
f2.
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Proof. Fix arbitrarily g ∈ R∗, g ≥ 0. Then g ◦ f1 ≤ g ◦ f2. By the first part
of Proposition 3.5 and Proposition 1.4 of [13] we get that g ◦ f1 and g ◦ f2 are
integrable on A, and ∫

A

g ◦ f1 ≤
∫

A

g ◦ f2. (4)

Again by Proposition 3.5, we have∫
A

g ◦ fl = g

(∫
A

fl

)
, l = 1, 2. (5)

From (4) and (5) it follows that

g

(∫
A

f1

)
≤ g

(∫
A

f2

)
. (6)

The assertion follows from (6) and arbitrariness of g ∈ R∗.

A simple consequence of Proposition 3.6 is the following assertion.

Corollary 3.7. If both f and |f | are p-integrable on A ∈ F , then∣∣∣∣∫
A

f

∣∣∣∣ ≤ ∫
A

|f |.

We now state the following results.

Proposition 3.8. Let u ∈ R, u ≥ 0. For every E ∈ F , the function f =
χE u : X → R satisfies the condition

∃ I ∈ R such that ∀ ε > 0,∃ gauge δ such that |S(f,Π)− I| ≤ ε u (7)

for all δ-fine partition Π of X.

Proof. It is enough to apply Proposition 1.5., pp. 155–156, of [13], and to
use the same technique as in Theorem 3.18 of [6].

Proposition 3.9. Let f : X → R satisfy condition (7) for suitable I and

u ∈ R, u ≥ 0. Then f is p-integrable on X, and
∫

X

f = I.

Proof. Let I and u be as in the hypothesis of the proposition. Fix an
arbitrary ε > 0 and g ∈ R∗, g ≥ 0. Then there exists η > 0 such that

η g(u) ≤ ε. (8)
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Moreover, by condition (7), in correspondence with η there exists a gauge δ
such that

|S(f,Π)− I| ≤ η u (9)

for all δ-fine partitions Π of X. From (8) and (9) it follows that

|g(S(f,Π))− g(I)| ≤ g(η u) = η g(u) ≤ ε (10)

for all δ-fine partitions Π of X. The assertion follows from (10).

Proposition 3.10. For every E ∈ F and u ∈ R the function χE u is p-
integrable on X and

∫
X

χE u = λ(E)u.

Proof. Since R is a Riesz space, we have u = u+ − u−, where u+, u− ∈ R,
u+ ≥ 0, u− ≥ 0. So, we can suppose, without loss of generality, that u ≥ 0.
The assertion follows from Propositions 3.8 and 3.9.

4 Convergence Theorems

The following theorem generalizes to the context of Riesz spaces and our Pettis-
type integral Theorem 3.1 of [5], which was formulated for real-valued func-
tions.

Theorem 4.1. Let X = X0

⋃
{x0} be the one-point compactification of a

locally compact space X0. Let f : X → R be a function such that f(x0) = 0.
Let (An)n be a sequence of sets, such that An ∈ F , An ⊂ intAn+1, An+1 \

intAn ∈ F , λ(An \ intAn) = 0 (n = 1, 2, . . .),
∞⋃

n=1

An = X0. Let f be p-

integrable on An (n = 1, 2, . . .) and let there exist in R an element I such that,
∀ ε > 0, ∀ g ∈ R∗, there exists an integer n0 such that∣∣∣∣∫

A

g ◦ f − g(I)
∣∣∣∣ ≤ ε ∀A ∈ F , X0 ⊃ A ⊃ An0 .

Then f is p-integrable on X and
∫

X

f = I.

Proof. By hypothesis and the first part of Proposition 3.5, we get that g ◦ f
is integrable on An for all g ∈ R∗. Moreover, by Theorem 3.1 of [5], g ◦ f is
integrable on X and ∫

X

g ◦ f = g(I). (11)
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The assertion follows by (11) and the second part of Proposition 3.5.

We now state a monotone convergence Levi-type theorem.

Theorem 4.2. Let fn : X → R, n ∈ N be p-integrable,
(∫

X

fn

)
n

be bounded,

and suppose that for every g ∈ R, g ≥ 0, and ∀x ∈ X, g(fn(x)) ↑ g(f(x)).

Then f is p-integrable and sup
n

∫
X

fn =
∫

X

f.

Proof. Fix an arbitrary g ∈ R∗, g ≥ 0. By hypothesis, we get that the

sequence
(

g

(∫
X

fn

))
n

is bounded. Thus, by [13], Theorem 2.2, pp. 159–

162 and the first part of Proposition 3.5, the real-valued function g ◦ f is
integrable and ∫

X

g ◦ f = lim
n

∫
X

g ◦ fn = sup
n

∫
X

g ◦ fn

= sup
n

[
g

(∫
X

fn

)]
= g

(
sup

n

∫
X

fn

)
.

(12)

The assertion follows from (12) and the second part of Proposition 3.5.
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