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Effect of a Porous Layer on the Flow Structure and Heat
Transfer in a Square Cavity

S. Hamimid1, M. Guellal1, A. Amroune1 and N. Zeraibi2

Abstract: A two-dimensional rectangular enclosure containing a binary-fluid sat-
urated porous layer of finite thickness placed in the centre of the cavity is con-
sidered. Phase change is neglected. Vertical and horizontal solid boundaries are
assumed to be isothermal and adiabatic, respectively. A horizontal temperature
gradient is imposed, driving convection of buoyancy nature. The Darcy equation,
including Brinkman and Forchheimer terms is used to account for viscous and in-
ertia effects in the momentum equation, respectively. The problem is then solved
numerically in the framework of a Velocity-Pressure formulation resorting to a fi-
nite volume method based on the standard SIMPLER algorithm. The effects of the
governing parameters (geometric, hydrodynamic and thermal) on fluid flow and
heat transfer are investigated.

Nomenclature

A aspect ratio,
Cp specific heat at constant pressure, J.kg−1.k−1

Da Darcy number, K.H−2

g gravitational acceleration , m.s−2

H height of the enclosure, m
k thermal conductivity, W.m−1.K−1

K Permeability, m2

L width of the enclosure, m
Nu Nusselt number
Nuavg average Nusselt number
p fluid pressure , Pa
P dimensionless pressure,
Pr Prandtl number, Pr = ν/α .
Ra Rayleigh number, Ra = gβ∆T L3

να
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t time, s
T dimensional temperature, K
TC(TH) temperature on left (right) vertical wall of cavity, Th � Tc,K
T0 reference temperature T0 = TC−TH

2 ,K
u velocity in x-direction , m.s−1

v velocity in y-direction , m.s−1

−→
V field velocity (u−→ex + v−→ey) , m.s−1

x,y cartesian coordinates , m
X, Y dimensionless coordinates
XP dimensional width of the porous layer, m
X p dimensionless width of the porous layer, XP.L−1

Greek symbols

α Thermal diffusivity, m2.s−1

β thermal expansion coefficient: k−1,−1/ρ0(∂ρ/∂T )
ρ fluid density, Kg.m−3

µ dynamic viscosity of the fluid, Kg.m−1.s−1

ν kinematic viscosity, m2.s−1

∆T temperature difference, ∆T = TC−TF , K
ε porosity of the porous layer
Ψ stream function: u =−∂ψ/∂y; v = ∂ψ/∂x, m2.s−1

θ dimensionless temperature, θ = T−T0
∆T

τ dimensionless time
σ ratio of heat capacities

({
ε(ρcp) f +(1− ε)(ρcp)s

}
/(ρcp) f

)
Subscripts

eff effective property of the porous layer
max maximum value
min minimum value
avg average value
0 reference state
C cold
H hot
f refers to the fluid domain
s refers to the porous medium
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1 Introduction

Thermally driven flows in porous media have received a great deal of attention, this
being due to a large number of technical applications and because of the increas-
ing interest in engineering applications such as, fluid flow in geothermal reser-
voirs, geothermal energy systems, compact heat exchangers, separation processes
in chemical industries, dispersion of chemical contaminants through water satu-
rated soil, solidification of casting, migration of moisture in grain storage system,
crude oil production, nuclear engineering, cooling of radioactive waste containers
etc. A detailed review of the topic has been given by Nield and Bejan (2006).

Despite the absence of experimental work and a lack of practical applications, sev-
eral theoretical papers, including those by Patil and Rudraiah (1973), Muthtamil-
selvan and Kandaswamy (2009) and Rudraiah (1984), have been published on mag-
netohydrodynamic convection in a horizontal layer. The simplest case is that of an
applied vertical magnetic field and electrically conducting boundaries.

Recently the combined effect of mixed convection with thermal radiation and chem-
ical reaction on MHD flow of viscous and electrically conducting fluid past a ver-
tical permeable surface embedded in a porous medium have been investigated by
Pal and Talukdar (2010). The results obtained show that the velocity, temperature
and concentration fields are appreciably influenced by the presence of chemical re-
action, thermal stratification and magnetic field. It is observed that the effect of
thermal radiation and magnetic field is to decrease the velocity, temperature and
concentration profiles in the boundary layer. There is also considerable effect of
magnetic field and chemical reaction on skin-friction coefficient and Nusselt num-
ber.

Robillard et al. (2006) investigated numerically as well as analytically the effect of
an electromagnetic field on the natural convection in a vertical rectangular porous
cavity saturated with an electrically conducting binary mixture. They conclude that
under the condition of constant fluxes of heat and mass imposed at the long side
walls of the layer, the flow is parallel in the core of the cavity and turns through
180˚ in regions close to the end boundaries. This flow structure is not affected by
the imposition of a magnetic field.

The effect of porosity on natural convective flow and heat transfer in fluid saturated
porous medium has been investigated using Galerkin’s finite element method by
Nithiarasu, Seetharamu and Sundararajan (1998a). A generalised non-Darcy flow
model with porosity as a separate parameter was used. Results indicate that the
non-Darcy regime is highly sensitive to porosity changes. A variation of order of
40% in the average Nusselt number was possible with change in the porosity, for
the Rayleigh and Darcy number ranges considered.



72 Copyright © 2011 Tech Science Press FDMP, vol.8, no.1, pp.69-90, 2011

Straughan (2010) examined how the structure of the Darcy and Forchheimer co-
efficients (as functions of the porosity ) might influence flows in porous media; it
was proved that the flow solution in a Forchheimer porous material depends con-
tinuously on changes in the porosity.

Convection in a fluid-filled square cavity with differentially heated vertical walls
covered by thin porous layers was studied numerically by Le Breton et al. (1991).
They showed that porous layers having a thickness of the order of the boundary
layer thickness were sufficient to reduce the overall Nusselt number significantly
(by an amount that increased with the increase of Ra) and thicker porous layers
produced only a small additional decrease in heat transfer.

Many studies have been recently devoted to double diffusive natural convection in
binary mixtures confined in enclosures [Gobin and Goyeau (2005); Goyeau and
Gobin (1999); Bennacer and Beji (2003); Mharzi et al. (2000)].

The study of Goyeau and Gobin (1999), in particular, was focused on the influence
of the porous layer permeability on the overall heat transfer. The numerical results
showed that the convective flow structure, and consequently the heat transfer, re-
sults from a complex interaction between the viscous drag in the porous layer and
the driving force enhancement due to the flow penetration.

A two-dimensional mathematical model based on Darcy’s law with Boussinesq
approximation was used by Alavyoon and Masuda (1994) to study double-diffusive
natural convection in a rectangular fluid-saturated vertical porous enclosure subject
to opposing and horizontal gradients of heat and solute.

Combined heat and mass transfer process by natural convection along a vertical
wavy surface in a thermal and mass stratified fluid saturated porous enclosure
has been numerically analysed by Kumar and Shalini (2005). The finite element
method was used and the influence of varying flow, heat and mass transfer govern-
ing parameters was reported. Presence of thermal and mass stratification terms was
found to reduce the Nusselt number and Sherwood number values in all cases.

Singh and Thorpe (1995) presented a comparative study of the Darcy, Brinkman-
extended Darcy and Brinkman-Forchheimer-extended Darcy models of free con-
vection in a cavity containing a fluid layer overlying a porous layer saturated with
the same fluid. The two-dimensional enclosure was heated on one vertical side and
cooled at the opposite side, while the top and bottom sides were adiabatic.

A non-similar boundary-layer analysis was performed by Mahdy (2010), who con-
sidered the flow, heat and mass transfer characteristics of non-Darcian mixed con-
vection of a non-Newtonian fluid originating from a vertical isothermal plate em-
bedded in a homogeneous porous medium with the Soret and Dufour effects and
in the presence of either surface injection or suction. The considered value of the
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mixed-convection parameter was between 0 and 1. In addition, a power-law model
was used for non-Newtonian fluids with exponent n < 1 for pseudoplastics n = 1
for Newtonian fluids and n > 1 for dilatant fluids.

By using the mathematical formalism of absolute and convective instabilities Hi-
rata, Najib and Ouarzazi (2010) investigated the nature of unstable three-dimensional
disturbances of viscoelastic flow convection in a porous medium with horizontal
through-flow and a vertical temperature gradient. Temporal stability analysis re-
vealed that among three-dimensional (3D) modes the pure down-stream transverse
rolls are favored for the onset of convection. In addition, by considering a spa-
tiotemporal stability approach they found that all unstable 3D modes were convec-
tively unstable except the transverse rolls (which were observed to experience a
transition to absolute instability).

The influence of the heat transfer at free surface (represented by Biot number)
on the Rayleigh-Marangoni-Bénard instability in a system represented by coupled
liquid–porous layers with top free surface was investigated numerically by Zhao
and Liu (2010).

Other relevant studies are due to Bennamoun and Belhamri (2008), Henda et al.
(2008), El Alami et al. (2009), Bucchignani (2009), Aouachria (2009), Djebali
et al. (2009), Mezrhab and Naji (2009), Mechighel et al. (2009), Plappally et al.
(2009), Podolny et al. (2010), Bataller (2010), Rouijaa et al. (2011), Abbassi et al.
(2011), Meskini et al. (2011).

In the present study, in particular, attention is given to the overall heat transfer and
fluid flow occurring inside a square cavity that is separated in two fluid filled regions
by a fluid saturated porous medium. The interface between the fluid and the porous
medium is permeable, and the flow in the porous layer is modelled using the Darcy-
Brinkman-Forchheimer extended law (to account for no-slip on the walls and on the
fluid/porous interfaces). The considered fluid is air (Pr = 0.71). The effects of the
dimensionless groups, Rayleigh, Ra, Darcy, Da, numbers are examined.

2 Physical model and governing equations

The domain under consideration is a two-dimensional rectangular enclosure (width
L, height H, aspect ratio A = H/L) containing a fluid saturated porous layer of finite
thickness XP placed in the centre of the cavity, and bounded by two vertical fluid
layers of equal width. The vertical surfaces are kept at constant temperature TC (at
x = 0) and TH (at x = L) such that TH> TC thus giving rise to the phenomenon of free
convection within the cavity. The horizontal walls are considered to be adiabatic
(zero normal temperature gradients are imposed at the horizontal surfaces).

The composite fluid/porous system, boundary conditions and the coordinate system
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for the problem under consideration are depicted in Fig.1.
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Figure 1: Schematic representation of the cavity.

The porous medium is completely saturated with the fluid and is assumed to be
macroscopically isotropic, homogeneous and in local thermal equilibrium.

The fluid is assumed to satisfy the classical hypotheses for an incompressible New-
tonian fluid. The Boussinesq approximation is satisfied, assuming that the fluid
density is a constant, except in the driving term of the momentum equation where
it varies linearly with both temperature.

ρ(T ) = ρ0[1−βT (T −T0)] (1)

Where: βT =− 1
ρ0

( ∂ρ

∂T )P.

Also, the Darcy-Brinkman-Forchheimer model is used in the momentum equation.

Fluid Region

∂u
∂x

+
∂v
∂y

= 0 (2)

ρ

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)
=−∂P

∂x
+ µ(

∂ 2u
∂x2 +

∂ 2u
∂y2 ) (3)
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ρ

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

)
=−∂P

∂y
+ µ(

∂ 2v
∂x2 +

∂ 2v
∂y2 )−ρre f g (4)

ρ Cp
∂T
∂ t

+ρ Cp(u
∂T
∂x

+ v
∂T
∂y

) = k(
∂ 2T
∂x2 +

∂ 2T
∂y2 ) (5)

With the assumption of Boussinesq : ρre f = ρ−ρ0 =−βt (T −T0)
Porous region

∂u
∂x

+
∂v
∂y

= 0 (6)

1
ε

∂u
∂ t

+
1
ε2 u

∂u
∂x

+
1
ε2 v

∂u
∂y

=− 1
ρ

∂ p
∂x

+
µe f f

ρε
∇

2u−Dx (7)

1
ε

∂v
∂ t

+
1
ε2 u

∂v
∂x

+
1
ε2 v

∂v
∂y

=− 1
ρ

∂ p
∂y

+
µe f f

ρε
∇

2v+βt (T −T0)g−Dy (8)

(ρ Cp)e f f
∂T
∂ t

+(ρ Cp) f (u
∂T
∂x

+ v
∂T
∂y

) = ke f f (
∂ 2T
∂x2 +

∂ 2T
∂y2 ) (9)

(ρ Cp)e f f = ε.(ρ Cp) f +(1− ε)(ρ Cp)s (10)∣∣V ∣∣=√u2 + v2 (11)

WhereDx (Dy), is the matrix drag per unit volume of the porous medium in x- ( y-
) direction.

Turning our attention to the solid matrix drag per unit volume, it can be taken in
the form:

D = AV +BV 2 (12)

For a one-dimensional flow with velocity V, the above form of drag expression is
supported by a variety of packed bed and fluidized bed correlations, including the
widely used Ergun’s (1952) correlation.

For a two-dimensional flow, the x- (y-) direction solid matrix drag contribution can
be shown to be of the form :

Dx = Au+B(u2 + v2)1/2u (13)

Dy = Av+B(u2 + v2)1/2v (14)

By resolving, the vectorial drag expression along the y direction.
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In the present work, we consider the Ergun’s correlation with constants A and B
given by :

A = 150
(1− ε2)

ε3
µ f

D2
p

B = 1.75
(1− ε2)

ε3
ρ f

Dp

(15)

It should be noted, however, that suitable correlations may be employed in different
ranges of the bed porosity ε to obtain the non-Darcian flow behaviour inside the
porous medium for a general simulation.

The above solid matrix drag relation can also be expressed in terms of the medium
permeability K by defining:

K =
ε3D2

p

150(1− ε)2 (16)

Now the solid matrix drag component Dx, Dy, can be written as :

Dx =
µ f u

k
+

1.75√
150

ρ f√
k

|v|
ε3/2 u (17)

Dy =
µ f v
k

+
1.75√

150
ρ f√

k

|v|
ε3/2 v (18)

The effective properties of the porous medium (subscript eff) are usually a complex
function of the porosity and tortuosity of the solid matrix as well as of the local fluid
velocity. In the following simulations, the interest is not focused on the influence of
these parameters, and for the sake of simplicity, the corresponding fluid properties
are used throughout the study.

1
ε

∂u
∂ t

+
1
ε2 u

∂u
∂x

+
1
ε2 v

∂u
∂y

=− 1
ρ

∂ p
∂x

+
µe f f

ρε
∇

2u−
µe f f

ρk
u− 1.75√

150
1√
k

∣∣V ∣∣
ε3/2 u (19)

1
ε

∂v
∂ t

+
1
ε2 u

∂v
∂x

+
1
ε2 v

∂v
∂y

=− 1
ρ

∂ p
∂y

+
µe f f

ρε
∇

2v+βt (T −T0)g−
µe f f

ρk
v− 1.75√

150
1√
k

∣∣V ∣∣
ε3/2 v (20)

(ρ Cp)e f f
∂T
∂ t

+(ρ Cp) f (u
∂T
∂x

+ v
∂T
∂y

) = ke f f (
∂ 2T
∂x2 +

∂ 2T
∂y2 ) (21)
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(ρ Cp)e f f = ε.(ρ Cp) f +(1− ε)(ρ Cp)s (22)

In view of the foregoing description, and using the following change of variables:

τ =
t

H2/α
, X =

x
H

, Y =
y
H

, U =
uH
α

, V =
vH
α

P =
ε2 pH2

ρα2 , θ =
T −T0

∆T
,

∆T = TH −TC, T0 =
TH +TC

2

The governing equations for unsteady two-dimensional natural convection flow in
the porous cavity using conservation of mass, momentum and energy may be writ-
ten as follows:

Fluid Region

∂U
∂X

+
∂V
∂Y

= 0 (23)

∂U
∂τ

+U
∂U
∂X

+V
∂U
∂Y

=− ∂P
∂X

+Pr∇
2U (24)

∂V
∂τ

+U
∂V
∂X

+V
∂V
∂Y

=−∂P
∂Y

+Pr∇
2V +RaPrθ (25)

∂θ

∂τ
+
(

U
∂θ

∂X
+V ′

∂θ

∂Y

)
=
(

∂ 2θ

∂X2 +
∂ 2θ

∂Y 2

)
(26)

Porous region

∂U
∂X

+
∂V
∂Y

= 0 (27)

ε
∂U
∂τ

+U
∂U
∂X

+V
∂U
∂Y

=− ∂P
∂X

+Prε∇
2U − Pr

Da
ε

2U − 1.75√
150

ε1/2
√

Da

∣∣∣√U2 +V 2
∣∣∣U (28)

ε
∂V
∂τ

+U
∂V
∂X

+V
∂V
∂Y

=−∂P
∂Y

+Prε∇
2V +RaPrε

2
θ − Pr

Da
ε

2V − 1.75√
150

ε1/2
√

Da

∣∣∣√U2 +V 2
∣∣∣V (29)
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σ
∂θ

∂τ
+
(

U
∂θ

∂X
+V

∂θ

∂Y

)
=
(

∂ 2θ

∂X2 +
∂ 2θ

∂Y 2

)
(30)

With the initial and boundary conditions

U = V = 0, θ = θi for τ = 0

U = V = 0, θ = θC =−0.5 for 0≤ Y ≤ H at X = 0

U = V = 0, θ = θH = 0.5 for 0≤ Y ≤ H at X = L

U = V = 0, ∂θ

∂Y = 0 for 0≤ X ≤ L at Y = 0

U = V = 0, ∂θ

∂Y = 0 for 0≤ X ≤ L at Y = H

3 Method of solution

The governing equations along with the boundary conditions are solved numeri-
cally using a finite volume method with a staggered grid arrangement. The conser-
vation equations are integrated on the control volumes defined by the computational
grid; a power scheme was also used in approximating advection–diffusion terms.

The fluid flow is unsteady, laminar and incompressible. The pressure work and vis-
cous dissipation are all assumed negligible. The thermophysical properties of the
porous medium are taken to be constant. However, the Boussinesq approximation
takes into account of the effect of density variation on the buoyancy force.

Convergence of the numerical iterations is achieved when the local criterion

max
∣∣∣∣ϕm+1−ϕm

ϕm

∣∣∣∣≺ 10−5 (31)

is satisfied. In equation (31) ϕ represents all three main variables, U, V, P and θ ,
at every location of the discretized domain. The indexes m and m+1 are any two
consecutive iterations at the same time τ .

Solution of linear algebraic equation is made by TDMA (Three Diagonal Matrix
Algorithm). An under-relaxation parameter of 0.3, 0.3, 0.4 and 0.5 for Da≤10−5

and 0.7, 0.7, 0.7 and 0.9 for Da≥10−4 were used in order to obtain a stable conver-
gence for the solution of u-velocity, v-velocity, pressure and energy equations.

A grid sensitivity study shows that a non-uniform mesh of 80x80 is sufficient to
carry out the computation. To ensure more accurate results, a non-uniform mesh of
100x100 has been employed in the present study.

The non-dimensional heat transfer rate in terms of local Nusselt number, Nu, from
the right vertical heated surface is given by

Nu(Y ) = −∂θ(X ,Y )
∂X

∣∣∣∣
X=L

(32)
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The corresponding value of the average Nusselt number, denoted by Nuavg, may be
calculated from the following relation

Nuav =
1
H

H∫
0

Nu(y)dy =− 1
H

H∫
0

(
∂θ(x,y)

∂x

)
x=L

dy (33)

4 Test Validation

The numerical accuracy of the present study has been checked over a large number
of purely thermal - convection cases. The results are compared with earlier studies
in Tables 1 and 2, for the Darcy and combined Darcy Brinkman representation of
the porous medium flow. The validation has been performed using 120 x 120 non -
uniform grids. It may be seen from the Tables, that the agreement with Lauriat and
Prasad (1989) and Nithiarasu et al. (1998b) is excellent in most cases (indeed, our
results present a difference less than 2% in comparison to Nithiarasu et al.).

Table 1: Darcy model

Ra∗ = Rat .Da
Nuavg

Lauriat and Nithiarasu Present work
Prasad (1989) et al. (1998b)

10 1.07 1.08 1.121
50 n.d 1.958 1.961
100 3.09 3.02 3.120
500 n.d 8.38 8.411
1000 13.41 12.514 12.531

Table 2: Darcy - Brinkman model

Ra∗ = Rat .Da Da
Nuavg

Lauriat and Nithiarasu Present work
Prasad (1989) et al. (1998b)

10 10−6 1.07 1.08 1.120
100 10−6 3.06 3.00 3.118
1000 10−6 13.2 12.25 12.205
10 10−2 1.02 1.02 1.110
100 10−2 1.7 1.71 1.732
1000 10−2 4.26 4.26 4.253
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5 Results and discussions

In the following, we restrict this study to a square cavity (A = 1) filled with air (Pr
= 0.71) separated in two equal parts (x1 = 0.4) by a saturated porous medium of
dimensionless thickness XP = 0.2. The Rayleigh number ranges from 103 to 107

and the Darcy number from 10−6 to 1.

5.1 Effect of Da and Ra on heat transfer and fluid flow

The influence of the permeability of the porous layer on the flow structure is illus-
trated by the streamlines plotted in fig. (6a, 9a), vertical V-velocity at mid height of
the enclosure plotted in fig. (5a, 8a) and the maximum of the stream function plot-
ted in fig.(2a), for different values of the Darcy number. The results are displayed
for the two cases; Ra = 107 and 103 (for large and small buoyancy forces).
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Figure 2: (a) Extremum of the stream function and (b) Average Nusselt number
variation with Darcy number for different Rayleigh number values and for XP =
0.2, ε = 0.4.

Figures (5a,5b) illustrate the vertical velocity and temperature at mid height of
the enclosure for Ra = 107. As depicted in this figure, the effect of increasing the
value of porous permeability is to increase the value of the temperature and velocity
components in the porous layer due to the fact that drag is reduced by increasing
the value of the porous permeability on the fluid flow which results in increased
velocity.
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Figure 3: Infuence of Ra and Da on Nuavg and ψmax for XP = 0.2, ε = 0.4.
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Figure 4: Local Nusselt number distribution on the right heated surface for different
permeability of the porous layer Da and with, Ra = 107, XP = 0.2 and ε = 0.4.

At low Darcy numbers (Da≤ 10−5), the porous layer behaves like a solid wall and
becomes almost isothermal, fig. (6a,6b) and fig. (9a,9b). Then, with increasing
permeability, the flow penetrates the porous domain and the corresponding heat
transfer monotonously increases, fig. (2b) (Table 3); finally, for very high perme-
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 Figure 5: (a) V -velocity and (b) Temperature at mid height of the enclosure for Ra
= 107, XP = 0.2 and ε = 0.4 and for different Darcy number.

abilities (Da > 10−4), when the friction in the porous layer becomes negligible, the
structure of streamlines and isotherms do not change much remaining the same for
values of Da> 10−3; correspondingly, the average Nusselt number, fig. ( 2b) (Table
3), reaches a constant value, corresponding to the solution for a fully fluid cavity.
Obviously, these cases represent a gradual transition from conduction to convection
in the porous region.

For relatively high values of the Rayleigh number (Ra≥104), it may also be noted
that the relative increase of Nuavg and the maximum of the stream function ψmax,
fig. (2a, 2b) (Table 3), is significant at a lower values of Da (Da≤10−4), whereas for
a low buoyancy forces, (Ra≤103) the Nusselt number is not very sensitive to Da,
tending to a constant value (Nuavg=1) for Ra=103 (corresponding to the solution
obtained for a fully fluid cavity).

Increasing simultaneously or separately Ra and Da favours the fluid to flow through
the porous layer from one fluid region to the other, fig. (6a, 9a), so the intensities
of natural convection flow and, consequently, local and average Nusselt numbers
increase, fig. (2b) (Table 3), fig. 4. Moreover, the flow in the cavity is reduced
when Ra and Da are made small, Fig. 3, especially for moderate Rayleigh numbers
(Ra < 105). Accordingly, the fluid flow is confined in the fluid compartments, and
the heat transfer in the porous layer occurs mainly by conduction [Beckermann et
al. (1987 )and 1988)].
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Figure 6: Streamlines (a) and isotherms (b) for Ra = 107, XP = 0.2 and ε = 0.4

The change in the fluid flow structure is accompanied with a change in the local
Nusselt numbers curves, fig. 4 (the change becoming smaller as Da increases,
especially for Da ≥10−4).

Figures 4 and fig. 7 show the effect of Darcy number Da on the local Nusselt
number Nu(y) on the hot wall for various values of Rayleigh number Ra with ε =
0.4 and XP = 0.2 . It can be clearly seen that the local Nusselt number for a
large buoyancy force (Ra=107) tends to increase as the permeability of the porous
layer increases, and from the values Da=10−4 the flow can be considered to be
dominated by convection phenomenon, over the entire cavity. The local Nusselt
number becomes almost independent of Da, and remains the same for values of
Da> 10−4.

For a small Ra (Ra=103), an increase in the Darcy number (Da≥10−5) tends to
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Figure 7: Local Nusselt number distribution on the right heated surface for different
permeability of the porous layer Da and with, Ra = 103, XP = 0.2 and ε = 0.4
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Figure 8: (a) V -velocity and (b) Temperature at mid height of the enclosure for Ra
= 103, XP = 0.2and ε = 0.4 and for different Darcy number.

increase the local Nusselt number in the bottom part of the wall (y≤0.5) and tends
to decrease the local Nusselt number in the top part (y≥0.5), but the evolution
exhibits a minimum around y=0.5 for the value 10−6 of Darcy number.

In addition to this, it has been noted that the temperature distribution at the mid-
height of the enclosure in the porous layer, fig. (5b), tend to become more linear for
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Figure 9: Streamlines (a) and isotherms (b) for different Darcy number for Ra =
103, XP = 0.2 and ε = 0.4.

a small Darcy number and at Ra =107, indicating that the heat transfer behavior de-
viates from the boundary layer and approaches the conduction limit, while thermal
boundary layers appear at the vertical walls.

For a small Ra (Ra=103), the temperature profiles, fig. (8b), for each Da value vary
linearly in the two regions, indicating that the heat transfer through the enclosure
occurs mainly via conduction; the velocity profile, fig. (8a), for each Da value
exhibits two maxima in the fluid regions for high and intermediate permeabilities
(Da≥ 10−3) around y=0.2 and y=0.8 and varies linearly in the porous region. Then
with decreasing Da,( Da≤10−4), the velocity component exhibits four maxima in
the fluid regions around y =0.1 and y=0.3 in the left fluid region, and around y=0.7
and y=0.9 in the right fluid region and the porous layer is almost isothermal, fig.
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(6b), fig. (9b).

Table 3: Extremum of the stream function and Average Nusselt number for Ra=102

to 107, Pr=0.7, XP=0.2, Da=1 to 10−6 and ε=0.4

Da Ra 1 10−1 10−2 10−3 10−4 10−5 10−6

ψmax

107 19.0 19.0 18.98 18.93 18.35 15.11 10.08
106 10.85 10.834 10.78 10.51 9.19 6.56 5.74
105 6.37 6.29 5.95 4.76 2.73 1.47 1.12
104 2.08 2.05 1.88 1.15 0.33 0.15 0.12
103 0.257 0.254 0.23 0.124 0.032 0.014 0.008
102 0.025 0.025 0.023 0.013 0.003 0.001 9e-4

Nuavg

107 10.07 10.06 10.06 10.04 9.9 8.78 4.23
106 5.22 5.21 5.20 5.16 4.79 2.95 1.77
105 2.63 2.62 2.6 2.45 1.76 1.14 1.06
104 1.3 1.29 1.26 1.13 1.02 1.017 1.00
103 1.019 1.019 1.02 1.021 1.024 1.025 1.1
102 1.00 1.00 1.00 1.00 1.00 1.02 1.03

6 Conclusions

Natural convection in vertical annular enclosures containing different amounts of
porous insulation has been studied resorting to the Darcy model, including Brinkman
and Forchheimer terms, to account for viscous and inertia effects, respectively, in
the momentum equation.

The influence of the permeability of the porous layer on the average and local heat
transfer characteristics in the enclosure has been assessed. The related numerical
results lead to the main conclusion that the overall heat transfer increases with
increasing permeability, this being due to a better penetration of the porous layer
by the convective flow.

Moreover, according to the results, the thermal exchange is also sensitive to the
Rayleigh number (the increase of Ra enhancing the convection in the fluid com-
partments of the cavity, with the convection in the porous layer being enhanced
with the increase of Da).

In the region of larger Darcy numbers (Da >10−5), the effect related to the better
penetration of the porous medium due to larger permeability, and the increase of the
buoyancy forces due to larger effective temperature gradient across the layer com-
bine to increase the flow intensity and the resulting overall Nusselt number. All the
local indicators represented in Fig. (4, 5) and fig. (7, 8) (velocity components and
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local heat transfer) grow with Da and reach a final value for infinite permeability
corresponding to the ideal case in which the whole cavity is fluid.

These results are an important step toward a complete understanding the parameter
space for convection heat transfer in composite systems.
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