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ABSTRACT 
 

 In the recent years, elliptic curve cryptography (ECC) has gained widespread 

exposure and acceptance and has already been include in many security standards. It is 

widely recognized that data security will play a central role in the design of future IT system. 

Elliptic key cryptography recently gained lot of attention in industries when we talk about 

security. This paper discusses the basic operation how ECC is more secure than other public 

key cryptosystems and also how security can be enhanced in ECC by using Character-

Conversion-Method. 
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I. INTRODUCTION 
 

 Encryption is the process of transforming plaintext data into cipher text in order to 

conceal its meaning and so preventing any unauthorized recipient from retrieving the original 

data. Hence, the main task of encryption is to ensure secrecy. Companies usually encrypt 

their data before transmission to ensure that the data is secure during transit.[9] The 

encrypted data is sent over the public network and is decrypted by the intended recipient. 

There are many encryption algorithms are developed and widely used for information 

security. They can be categorized into symmetric (private) and asymmetric (public) keys 

encryption. 

 Symmetric keys encryption only uses one key to encrypt and decrypt data. The key 

should be distributed before transmission between entities. Keys play a very important role 

because if weak key is used in algorithm then everyone may decrypt the data. Strength of 

Symmetric key encryption depends on the size of used key.[13] 

 For the same algorithm, encryption using longer key is harder to break than the one 

done using smaller key. There are many examples of strong and weak keys of cryptography 

algorithms like RC2, DES, 3DES, RC6, Blowfish, and AES. RC2 and DES use one 64-bit 

key. Triple DES (3DES) uses three 64-bits keys while AES uses various (128,192,256) bits 

keys. Blowfish uses various (32-448) key. RC6 uses various (128,192,256) bit keys where 

default is 128 bits. [1-3]. 
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Asymmetric key encryption is used to solve the problem of key distribution. In Asymmetric 

keys, two keys are used: private and public keys. Public key is used for encryption and 

private key is used for decryption (E.g. RSA and Digital Signatures). Public key is known to 

the public while private key is known only to the user. There is no need for distributing them 

prior to transmission. However, public key encryption is based on mathematical functions, 

computationally intensive and is not very efficient for small mobile devices such as cell 

phone, PDA, and so on. In Asymmetric key encryption, private key and public key are used. 

Public key is used for encryption and private key is used for decryption (E.g. RSA, Digital 

Signatures and ECC). [11] 

 In public key cryptography each user or the device taking part in the communication 

have a pair of keys, a public key and a private key, and a set of operations associated with the 

keys to do the cryptographic operations [9]. Only the particular user/device knows the private 

key whereas the public key is distributed to all users/devices taking part in the 

communication. Since the knowledge of public key does not compromise the security of the 

algorithms, it can be easily exchanged online. 

 The rest of this paper is organized as follows. We review the the asymmetric 

algorithms in section II describe their operations in section III & proposal for enhance the 

security level of Elliptic Key Cryptography from various attacks in section IV. 

 

II. PUBLIC KEY CRYPTOSYSTEMS 
 In this section, we have an overview and cryptanalysis public key cryptosystems 

RSA, DH and ECC. 

 

A. THE RSA CRYPTOSYSTEM 
 We begin with a brief review of the RSA scheme. It is based on the hard 

mathematical problem of integer factorisation, i.e. given a number that is the product of two 

large prime numbers, factorise the number to find the primes. 

 

RSA Key generation 
 Given the ―public exponent‖ e, generate two large prime numbers p and q, such that 

(p-1) and e have no common divisor greater than 1 and (q-1) and e have no prime divisor 

greater than 1. Let n = pq, the product of p and q. Solve (for d) the equation ed = 1 mod (p-1) 

(q-1). The public key is the pair of numbers {n,e} and the private key is the pair {n,d}. 

 

RSA Encryption and Decryption 
 Encryption uses a public key, so that the ciphertext corresponding to plaintext m is c 

= m
e
(mod n). Decryption uses the corresponding private key, so m = c

d
(mod n). 

 

RSA – and the Integer factorization problem 
 As we know RSA is the first asymmetric cryptosystem to have seen widespread use is 

also one of the most accessible illustrations of this principle in action. RSA gets its security 

from the difficulty of factoring very large numbers. The difficulty of getting the plaintext 

message back from the ciphertext and the public key is related to the difficulty of factoring a 

very large product of two prime numbers [4]. 

 As an illustration of this: imagine you were to take two very large prime numbers — 

say, 200 digits long, and were then to multiply them together. Now the result you get has two 

particular properties: 

(i)  It is very large (about 400 digits in length),  

(ii)  It has two, and exactly two factors, both prime numbers the two primes you just  

  multiplied together  
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 You can easily give the two prime numbers from which you start find the product. 

But finding the primes given only the product is more difficult. So much more, in fact, that 

once the numbers get adequately large, it is almost impossible to find them you simply 

cannot assemble enough computing power to do so. So the multiplying of two large prime 

numbers together is the (relatively) easy forward function in this asymmetric algorithm. Its 

inverse the factor finding operation is considerably more difficult, and in practical terms, it‘s 

intractable [3, 4]. 

 The RSA system employs this fact to generate public and private key pairs. The keys 

are functions of the product and of the primes. Operations performed using the cryptosystem 

is arranged so that the operations we wish to be tractable require performing the relatively 

easy forward function — multiplication. Conversely, the operations we wish to make 

difficult — finding the plaintext from the ciphertext using only the public key — require 

performing the inverse operation — solving the factoring problem. 

 

The Diffie-Hellman/DSA Cryptosystems and the 
 

Discrete Logarithm Problem 
 Diffie-Hellman (DH) along with the Digital Signature Algorithm (DSA) based on it is 

another of the asymmetric cryptosystems in general use. ECC, in a sense, is an evolved form 

of DH. So to understand how ECC works, it helps to understand how DH works first. DH 

uses a problem known as the discrete logarithm problem as its central, asymmetric operation. 

The discrete log problem concerns finding logarithm of a number within a finite field 

arithmetic system. Prime fields are fields whose sets are prime - that is, they have a prime 

number of members. These are of particular interest in asymmetric cryptography because, 

over a prime field, exponentiation turns out to be a relatively easy operation, while the 

inverse computing the logarithm is very difficult. To generate a key pair in the discrete 

logarithm (DL) system, therefore, you calculate: 

 

y= (g
x
) mod p   ……………………………….. (1) 

 

 Where p is a large prime — the field size x and g are smaller than p. y is the public 

key. x is used as the private key. In DH, again, the operations we wish to make ‗easy‘, or 

tractable, we harness to the operation in the field which is (relatively) easy exponentiation. So 

encryption using the public key is an exponentiation operation. Decryption using the private 

key is as well. Decryption using the public key, however, would require performing the 

difficult inverse operation solving the discrete logarithm problem. The discrete logarithm 

problem, using the values in the equation above, is simply finding x given only y, g and p. 

 Expanding that thought slightly: someone has multiplied g by itself x times, and 

reduced the result into the field (performed the modulo operation) as often as necessary to 

keep the result smaller than p. Now, knowing y, g and p, you‘re trying to find out what value 

of x they used. It turns out that for large enough values of p, where p is prime, this is 

extraordinarily difficult to do much more difficult than just finding y from g, x and p. If you 

grasp what‘s going on in the operations above, you‘re now in a position to grasp the basic 

math behind the DSA and discrete logarithm systems. 

 And, by extension, you also understand some of the principles behind ECC. ECC — 

as we‘ll discuss in greater detail a little later — also uses a discrete log problem in a finite 

group. The difference is that ECC defines its group differently. And it is, in fact, the 

difference in how the group is defined and particularly how the mathematical operations 

within the group are defined that give ECC its greater security for a given key size. 
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B. ELLIPTIC KEY CRYPTOGRAPHY 
 

 Elliptic Curve Cryptography (ECC) is a public key cryptography. In public key 

cryptography each user or the device taking part in the communication generally have a pair 

of keys, a public key and a private key, and a set of operations associated with the keys to do 

the cryptographic operations [6]. Only the particular user knows the private key whereas the 

public key is distributed to all users taking part in the communication. 

 Some public key algorithm may require a set of predefined constants to be known by 

all the devices taking part in the communication. ‗Domain parameters‘in ECC is an example 

of such constants. Public key cryptography, unlike private key cryptography, does not require 

any shared secret between the communicating parties but it is much slower than the private 

key cryptography. 

 The mathematical operations of ECC is defined over the elliptic curve y
2
 = x

3
 + ax + 

b where 4a
3
 + 27b

2
 ≠ 0. Each value of the ‗a‘and ‗b‘gives a different elliptic curve. All 

points (x, y) which satisfies the above equation plus a point at infinity lies on the elliptic 

curve. The public key is a point in the curve and the private key is a random number. The 

public key is obtained by multiplying the private key with the generator point G in the curve 

[7,8]. The generator point G, the curve parameters ‗a‘and ‗b‘, together with few more 

constants constitutes the domain parameter of ECC. One main advantage of ECC is its small 

key size. A 160-bit key in ECC is considered to be as secured as 1024-bit key in RSA. 

 

Discrete Logarithm Problem 
 The security of ECC depends on the difficulty of Elliptic Curve Discrete Logarithm 

Problem. Let P and Q be two points on an elliptic curve such that kP = Q, where k is a scalar. 

Given P and Q, it is computationally infeasible to obtain k, if k is sufficiently large. k is the 

discrete logarithm of Q to the base P. Hence the main operation involved in ECC is point 

multiplication. I.e. multiplication of a scalar k with any point P on the curve to obtain another 

point Q on the curve. 

 

III. ECC FOUNDATIONS 
 

Scalar Point Multiplication 
 The dominant operation in ECC cryptographic schemes is scalar point multiplication. 

This is the operation which is the key to the use of elliptic curves for asymmetric 

cryptography the critical operation which is itself fairly simple, but whose inverse (the elliptic 

curve discrete logarithm problem defined below) is very difficult. ECC arranges itself so that 

when you wish to performance operation the cryptosystem should make easy encrypting a 

message with the public key, decrypting it with the private key, the operation you are 

performing is point multiplication [3]. 

 Point multiplication is simply calculating kP, where k is an integer and P is a point on 

the elliptic curve defined in the prime field. In point multiplication a point P on the elliptic 

curve is multiplied with a scalar k using elliptic curve equation to obtain another point Q on 

the same elliptic curve. I.e. KP=Q. Point multiplication is achieved by two basic elliptic 

curve operations. 

• Point addition, adding two points J and K to obtain another point L i.e., L = J + K.  

• Point doubling, adding a point J to itself to obtain another point L i.e. L = 2J.  

 

Point addition 
 Point addition is the addition of two points J and K on an elliptic curve to obtain 

another point L on the same elliptic curve. Consider two points J and K on an elliptic curve 
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as shown in figure (a). If K ≠ -J then a line drawn through the points J and K will intersect 

the elliptic curve at exactly one 

 More point –L. The reflection of the point –L with respect to x-axis gives the point L, 

which is the result of addition of points J and K. Thus on an elliptic curve L = J + K. If K = -J 

the line through this point intersect at a point at infinity O. Hence J + (-J) = O. This is shown 

in figure (b). O is the additive identity of the elliptic curve group. A negative of a point is the 

reflection of that point with respect to x-axis. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Addition of two points 

 

 O is the additive identity of the elliptic curve group. A negative of a point is the 

reflection of that point with respect to x-axis. 

 

Point doubling 
 Point doubling is the addition of a point J on the elliptic curve to itself to obtain 

another point L on the same elliptic curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2: Doubling of points 

 

 To double a point J to get L, i.e. to find L = 2J, consider a point J on an elliptic curve 

as shown in figure (a). If y coordinate of the point J is not zero then the tangent line at J will 

intersect the elliptic curve at exactly one more point –L. The reflection of the point –L with 

respect to x-axis gives the point L, which is the result of doubling the point J. 

 Thus L = 2J. If y coordinate of the point J is zero then the tangent at this point 

intersects at a point at infinity O. Hence 2J = O when yJ = 0. This is shown in figure (b) 
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Elliptic Curve Example: 
 Let the equation of the curve is y

2
 mod p = x

3
 + ax + b mod p Inputs: a, b, p (is key of 

the ECC algorithm). Choose two non-negative integers a, b and a large prime number such 

that 4a
3
 + 27b 

2
 mod p! =0. For Example, the following figure (fig 1) shows the elliptic 

curve, y
2
 mod 41 = x

3
 + x + 1 mod 41. Here points P, Q lie on the curve and P+Q gives 

another point that lie on the line that connects P and Q as shown in the fig 1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 3 
The set of points on the above curve are 

{ 

[0 1],[0 40] ,[3, 20], [3, 21], [5, 7], [5, 34], [6, 10],[6, 31] ,[7, 8], [7, 33] ,[9, 

1],[9, 40], 

[11,20],[11,21],[19,14],[19,27],[24,14],[24,27], 

[27,20],[27,21],[28,13],[28,28],[31,4],[31,37], [19 5],[19 18] 

} 

 

Multiplication of a point with a positive integer k is 

Defined as the sum of copies of P, k times. This operation is called Point Multiplication in 

ECC. So 3P=P+P+P. [9] 

 The above points from the Group i.e.Ep (a,b) . Each X and Y coordinates ranges 

between 0 and 41. The addition of the two points on the curve and the inverse of a point on 

the curve are defined in the field using modular arithmetic. The point at the infinity is identity 

point on the curve. 

 

IV. SECURITY IN ECC 
 

 As we discussed earlier that the security of ECC depends on the difficulty of Elliptic 

Curve Discrete Logarithm Problem Now for our assumption USER A and USER B 

communicate each other and sending message M securily. 

 

1. Assume that Xp = 11 and Yp = 20 Where Xp and Yp are the base - points  

2. Also Xm = 24 and Ym = 27  

Where Xm & Ym are the message points  

3. User A sends kap and l to User B.  

Where kap is (35, 5) of User A and l = any random integer from 0 to 15. 

4. Now User B computes the following points.  

(i) l * P  is (28,28)  

(ii) l*kap is (5,7)  
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(iii) l*kap+M is (3,21) where M is the message   point. 

 

5. Now User B sends 2 points 

C1 = l*P is (5, 7) 

C2 = (l*ka*P+M) to User A. 

C2 – C1 = M which is the message point. 

M is (24, 27)  

 

1. Character - Conversion – Method : The Proposed Method  
 Now for our assumption USER A and USER B communicate each other and sending 

message M securely. 

 

1. Assume that Xp and Yp are the base points.  

2. And also Xm & Ym are the message points.  

3. User A sends kap and l to User B. Where kap is public key of User A and l = any random 

integer from 0 to 15. 

Suppose we take a character L. DEFINE: Char L; 

      l = random (15) + 3; 

       l = l + 64; 

L = l; 

Printf (―L = % c, where L is an character ‖, L); l = L – 64; 

 

4. Now User B computes the following points.  

i ) l * P  

ii) l*kap  

iii) l*kap+M , where M is the message point.  

 

5. Now User B sends 2 points  

i) C1 = l*P 

ii )  C2 = (l*ka*P+M) to User A.  

iii ) C2 – C1 = M which is the message point.  

 

2. Encoding and Decoding through Message - Point 
 Let us suppose a text file or any image has to be encrypted with the message M. All 

the points on the elliptic curve can be directly mapped to an ASCII value, select a curve on 

which we will get a minimum of 128 points, so that we fix each point on the curve to an 

ASCII value. For example, ‗EGYPT‘ can be written as sequence of ASCII characters that is 

‗69‘ ‗71‘ ‗89‘ ‗80‘ ‗84‘. We can map these values to fixed points on the curve. It will 

improve the security of our message. The above two methods are useful to prevent our secret 

information from various attackers. 

 

V. CONCLUSION 
 

 The above two methods are very efficient in terms of security when we talk about ― 

brute-force ‖ attack and ― man-in the-middle-attack ‖. In first method integer value is 

replaced by a character and every time a character takes less space as compared to an integer. 

This will results in the memory savings, fast computation and low processing overhead. And 

in second method the original message M encrypted with any text. It also results in the 

enhancement of security level of ECC. And this, in the end, is the reason ECC is a stronger 

option than the RSA and discrete logarithm systems for the future. And this, in the end, is 
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why ECC is such an excellent choice for doing asymmetric cryptography in portable, 

necessarily constrained devices right now. As an example: as of this writing, a popular, 

recommended RSA key size for most applications is 2,048 bits. For equivalent security using 

ECC, you need a key of only 224 bits. 
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