
Verification of Probabilistic Properties in HOL
Using the Cumulative Distribution Function

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordat University
1455 de Maisonette W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,tahar}@ece.concordia.ca

Abstract. Traditionally, computer simulation techniques are used to
perform probabilistic analysis. However, they provide inaccurate results
and cannot handle large-scale problems due to their enormous CPU time
requirements. To overcome these limitations, we propose to complement
simulation based tools with higher-order-logic theorem proving so that
an integrated approach can provide exact results for the critical sections
of the analysis in the most efficient manner. In this paper, we illustrate
the practical effectiveness of our idea by verifying numerous probabilistic
properties associated with random variables in the HOL theorem prover.
Our verification approach revolves around the fact that any probabilis-
tic property associated with a random variable can be verified using the
classical Cumulative Distribution Function (CDF) properties, if the CDF
relation of that random variable is known. For illustration purposes, we
also present the verification of a couple of probabilistic properties, which
cannot be evaluated precisely by the existing simulation techniques, as-
sociated with the Continuous Uniform random variable in HOL.

Keywords: Interactive Theorem Proving, Higher-Order-Logic, Proba-
bilistic Systems, Cumulative Distribution Function, HOL.

1 Introduction

Probabilistic analysis has become a tool of fundamental importance to virtually
all engineers and scientists as they often have to deal with systems that exhibit
significant random or unpredictable elements. The main idea behind probabilistic
analysis is to model these uncertainties by random variables and then judge
the performance and reliability issues based on the corresponding probabilistic
properties.

Random variables are basically functions that map random events to numbers.
Every random variable gives rise to a probability distribution, which contains
most of the important information about this random variable. The probability
distribution of a random variable can be uniquely described by its Cumulative
Distribution Function (CDF), which is sometimes also referred to as the proba-
bility distribution function. The CDF of a random variable R, FR(x), represents
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the probability that the random variable R takes on a value that is less than or
equal to a real number x

FR(x) = Pr(R ≤ x) (1)

where Pr denotes the probability. The CDF of a random variable contains com-
plete information about the probability model of the random variable and one
of its major significance is that it can be used to characterize both discrete and
continuous random variables. A distribution is called discrete if its CDF con-
sists of a sequence of finite or countably infinite jumps, which means that it
belongs to a random variable that can only attain values from a certain finite
or countably infinite set. Discrete random variables can also be characterized by
their probability mass function (PMF), which represents the probability that the
given random variable R is exactly equal to some value x, i.e., Pr(R = x). A
distribution is called continuous if its CDF is continuous, which means that it
belongs to a random variable that ranges over a continuous set of numbers that
contains all real numbers between two limits. A Continuous random variable can
also be characterized by its probability density function (PDF), which represents
the slope of its CDF, i.e., dFR(x)

dx . Besides characterizing both discrete and con-
tinuous random variables, the CDF also allows us to determine the probability
that a random variable falls in any arbitrary interval of the real line. Because
of these reasons, the CDF is regarded as one of the most useful characteristic of
random variables in the field of probabilistic analysis where the main goal is to
determine the probabilities for various events.

Today, simulation is the most commonly used computer based probabilistic
analysis technique. Most simulation softwares provide a programming environ-
ment for defining functions that approximate random variables for probability
distributions. The random elements in a given system are modeled by these func-
tions and the system is analyzed using computer simulation techniques, such as
the Monte Carlo Method [17], where the main idea is to approximately answer
a query on a probability distribution by analyzing a large number of samples.
The inaccuracy of the probabilistic analysis results offered by simulation based
techniques poses a serious problem in highly sensitive and safety critical appli-
cations, such as space travel, medicine and military, where a mismatch between
the predicted and the actual system performance may result in either inefficient
usage of the available resources or paying higher costs to meet some perfor-
mance or reliability criteria unnecessarily. Besides the inaccuracy of the results,
another major limitation of simulation based probabilistic analysis is the enor-
mous amount of CPU time requirement for attaining meaningful estimates. This
approach generally requires hundreds of thousands of simulations to calculate
the probabilistic quantities and becomes impractical when each simulation step
involves extensive computations.

In order to overcome the limitations of the simulation based approaches, we
propose to use higher-order logic interactive theorem proving [9] for probabilis-
tic analysis. Higher-order logic is a system of deduction with a precise semantics
and can be used for the development of almost all classical mathematics theories.
Interactive theorem proving is the field of computer science and mathematical
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logic concerned with computer based formal proof tools that require some sort
of human assistance. We believe that probabilistic analysis can be performed
by specifying the behavior of systems which exhibit randomness in higher-order
logic and formally proving the intended probabilistic properties within the en-
vironment of an interactive theorem prover. Due to the inherent soundness of
this approach, the probabilistic analysis carried out in this way will be capable
of providing exact answers. It is important to note here that higher-order-logic
theorem proving cannot be regarded as the golden solution in performing proba-
bilistic analysis because of its own limitations. Even though theorem provers have
been successfully used for a variety of tasks, including some that have eluded hu-
man mathematicians for a long time, but these successes are sporadic, and work
on hard problems usually requires a proficient user and a lot of formalization.
On the other hand, simulation based techniques are at least capable of offer-
ing approximate solutions to these problems. Therefore, we consider simulation
and higher-order-logic theorem proving as complementary techniques, i.e., the
methods have to play together for a successful probabilistic analysis framework.
For example, the proposed theorem proving based approach can be used for the
safety critical parts of the design which can be expressed in closed mathematical
forms and simulation based approaches can handle the rest.

The foremost conditions for conducting probabilistic analysis within the en-
vironment of a higher-order-logic theorem prover are (1) the higher-order-logic
formalization of random variables; and (2) to be able to formally verify the prob-
abilistic properties of these random variables within the theorem prover. This
paper is mainly targeted towards the second condition above, though the for-
malization of random variables is also discussed briefly. Our approach for the
verification of probabilistic properties, illustrated in Figure 1, is primarily based
on the fact that if a random variable is formally specified and its CDF relation is
formally verified in a higher-order-logic theorem prover then the classical CDF
properties [16] can be used to prove any of its probabilistic properties. The pa-
per presents the verification of these classical CDF properties and the formal
proofs for the facts that any probabilistic property for a given random variable,
including the PMF and the PDF, can be expressed in terms of its CDF.

Fig. 1. Framework for Verifying Probabilistic Properties
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We have selected the HOL theorem prover [10] for the current formalization
mainly in order to build upon the existing mathematical theories of Measure
and Probability. Hurd [14] developed these theories and also presented a frame-
work for the formalization of probabilistic algorithms in his PhD thesis. Random
variables are basically probabilistic algorithms and Hurd’s thesis also contains
the formalization of some discrete random variable which are verified by proving
their corresponding PMF relations in the HOL theorem prover.

The rest of the paper is organized as follows. In Section 2, we present a brief
introduction to the HOL theorem prover and an overview of Hurd’s methodol-
ogy for the formalization of probabilistic algorithms in HOL . Then in Section 3,
we show how Hurd’s formalization framework can be extended to formalize con-
tinuous random variables as well by defining the Standard Uniform random vari-
able and proving its CDF relation in the HOL theorem prover. The benefit of the
formal definition of the Standard Uniform random variable is that it can be used
along with nonuniform random number generation techniques [7] to formalize
other continuous random variables in HOL. In Section 4, we formally specify
the CDF by a real valued higher-order-logic function and provide the formal
verification of its classical properties within the HOL theorem prover. Section 5
illustrates the usefulness of the formally verified CDF properties in constructing
a higher-order-logic theorem prover based probabilistic analysis framework. In
this section, we have included the HOL proofs for the facts that the CDF re-
lation of a random variable can be used along with the formally verified CDF
properties to determine any of its associated probabilistic quantities. Then in
Section 6, we outline the process of verifying a couple of probabilistic properties
associated with the Continuous Uniform random variable within the HOL theo-
rem prover to illustrate the practical effectiveness of the proposed approach. A
review of the related work in the literature is given in Section 7 and we finally
conclude the paper in Section 8.

2 Preliminaries

In this section, we provide an overview of the HOL theorem prover and Hurd’s
methodology [14] for the formalization of probabilistic algorithms in HOL. The
intent is to provide a brief introduction to these topics along with some notation
that is going to be used in the next sections.

2.1 HOL Theorem Prover

The HOL theorem prover, developed at the University of Cambridge, UK, is an
interactive theorem prover which is capable of conducting proofs in higher-order
logic. It utilizes the simple type theory of Church [5] along with Hindley-Milner
polymorphism [22] to implement higher-order logic. HOL has been successfully
used as a verification framework for both software and hardware as well as a plat-
form for the formalization of pure mathematics. It supports the formalization
of various mathematical theories including sets, natural numbers, real numbers,
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measure and probability. The HOL theorem prover includes many proof assis-
tants and automatic proof procedures. The user interacts with a proof editor
and provides it with the necessary tactics to prove goals while some of the proof
steps are solved automatically by the automatic proof procedures.

In order to ensure secure theorem proving, the logic in the HOL system is rep-
resented in the strongly-typed functional programming language ML [24]. The
ML abstract data types are then used to represent higher-order-logic theorems
and the only way to interact with the theorem prover is by executing ML pro-
cedures that operate on values of these data types. Users can prove theorems
using a natural deduction style by applying inference rules to axioms or previ-
ously generated theorems. The HOL core consists of only basic 5 axioms and
8 primitive inference rules, which are implemented as ML functions. Soundness
is assured as every new theorem must be created from these basic axioms and
primitive inference rules or any other pre-existing theorems/inference rules.

We selected the HOL theorem prover for the proposed formalization mainly
because of its inherent soundness and ability to handle higher-order logic and
in order to benefit from the built-in mathematical theories for measure and
probability.

2.2 Verifying Probabilistic Algorithms in HOL

Hurd [14] proposed to formalize the probabilistic algorithms in higher-order logic
by thinking of them as deterministic functions with access to an infinite Boolean
sequence B

∞; a source of infinite random bits. These deterministic functions
make random choices based on the result of popping the top most bit in the
infinite Boolean sequence and may pop as many random bits as they need for
their computation. When the algorithms terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by other
programs. Thus, a probabilistic algorithm which takes a parameter of type α
and ranges over values of type β can be represented in HOL by the function

F : α → B∞ → β × B∞

For example, a Bernoulli(1
2 ) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The function bit accepts the
infinite Boolean sequence and returns a random number, which is either 0 or 1
together with a sequence of unused Boolean sequence, which in this case is the tail
of the sequence. The above methodology can be used to model most probabilistic
algorithms. All probabilistic algorithms that compute a finite number of values
equal to 2n, each having a probability of the form m

2n : where m represents the
HOL data type nat and is always less than 2n, can be modeled, using Hurd’s
framework, by well-founded recursive functions. The probabilistic algorithms
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that do not satisfy the above conditions but are sure to terminate can be modeled
by the probabilistic while loop proposed in [14].

The probabilistic programs can also be expressed in the more general state-
transforming monad where the states are the infinite Boolean sequences.

� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = let (x,s’)← f(s) in g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All the monad laws hold for this def-
inition, and the notation allows us to write functions without explicitly men-
tioning the sequence that is passed around, e.g., function bit can be defined
as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s,stl s).
Hurd [14] also formalized some mathematical measure theory in HOL in or-

der to define a probability function P from sets of infinite Boolean sequences
to real numbers between 0 and 1. The domain of P is the set E of events of
the probability. Both P and E are defined using the Carathéodory’s Extension
theorem, which ensures that E is a σ-algebra: closed under complements and
countable unions. The formalized P and E can be used to derive the basic laws
of probability in the HOL prover, e,g., the additive law, which represents the
probability of two disjoint events as the sum of their probabilities:

� ∀ A B. A ∈ E ∧ B ∈ E ∧ A ∩ B = ∅ ⇒
P(A ∪ B) = P(A) + P(B)

The formalized P and E can also be used to prove probabilistic properties for
probabilistic programs such as

� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} rep-
resents a set of all x that satisfy the condition C in HOL.

The measurability of a function is an important concept in probability theory
and also a useful practical tool for proving that sets are measurable [3]. In Hurd’s
formalization of probability theory, a set of infinite Boolean sequences, S, is said
to be measurable if and only if it is in E , i.e., S ∈ E . Since the probability measure
P is only defined on sets in E , it is very important to prove that sets that arise in
verification are measurable. Hurd [14] showed that a function is guaranteed to
be measurable if it accesses the infinite boolean sequence using only the unit,
bind and sdest primitives and thus leads to only measurable sets.

Hurd formalized four discrete random variables and proved their correctness
by proving the corresponding PMF relations [14]. Because of their discrete na-
ture, all these random variables either compute a finite number of values or are
sure to terminate. Thus, they can be expressed using Hurd’s methodology by
either well formed recursive functions or the probabilistic while loop [14]. On
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the other hand, continuous random variables always compute an infinite num-
ber of values and therefore would require all the random bits in the infinite
Boolean sequence if they are to be represented using Hurd’s methodology. The
corresponding deterministic functions cannot be expressed by either recursive
functions or the probabilistic while loop and it is mainly for this reason that
the specification of continuous random variables needs to be handled differently
than their discrete counterparts.

3 Formalization of the Standard Uniform Distribution

In this section, we present the formalization of the Standard Uniform distribu-
tion in the HOL theorem prover. The Standard Uniform random variable is a
continuous random variable and can be characterized by the CDF as follows:

Pr(X ≤ x) =

⎧
⎨

⎩

0 if x < 0;
x if 0 ≤ x < 1;
1 if 1 ≤ x.

(2)

One of the significant aspects of formalizing the Standard Uniform random
variable is that it can be utilized along with the nonuniform random number
generation techniques [7] to model other continuous random variables in the
HOL theorem prover as well. Therefore, it opens the doors of formally verifying
the probabilistic properties of systems that exhibit randomness of continuous
nature.

3.1 Formal Specification of Standard Uniform Random Variable

The Standard Uniform random variable can be formally expressed in terms of
an infinite sequence of random bits as follows [13]

lim
n→∞(λn.

n−1∑

k=0

(
1
2
)k+1Xk) (3)

where, Xk denotes the outcome of the kth random bit; true or false represented
as 1 or 0 respectively. The mathematical relation of Equation (3) can be formal-
ized in the HOL theorem prover in two steps. The first step is to define a discrete
Standard Uniform random variable that produces any one of the equally spaced
2n dyadic rationals in the interval [0, 1 − (1

2 )n] with the same probability (1
2 )n

using Hurd’s methodology

Definition 3.1:
� (std unif disc 0 = unit 0) ∧

∀ n. (std unif disc (n+1) =
bind (std unif disc n) (λm. bind sdest

(λb. unit (if b then ((1
2 )n+1 + m) else m))))
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The function std unif disc allows us to formalize the real sequence of Equation
(3) in the HOL theorem prover. Now, the formalization of the mathematical
concept of limit of a real sequence in HOL [12] can be used to formally specify
the Standard Uniform random variable of Equation (3) as follows

Definition 3.2:
� ∀ s. std unif cont s = lim (λn. fst(std unif disc n s))

where, lim M represents the HOL formalization of the limit of a real sequence
[12], such that lim M is the limit value of the real sequence M (i.e., lim

n→∞M(n) =

lim M).

3.2 Formal Verification of Standard Uniform Random Variable

The formalized Standard Uniform random variable, std unif cont, can be verified
to be correct by proving its CDF to be equal to the theoretical value given in
Equation (2). The first step in this verification is to prove the measurability of
the set under consideration, i.e., to prove that the set {s | std unif cont s ≤ x}
is in E . Since, the function std unif disc accesses the infinite boolean sequence
using only the unit, bind and sdest primitives, Hurd’s formalization framework
can be used to prove

Lemma 3.1:
� ∀ x,n. {s | FST (std unif disc n s) ≤ x} ∈ E

On the other hand, the definition of the function std unif cont involves the lim
function and thus the corresponding sets cannot be proved to be measurable in
a very straightforward manner. Therefore, in order to prove this, we leveraged
the fact that each set in the sequence of sets (λn.{s | FST (std unif disc n s) ≤
x}) is a subset of the set before it, in other words, this sequence of sets is a
monotonically decreasing sequence. Thus, the countable intersection of all sets
in this sequence can be proved to be equal to the set {s | std unif cont s ≤ x}

Lemma 3.2:
� ∀ x. {s | std unif cont s ≤ x} =

⋂
n (λ n. {s | FST (std unif disc n s) ≤ x})

Now the set {s | std unif cont s ≤ x} can be proved to be measurable since
E is closed under countable intersections [14] and all the sets in the sequence
(λn.{s | FST (std unif disc n s) ≤ x}) are measurable according to Lemma 3.1.

Theorem 3.1:
� ∀ x. {s | std unif cont s ≤ x} ∈ E

Theorem 3.1 can now be used along with the real number theories [12] to verify
the CDF of the probabilistic function std unif cont in the HOL theorem prover
and the verification details can be found in [13].

Theorem 3.2:
� ∀ x. P{s | std unif cont s ≤ x} =

if (x < 0) then 0 else (if (x < 1) then x else 1)
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4 Formalization of the Cumulative Distribution Function

In this section, we present the formal specification of the CDF and the verifica-
tion of CDF properties in the HOL theorem prover. The CDF and its properties
have been an integral part of the classical probability theory since its early de-
velopment in the 1930s. The properties are mentioned in most of the probability
theory texts, e.g, [16] and have been used successfully in performing analytical
analysis of random systems using paper-pencil proofs. Our main contribution
is the formalization of these properties in a mechanical theorem prover. The
proof process was long and tedious requiring a deep understanding and profi-
ciency in both the mathematical backgrounds (Boolean Algebra, Set Theory,
Real Theory, Measure Theory and Probability Theory) as well as the HOL
theorem prover. The motivation, on the other hand, is that these formalized
properties can now be utilized to obtain a complete, rigorous and communicable
description of random components in a system. Also, the formalization allows
us to perform machinized proofs regarding probabilistic properties within the
framework of a sound theorem-prover environment.

4.1 Formal Specification of CDF

It follows from Equation (1) that the CDF can be formally specified in HOL by a
higher-order-logic function that accepts a random variable and a real argument
and returns the probability of the event when the given random variable is less
than or equal to the value of the given real number. Hurd’s formalization of the
probability function P, which maps sets of infinite Boolean sequences to real
numbers between 0 and 1, can be used to formally specify the CDF as follows:

Definition 4.1:
� ∀ R x. cdf R x = P {s | R s ≤ x}

where, R represents the random variable that accepts an infinite Boolean se-
quence and returns a real number and the set {s | R s ≤ x} is the set of all
infinite Boolean sequences, s, that satisfy the condition (R s ≤ x).

4.2 Formal Verification of CDF Properties

Using the formal specification of the CDF, we are able to verify the classical
CDF properties [16] within the HOL theorem prover. The formal proofs for
these properties not only ensure the correctness of our CDF specification but
also play a vital role in proving various probabilistic properties associated with
random variables as shown in Figure 1. All properties in the following sections
are verified under the assumption that the set {s | R s ≤ x}, where R represents
the random variable under consideration, is measurable for all values of x.

CDF Bounds. For any real number x,

0 ≤ FR(x) ≤ 1 (4)
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This property states that if we plot the CDF against its real argument x, then
the graph of the CDF, FR, is between the two horizontal lines y = 0 and y = 1.
In other words, the lines y = 0 and y = 1 are the bounds for the CDF FR.

The above characteristic can be verified in HOL using the fact that the CDF
is basically a probabilistic quantity along with the basic probability law, verified
in [14], that states that the probability of an event is always less than 1 and
greater than 0 (∀S. S ∈ E ⇒ 0 ≤ P(S) ≤ 1).

Theorem 4.1:
� ∀ R x. (0 ≤ CDF R x) ∧ (CDF R x ≤ 1)

CDF is Monotonically Increasing. For any two real numbers a and b,

if a < b, then FR(a) ≤ FR(b) (5)

In mathematics, functions between ordered sets are monotonic if they preserve
the given order. Monotonicity is an inherent characteristic of CDFs and the CDF
value for a real argument a can never exceed the CDF value of a real argument
b if a is less than b.

Using the set theory in HOL, it can be proved that for any two real numbers
a and b, if a < b then the set of infinite Boolean sequences {s | R s ≤ a} is a
subset of the set {s | R s ≤ b}. Then, using the monotone law of the probability
function (∀S T. S ∈ E ∧ T ∈ E ∧ S ⊆ T ⇒ (P(S) ≤ P(T )), verified in [14], we
proved the monotonically increasing property of the CDF in HOL.

Theorem 4.2:
� ∀ R a b. a < b ⇒ (CDF R a ≤ CDF R b)

Interval Probability. For any two real numbers a and b,

if a < b, then Pr(a < R ≤ b) = FR(b) − FR(a) (6)

This property is very useful for evaluating the probability of a random vari-
able, R, lying in any given interval (a,b] in terms of its CDF.

Using the set theory in HOL, it can be proved that for any two real numbers a
and b, if a < b then the set of infinite Boolean sequences {s | R s ≤ b} is equal to
the union of the sets {s | R s ≤ a} and {s | (a < R s)∧(R s ≤ b)}. Now, the above
CDF property can be proved in HOL using the additive law of the probability
function (∀S T. S ∈ E ∧ T ∈ E ∧ S ∩ T = ∅ ⇒ (P(S ∪ T ) = P(S) + P(T )),
verified in [14], along with the closed under complements and countable unions
property of E .

Theorem 4.3:
� ∀ R a b. a < b ⇒

(P {s | (a < R s) ∧ (R s ≤ b) } = CDF R b - CDF R a)
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CDF at Negative Infinity

lim
x→−∞FR(x) = 0; that is, FR(−∞) = 0 (7)

This property states that the value of the CDF tends to 0 as its real argument
approaches negative infinity or in other words the graph of CDF must eventually
approach the line y = 0 at the left end of the real axis.

We used the formalization of limit of a real sequence [12] along with the
formalization of the mathematical measure theory [14] in HOL to prove this
property. The first step is to prove a relationship between the limit value of the
probability of a monotonically decreasing sequence of events An (i.e, An+1 ⊆ An

for every n) and the probability of the countable intersection of all events that
can be represented as An.

∀An. lim
n→∞Pr(An) = Pr(

⋂

n

An) (8)

This relationship, sometimes called the Continuity Property of Probabilities,
can be used to prove the above CDF property by instantiating it with a de-
creasing sequence of events represented in Lambda calculus as (λn.{s | R s ≤
−(&n)}); where n has the HOL data type nat: {0, 1, 2, . . .} and ”&” converts
it to its corresponding real number. The left hand side of Equation 8, with this
sequence, represents the CDF for the random variable R when its real argument
approaches negative infinity and thus is equal to the left hand side of our proof
goal in Equation 7. Using the monotonically decreasing nature of the events in
the sequence (λn.{s | R s ≤ −(&n)}), the right hand side of Equation 8, with
this sequence, can be proved to be equal to the probability of an empty set. The
CDF at negative infinity property can now be proved using the basic probability
law (P({}) = 0), verified in [14], which states that the probability of an empty
set is 0.

Theorem 4.4:
� ∀ R. lim (λ n. CDF R (-&n)) = 0

where, lim is the HOL function for the limit of a real sequence [12].

CDF at Positive Infinity

lim
x→∞FR(x) = 1; that is, FR(∞) = 1 (9)

This property, quite similar to the last one, states that the value of the CDF
tends to 1 as its real argument approaches positive infinity or in other words the
graph of CDF must eventually approach the line y = 1 at the right end of the
real axis.

The HOL proof steps for this property are also quite similar to the last one
and this time we use the Continuity Property of Probabilities which specifies
the relationship between the limit value of the probability of a monotonically
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increasing sequence of events An (i.e, An ⊆ An+1 for every n) and the probability
of the countable union of all events that can be represented as An.

∀An. lim
n→∞Pr(An) = Pr(

⋃

n

An) (10)

In this case, we instantiate Equation 10 with an increasing sequence of events
represented in Lambda calculus as (λn.{s | R s ≤ (&n)}). The countable union
of all events in this sequence is the universal set. The CDF at positive infinity
property can now be proved in the HOL theorem prover using the basic prob-
ability law (P(UNIV) = 1), verified in [14], which states that the probability of
the universal set is 1.

Theorem 4.5:
� ∀ R. lim (λ n. CDF R (&n)) = 1

CDF is Continuous from the Right. For every real number a,

lim
x→a+

FR(x) = FR(a) (11)

where lim
x→a+

FR(x) is defined as the limit of FR(x) as x tends to a through values

greater than a. Since FR is monotone and bounded, this limit always exists.
In order to prove this property in HOL, we used a decreasing sequence of

events represented in Lambda calculus as (λn.{s | R s ≤ a + 1
&(n+1)}). This se-

quence of events has been selected in such a way that if the Continuity Property
of Probabilities, given in Equation 8, is instantiated with this sequence then its
left hand side represents the CDF for a random variable, R, when its real argu-
ment approaches a through values greater than a. Therefore, with this sequence,
the left hand side of the Continuity Property of Probabilities is equal to the left
hand side of our proof goal in Equation 11. Using the monotonically decreasing
nature of the events in the sequence (λn.{s | R s ≤ a + 1

&(n+1)}), it can also
be proved that the countable intersection of all events in this sequence is the set
{s | R s ≤ a}. The CDF can now be proved to be continuous from the right
as the right hand side of the Continuity Property given in Equation 8, with the
sequence (λn.{s | R s ≤ a + 1

&(n+1)}), represents the CDF of random variable
at real argument a.

Theorem 4.6:
� ∀ R a. lim (λ n. CDF R (a + 1

&(n+1))) = CDF R a

CDF Limit from the Left. For every real number a,

lim
x→a−

FR(x) = Pr(R < a) (12)

where lim
x→a−

FR(x) is defined as the limit of FR(x) as x tends to a through values

less than a.
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This property is quite similar to the previous one and can be proved by instan-
tiating the Continuity Property of Probabilities, given in Equation 10, with an
increasing sequence of events represented in Lambda calculus as (λn.{s | R s ≤
a − 1

&(n+1)}). The left hand side of Equation 10, with this sequence, represents
the CDF for the random variable R when its real argument approaches a through
values less than a and is thus equal to the left hand side of our proof goal in
Equation 12. Using the monotonically increasing nature of the events in the se-
quence (λn.{s | R s ≤ a − 1

&(n+1)}), it can be proved that the countable union
of all the events in this sequence is the set {s | R s < a} which led us to prove
the theorem stating the CDF limit from the left.

Theorem 4.7:
� ∀ R a. lim (λ n. CDF R (a - 1

&(n+1))) = P {s | (R s < a})

5 CDF Properties and Probabilistic Analysis

As mentioned in Section 1, probabilistic analysis is basically the process of eval-
uating performance and/or reliability of a given system by representing its un-
certain elements in terms of random variables and characterizing the results in
terms of the corresponding probabilistic quantities. We have already seen in Sec-
tions 2 and 3 of this paper that both discrete and continuous random variables
can be formalized in the HOL theorem prover. In this section, we illustrate the
usefulness of the formally verified CDF properties in relevance to evaluating
probabilistic quantities while performing probabilistic analysis within the HOL
theorem prover.

5.1 Determining Interval Probabilities

The CDF of a random variable, R, along with the CDF properties verified in
Section 4 can be used to determine the probability that R will lie in any specified
interval of the real line. In this section, we verify this statement in the HOL
theorem prover by dividing the real line in three disjoint intervals; (−∞, a], (a, b]
and (b, ∞), and determining the probabilities that a random variable lies in these
intervals in terms of its CDF.

Determining the probability for the first interval is quite straightforward since
the CDF for a random variable, R, with a real argument, a, can be used directly
to find the probability that a random variable, R, will lie in the interval (−∞, a].
Whereas, the probability that a random variable, R, will lie in the interval (a, b]
can be determined by its CDF values for the real arguments a and b as has
been proved in Theorem 4.3. For the third interval, we first use the set theory
in HOL to prove that for any real value b, the set of infinite Boolean sequences
{s | b < R s} is the complement of the set {s | R s ≤ b}. The probability
that a random variable, R, lies in the interval (b, ∞) can now be represented
in terms of its CDF by using the complement law of the probability function
(∀S. S ∈ E ⇒ P(S) = 1 − P(S̄)), verified in [14], under the assumption that the
set {s|Rs ≤ a} is measurable.
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Theorem 5.1:
� ∀ R b. P {s | b < R s} = 1 - (CDF R b)

5.2 Representing PMF in Terms of the CDF

The PMF can be expressed in terms of the CDF of the corresponding random
variable by using the fact that for any real value a the set of infinite Boolean
sequences {s | R s ≤ a} is equal to the union of the sets {s | R s < a} and
{s | R s = a}. Now, using Theorems 4.6 and 4.7, the additive law of the probabil-
ity function P and the closed under complements and countable unions property
of E , the desired relationship can be proved under the assumption that the sets
{s|Rs = a} and {s|Rs ≤ a} are measurable.

Theorem 5.2:
� ∀ R a. P {s | R s = a} = lim (λ n. CDF R (a + 1

&(n+1))) -

lim (λ n. CDF R (a - 1
&(n+1)))

A unique characteristic for all continuous random variables is that their PMF
is equal to 0. Theorem 5.2 along with the formalization of continuous functions
allowed us prove this property in the HOL theorem prover.

Theorem 5.3:
� ∀ R a. (∀x. (λx. CDF R x) contl x) ⇒ P {s | R s = a} = 0)

where, (∀ x.f contl x) represents the HOL function definition for a continuous
function [12] such that the function f is continuous for all x.

5.3 Representing PDF in Terms of the CDF

The PDF, which is the slope of the CDF, represents the probability distribution
of a continuous random variable in terms of integrals. It can be expressed in
the HOL theorem prover by using the formal definition of the CDF and the
formalization of the mathematical concept of a derivative [12].

Definition 5.1:
� ∀ R x. pdf R x = @l. ((λx. CDF R x) diffl l) x

where (f diffl l) x represents the HOL formalization of the derivative [12], such
that l is the derivative of the function f with respect to the variable x, and @x.t
represents the Hilbert choice operator in HOL (εx.t term), that represents the
value of x such that t is true.

Using the above definition of the PDF, we were able to prove the following
classical properties of the PDF [16] in the HOL theorem prover under the as-
sumption that the set {s | R s ≤ x}, where R represents the random variable
under consideration, is measurable for all values of x.
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PDF Lower Bound. For any real number x,

0 ≤ fR(x) (13)

This property states that if we plot the PDF against its real argument x, then
the graph of the PDF, fR, will never go below the horizontal line y = 0. In other
words, the line y = 0 is the lower bound for the PDF fR.

We utilized the monotonically increasing property of the CDF proved in The-
orem 4.2 along with the nonnegative characteristic of the derivative of nonde-
creasing functions to prove this property in the HOL theorem prover.

Theorem 5.4:
� ∀ R x. (∀x.(λx. CDF R x) differentiable x) ⇒ (0 ≤ pdf R x)

where, the condition (f differentiable x ) ensures in HOL that a derivative exists
for the function f for the variable x.

Interval Probability in Terms of PDF. For any two real numbers a and b,

if a < b, then Pr(a < R ≤ b) =
∫ b

a

fR(x)dx (14)

We used the HOL formalization of the gauge integral [21], which has all the
attractive convergence properties of the Lesbesgue integral, along with the inter-
val property of the CDF, verified in Theorem 4.3, to prove the above property
in the HOL theorem prover.

Theorem 5.5:
� ∀ R x.(∀x. (λx. CDF R x) differentiable x) ⇒

(Dint (a,b) (λx. pdf R x)
(P {s | (a ≤ R s) ∧ (R s ≤ b)}))

where Dint(a,b) f k represents the HOL formalization of the gauge integral [12]
such that the definite integral of the function f over the interval [a,b] is k.

6 Illustrative Example

In this section, we illustrate the practical effectiveness of our approach by pre-
senting a simplified probabilistic analysis example of roundoff error in a digital
processor within the HOL theorem prover.

Assume that the roundoff error for a particular digital processor is uniformly
distributed over the interval [-5x10−12, 5x10−12]. An engineering team is inter-
ested in verifying that the probability of the event when the roundoff error in
this digital processor is greater than 2x10−12 is less than 0.33 and the probability
that the final result fluctuates by ±1x10−12 with respect to the actual value is
precisely equal to 0.2. We now verify these properties in HOL by following the
steps mentioned in Figure 1.
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6.1 Formal Specification of the Continuous Uniform Distribution

The first step, in the higher-order-logic theorem proving based formal verification
of probabilistic properties, is the formalization of the random variable that is
required in the probabilistic analysis under consideration. The example under
consideration calls for the Continuous Uniform random variable, which can be
characterized by the CDF as follows

P(X ≤ x) =

⎧
⎨

⎩

0 if x ≤ a;
x−a
b−a if a < x ≤ b;
1 if b < x.

(15)

The Continuous Uniform random variable can be formally expressed in terms
of the formalized Standard Uniform random variable of Section 3 using the
Inverse Transform Method (ITM) [7]. The ITM is a commonly used nonuniform
random number generation technique for generating continuous random variants
for probability distributions for which the inverse of the CDF can be expressed
in a closed mathematical form.

Definition 6.1:
� ∀ a b s. uniform cont a b s = (b - a) * std unif cont s) + a

The function uniform cont, which formally represents the Continuous Uniform
random variable, accepts two real valued parameters a, and b and the infinite
Boolean sequence s and returns a real number in the interval [a,b].

6.2 CDF Verification of the Continuous Uniform Random Variable

The second step in our approach for the verification of probabilistic properties
associated with a random variable is the verification of its CDF relationship,
as shown in Figure 1. This can be done by proving the CDF of the function
uniform cont to be equal to the theoretical value of the CDF of the Continuous
Uniform random variable given in Equation 15.

The definition of the function uniform cont and elementary real arithmetic
operations may be used to transform the set {s|uniform cont a b s ≤ x}
in such a way that (std unif cont s) is the only term that remains on the left
hand side of the inequality, i.e., (P{s|std unif cont s ≤ x−a

b−a }). Now, the CDF
property for the function std unif cont, proved in Theorem 3.2, along with some
simple arithmetic reasoning can be used to prove the desired CDF relationship.

Theorem 6.1:
� ∀ a b x. (a < b) ⇒ P{s | uniform cont a b s ≤ x} =

if (x ≤ a) then 0 else (if (x ≤ b) then x−a
b−a else 1)

Similarly, the measurability property proved in Theorem 3.1 can be used to
prove the measurability property for the set that corresponds to the CDF of the
probabilistic function uniform cont in the HOL theorem prover.

Theorem 6.2:
� ∀ a b x. (a < b) ⇒ measurable {s | uniform cont a b s ≤ x}
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6.3 Verification of Probabilistic Properties

After the completion of the above steps, we are now in the position of formally
verifying the given probabilistic properties by modeling the roundoff error as a
Continuous Uniform random variable in the interval [-5x10−12, 5x10−12].

We proceed to verify the first probabilistic property, which checks if the prob-
ability of the event when the roundoff error in this digital processor is greater
than 2x10−12 is less than 0.33, by instantiating Theorem 5.1 with the random
variable (λs. uniform cont − 5x10−12 5x10−12 s) and the real value 2x10−12.
Now the property can be verified by simplifying the result using the formal def-
inition of the CDF, given in Definition 4.1, Theorems 6.1 and 6.2 and the real
number theories in HOL [12].

Theorem 6.3:
� P {s | 2x10−12 < uniform cont -5x10−12 5x10−12 s } < 0.33

Similarly the second property, which checks if the probability of the final result
fluctuating by ±1x10−12 with respect to the actual value is precisely equal to 0.2,
can be verified by checking if the probability of the Continuous Uniform random
variable, defined in the interval [-5x10−12, 5x10−12], falling in the interval [-
1x10−12, 1x10−12] is equal to 0.2. This can be done by using the definition
of CDF, Theorems 6.1 and 6.2 and instantiating the CDF property verified in
Theorem 4.3 by the real values -1x10−12, 1x10−12 for variables a, b and the
random variable (λs. uniform cont − 5x10−12 5x10−12 s) for variable R.

Theorem 6.4:
� P {s | (-1x10−12 < uniform cont -5x10−12 5x10−12 s) ∧

(uniform cont -5x10−12 5x10−12 s ≤ 1x10−12)} = 0.2

The above example illustrates the fact that the interactive theorem proving
based approach is capable to verify probabilistic quantities, which can be ex-
pressed in a closed mathematical form, with 100% precision; a novelty which is
not available in the simulation based techniques. Thus, by integrating the higher-
order-logic theorem proving capability to the simulation based tools, the level
of the overall accuracy of the results can be raised. This added benefit comes at
the cost of a significant amount of time and effort spent, while formalizing the
system behavior, by the user.

7 Related Work

Due to the vast application domain of probability, many researchers around the
world are trying to improve the quality of computer based probabilistic analysis.
The ultimate goal is to come up with tools that are capable of providing accurate
analysis, can handle large-scale problems and are easy to use. In this section, we
provide a brief account of the state-of-the-art and discuss some related work in
the field of probabilistic analysis.

Modern probability and statistics is supported by computers to perform some
of the very large and complex calculations using simulation techniques. All com-
monly used commercial probabilistic and statistical software packages available
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these days, e.g., SAS [27], SPSS [28], Microsoft’s Excel [8], etc. contain a large
collection of discrete and absolutely continuous univariate and multivariate dis-
tributions which in turn can be used to form complicated random models. The
models can then be analyzed using simulation techniques. These packages are ca-
pable of automatically evaluating probabilistic quantities but the results are less
accurate. McCullough [18] proposed a collection of intermediate-level tests for
assessing the numerical reliability of a statistical package and uncovered flaws in
most of the mainframe statistical packages [19] and [20]. Our proposed approach,
on the other hand, is capable of determining precise probabilistic quantities at
the cost of significant user interaction.

A number of probabilistic languages, e.g., Probabilistic cc [11], λo [23] and
IBAL [25], have been proposed that are capable of modeling random variables.
Probabilistic languages treat probability distributions as primitive data types
and abstract from their representation schemes. Therefore, they allow program-
mers to perform probabilistic computations at the level of probability distri-
butions rather than representation schemes. These probabilistic languages are
quite expressive and can be used to perform probabilistic analysis based on the
distribution properties of random variables but they have their own limitations.
For example, either they require a special treatment such as the lazy list evalua-
tion strategy in IBAL and the limiting process in Probabilistic cc or they do
not support precise reasoning as in the case of λo. The theorem proving based
approach proposed in this paper, on the other hand, is capable of modeling most
probability distributions due to the high expressive of the higher-order-logic and
also provides precise reasoning based on its inherent soundness.

Another alternative for the formal verification of probabilistic properties is to
use probabilistic model checking techniques, e.g., [2], [26]. Like the traditional
model checking, it involves the construction of a precise mathematical model of
the probabilistic system which is then subjected to exhaustive analysis to verify
if it satisfies a set of formal probabilistic properties. This approach is capable of
providing precise solutions in an automated way; however it is limited for systems
that can only be expressed as a probabilistic finite state machine and is incapable
of handling large systems due to the state space explosion [6] problem. Our
proposed theorem proving based approach, in contrast, is capable of handling
all kinds of probabilistic systems because of the high expressiveness of the higher-
order-logic and the verification of probabilistic properties is independent of the
size of the model since state space explosion is not an issue.

Hurd’s PhD thesis [14] can be regarded as one of the pioneering works in re-
gards to formalizing probabilistic systems in higher-order-logic. The thesis also
presents the tools, based on the mathematical probability theory, for reasoning
about the correctness of probabilistic systems and this is the area that we ex-
tended to verify interval properties of probabilistic systems in HOL. Hurd et.
al [15] also formalized the probabilistic guarded-command language (pGCL) in
HOL. The pGCL contains both demonic and probabilistic nondeterminism and
thus makes it suitable for reasoning about distributed random algorithms. Ce-
liku [4] built upon the formalization of the pGCL to mechanize the quantitative
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Temporal Logic (qtl) and demonstrated the ability to verify temporal properties
of probabilistic systems in HOL.

8 Conclusions

In this paper, we propose to use higher-order-logic theorem proving as a comple-
ment to state-of-the-art simulation based approaches for a more reliable and ef-
ficient probabilistic analysis framework. The inherent soundness of the theorem-
proving based analysis allows us to acquire exact answers to probabilistic prop-
erties, which can be expressed in a closed mathematical form, in an interactive
manner and is thus quite useful for the analysis of safety critical and highly
sensitive sections of the system under test. Simulation techniques, on the other
hand, are capable of handling analytically complex sections in an automated
way but provide approximate answers and thus can be used to efficiently handle
the less critical sections of the system.

We presented a formal definition of the Cumulative Distribution Function of
random variables along with the verification of its properties in the HOL theorem
prover. This is a very significant step towards verification of probabilistic proper-
ties in a formalized probabilistic analysis framework, as has been shown in Section
5 of this paper. We also brieflydescribed the formalizationof the Standard Uniform
random variable in the HOL theorem prover and illustrated with an example that
it can be used to formalize other continuous random variables as well.

To the best of our knowledge, the paper presents the first attempt to formally
verify the CDF properties in a higher-order-logic theorem prover. For this verifi-
cation, we utilized the HOL theories of Sets, Boolean Algebra, Natural Numbers,
Real Analysis, Measure and Probability. Our results can therefore be used as an
evidence for the usefulness of theorem provers in proving pure mathematics and
the soundness of the existing HOL libraries. Besides being the first step towards a
formalized probabilistic analysis framework, the presented formalization is also
a significant step towards an attempt to reconstruct mathematical knowledge
in a computer-oriented environment and therefore is also a contribution to the
QED project, which calls for a computer system that effectively represents all
important mathematical knowledge and techniques [1].
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