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Abstract—During the past decade, URL filtering systems have
been widely applied to prevent people from browsing undesirable
or malicious websites. However, the key method of URL filtering,
such as URL blacklist filter, is more challenging due to the limited
performance of existing multi-pattern matching algorithms. In
this paper, we propose a multi-pattern matching algorithm
named TFD for large-scale and high-speed URL filtering. TFD
employs Two-phase hash, Finite state machine and Double-array
storage to eliminate the performance bottleneck of blacklist filter.
Experimental results show that TFD achieves better performance
than existing work in terms of matching speed, preprocessing
time and memory usage. Specially, on large-scale URL pattern
sets (over 10 million URLs), with single thread, TFD’s matching
speed reaches over 100Mbps on a general x86 platform.

Index Terms—URL filtering; Blacklist; Multi-pattern match-
ing; Large-scale; Matching speed

I. Introduction

URL filtering has been widely deployed in several network

security devices, such as firewall and IDS/IPS, to protect

people from suffering various attacks. Generally, the most

direct and effective way of URL filtering is to use multi-

pattern matching algorithms in blacklist filter, i.e., take each

URL in the blacklist as one pattern, and use the multi-pattern

matching algorithm to filter malicious URLs. However, with

the rapid growth of malicious websites, URL blacklist filter

is more challenging than before due to the following critical

requirements:

• Large scale: URL blacklist filter should support filtering

all the suspicious URLs at one time. But the total number

of malicious URLs is humongous. For example, based on

the published data [1], the number of them has reached

over 3.50 million.

• High speed: Considering the large-scale URL pattern set,

high speed should also be guaranteed. Slow or unstable

speed of URL filtering will affect the overall performance

of network system.

• Low memory consumption: Due to the memory capacity

limitations of real devices, low memory consumption is

necessary for URL filtering in practical application.

Looking back upon existing work, we found that although a

great number of multi-pattern matching algorithms have been

proposed in recent decades, most of them are designed for

pattern sets size typically less than 1 million. According to our

experiments on real URL pattern sets, the existing best known

algorithms cannot meet the critical requirements of large-scale

URL filtering.

In this paper, we propose a novel algorithm named TFD for

URL filtering. TFD can support dealing with pattern sets of

10 million URLs, and the matching speed is hundreds of times

faster than that of the existing algorithms. Main contributions

include:

• An efficient algorithm: The TFD algorithm uses Two-
phase hash, Finite state machine and Double-array stor-
age techniques that achieves both fast matching speed and

acceptable memory usage for large-scale URL filtering.

Besides, TFD is superior in supporting fast pattern update

and thus more suitable for real-time updating of URL

blacklist.

• Performance evaluation: Experimental results on real-life

URL pattern sets show that, even for 10 million URLs,

TFD can still achieve more than 100Mbps matching speed

with single thread.

The rest of the paper is organized as follows. Section II

gives the related work of our research. Section III introduces

the key ideas of TFD algorithm. The details and workflow

of TFD algorithm are presented in Section IV. Section V

evaluates the performance of TFD compared with several

existing algorithms. Section VI concludes the paper.

II. RelatedWork

Along with the wide application of URL filtering, lots

of related techniques [2]–[5] are proposed. Moreover, URL

blacklist filter accomplished by multi-pattern matching has

been proved to be fundamentally efficient for URL filtering.

Theoretically, the multi-pattern matching problem can be

solved by using strategies based on either finite state machine

(FSM) [6]–[10] or hash of character blocks [11]–[14].

Aho et al. showed that FSM can be efficiently used in

multi-pattern matching [10]. They proposed the popular AC

algorithm which has constant matching speed, high robustness

and good expansibility. Aoe came up with the Double-Array

algorithm [9], it employed a two-dimensional array (base and

check) to store FSM and achieved good performance in terms

of matching speed. However, as the memory usage of FSM

can be prohibitively large, the requirement of low memory

consumption is difficult to meet, especially for large-scale

URL pattern sets.
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Hash-based algorithms often use character blocks to achieve

low memory usage and satisfied speed. Based on the idea

of skip, Wu et al. used hash tables in their WM algorithm

[13]. However, when the pattern set becomes larger, it will

cause hash collision which greatly reduces the matching per-

formance. One recent study by Zhou proposed MDH algorithm

[14], which optimized WM algorithm with multi-phase hash

and dynamic-cut heuristics strategies. According to Zhou’s

experiments, the performance of MDH is superior to WM and

some other algorithms. But in our experiments, we observed

that it still could not fundamentally solve the problem of hash

collision occurred in large-scale URL pattern sets.

Therefore, existing best known multi-pattern algorithms

cannot meet all the three requirements for large-scale URL

filtering. The FSM-based solutions suffer from memory explo-

sion while the hash-based algorithms cannot efficiently solve

the problem of hash collision. In our research, we focus on

improving the hash-based solution.

III. Key Ideas

A. Motivation

For the hash-based algorithms, the problem of hash collision

is inevitable. On one hand, the size of hash table is limited but

the number of URL patterns is huge. On the other hand, the

character blocks are non-uniformly distributed, which results

in unbalanced sizes of entries in hash table and significantly

degrades the matching speed. More importantly, the collision

cannot be solved by adjusting hash functions. Based on the

above, we employ Four-byte Block, Two-phase hash, Finite
state machine and Skip after Exact Matching to optimize the

WM algorithm. In addition, due to the memory explosion

brought by FSM, we absorb the idea of Double-Array algo-

rithm by using Double-Array Storage.

B. Key Ideas

We describe all the key ideas in detail as below:

1) Four-byte Block: First, we use B to represent the length

of the character block. WM avoids unnecessary matching by

skip. Specifically, it uses a two-byte (B=2) character block

to distinguish every pattern, which is extremely effective for

small pattern sets. But when the pattern set reaches million

level, there will be many zero value entries in hash table. Then

the matching speed is badly reduced. To solve this problem,

we use four-byte character block in TFD instead of two-byte in

WM. Experiments proved that the skip possibility is enhanced

significantly. Wu and Manber also proved that it was best when

B = log|∑ |(2 ∗ lmin ∗ r) [13], in which
∑

represents the number

of possible characters, lmin represents the minimum pattern

length and r represents the size of the pattern set.

2) Two-phase Hash: Although four-byte character block

can improve matching performance, larger B will result in

bigger hash tables. Four-byte full address will need 24∗8, i.e.,

about 4GB space, which will greatly increase the memory

requirement.

In order to solve this issue, we use two-phase hash to

increase the matching speed and maintain moderate memory

consumption. TFD builds two compressed hash tables–SHIFT

and MAP table by hash function h1 and h2. Assume that h1

produces a N1–bit hash value and h2 produces a N2–bit hash

value. Then SHIFT table has 2N1 entries while MAP table has

2N2 ones. That is, TFD chooses a compressed hash function

h1 that converts the B-length character block (8B bits) to N1

bits to build the SHIFT table, while uses another compressed

hash function h2 to converts the B-length character block (8B
bits) to N2 bits to build the MAP table.

In the matching process, TFD uses SHIFT table to get

the skip value and avoid unnecessary operations. Besides, the

MAP table can deal with patterns which have zero value in

SHIFT table. Therefore, two-phase hash reduces the ratio of

entries with zero shift value. Note that “skip value” and “shift

value” represent for the same value in the SHIFT table.

3) Finite State Machine: To solve the problem of hash

collision in hash entries, we build FSM in every entry of

MAP table. By this way, we combine two-phase hash with

FSM, thus TFD can finish the matching for patterns linked in

a certain MAP entry by one-time searching while WM only

uses Brute-Force algorithm.

4) Skip after Exact Matching: In WM algorithm, the slide

window of input text only slides one byte after finishing exact

matching for an entry of the MAP table. As a matter of

fact, the window can slide more than that. For example, if

m represents the size of slide window, suppose m is 8 and the

hashed character block is “abcd”. Then if this block “abcd”

never appears in the other patterns, we can directly slide the

window 5 bytes (which comes from m − B + 1) from left to

right; or if this block “abcd” only appears in the leftmost four

characters, then we can slide the window 4 bytes from left to

right, and so on. In this way, it avoids unnecessary matching.

Therefore, we add a skip value for every entry of MAP table

to skip after exact matching, and further improve the matching

performance.

5) Double-array Storage: To solve the problem of memory

explosion caused by FSM, we use two-dimensional arrays to

store FSMs. As a result, the space complexity reduces from

O(|P|*|Σ|) to O(|P|) (P represents for the sum of the length of

all the patterns). As Double-Array algorithm only uses additive

operations to transfer from one state to another while FSM

has to handle others like string comparisons and copying, the

matching speed is faster than that of FSM in practical use.

The reason why TFD is more suitable for the real-time URL

pattern updating can also be explained by this. We mainly

need to update the double-array structure which stores the

corresponding patterns linked in the MAP entry instead of

performing the whole preprocessing again.

The matching performance can be greatly improved by the

key ideas mentioned above.

IV. TFD Algorithm

Based on the key ideas described in section III, we propose

the novel TFD algorithm. It can deal with pattern sets at ten

million’s level, and the matching speed is hundreds of times

faster compared to the existing algorithms while the memory
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SHIFT TABLE

Index Skip

… …

h1(twei) 5

h1(thdg) 5

h1(ghtw) 5

… …

h1(mdtx) 5

h1(book/htwe) 5

h1(alco) 5

… …

h1(balc) 5

h1(tqse) 5

h1(osof) 5

h1(icro) 5

… …

h1(hine) 5

… …

h1(suns) 5

h1(onli) 5

h1(ligh/face) 5

h1(cpqo) 5

… …

MAP TABLE

Index Skip

… …

h2(twei) 5

… …

h2(book) 5

… …

h2(mdtx) 5

h2(alco/osof) 5

… …

h2(thdg) 5

h2(tqse) 5

…

h2(hine/ligh) 5

… …

Fig. 1. Initialization of SHIFT table and MAP table

Index Skip

… …

h1(twei) 0

h1(thdg) 5

h1(ghtw) 2

… …

h1(mdtx) 5

h1(book/htwe) 0

h1(alco) 0

… …

h1(balc) 1

h1(tqse) 5

h1(osof) 0

h1(icro) 3

… …

h1(hine) 0

… …

h1(suns) 4

h1(onli) 2

h1(ligh/face) 0

h1(cpqo) 5

… …

SHIFT TABLE

facebook

globalcom

microsoft

sunshine

moonlight

starlight

MAP TABLE

Index Skip

… …

h2(twei) 5

… …

h2(book) 5

… …

h2(mdtx) 5

h2(alco/osof) 5

… …

h2(thdg) 5

h2(tqse) 5

…

h2(hine/ligh) 4

… …

lightweight

Fig. 2. The results of SHIFT table and MAP table

requirement stays in a comparatively low level. Moreover,

TFD is easy to be implemented. In this section, we present

TFD in detail based on the procedures of preprocessing and

matching.

A. Preprocessing

Compared with other algorithms, TFD finishes more opera-

tions in preprocessing. We take the pattern set {lightweight,
facebook, globalcom, microsoft, sunshine, moonlight, s-
tarlight} for example, the preprocessing is as follows:

1) Read all the patterns in sequence and store them. Initial-

ize the related information.

2) Determine the hash functions–h1 and h2 according to the

pattern sets scale, platform and cache size. Suppose that N1 =

26, N2 = 23, then the hash functions are:

h1(block) = (∗(block))&0x03FFFFFF
h2(block) = ((∗(block) � 15) + (∗(block + 1) � 10) +

(∗(block + 2) � 5) + ∗(block + 3))&0x007FFFFF
3) Initialize the SHIFT and MAP table, and assign the value

m-B+1 (m is the size of slide window and B is the size of

character block) to every entry. The result is shown in Fig.1.

4) Perform two-phase hash for all the character blocks.

Store the skip value into the entry of SHIFT table and

link the patterns which have the same hash value into the

corresponding entry of MAP table. Then compute and store

the skip value for every entry of the MAP table. SHIFT table

and MAP table for the pattern set mentioned above are shown

in Fig.2.

5) Build FSM for the patterns linked in an entry of MAP

table, and then all the patterns of an entry make up a trie. For

instance, the FSM which is built for h2(hine/ligh) in the MAP

table above is shown in Fig.3.

0

17

1

9

2

10 11 12 13

3 4 5 6

18 19 20 21 22

14

7

15

8

16

23 24 25
m

o o n l i g h t

s t
a r l i g h t

u n s h i n e

Fig. 3. FSM (Finite State Machine)

6) Store the trie in a two-dimensional array, that is to replace

the FSM built in procedure 5 with double-array. After that

TFD frees the memory of the FSM. The details of double-

array storage are as below.
The structure of the two-dimensional array includes two

values: base and check. Base represents for a trie node and

check points to the last state. If base and check are both 0,

it means that this state is null. If the base is negative, then

there is a match happened in this state. We use t to represent

the current state, s to represent the state before t and c to

represent the input character, then check[base[s] + c] = s and

base[s] + c = t.
The process includes two main steps: firstly, encode all the

characters that may appear, the encoding result for characters

is shown in TABLE I; secondly, construct the double-array by

recursive algorithm, the result is shown in TABLE II.

TABLE I
Encoding result for characters

character s u n h i e m o l g t a r

encoding 1 2 3 4 5 6 7 8 9 10 11 12 13

7) Repeat 5 and 6 for the next MAP entry until

the double-array storage for all of the entries.

B. Matching
After finishing the preprocessing, it can be moved to match-

ing stage. The matching process with pseudo code is shown

in Algorithm 1.
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TABLE II
The double-array result

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Base 1 1 1 4 3 6 11 8 2 3 3 1 1 2 12 16 10 17 16 19 13 -1 14 -1 -1

Check 0 0 1 3 4 10 5 11 2 9 14 1 12 13 6 11 15 8 16 17 18 19 20 21 23

State s m su sun suns moon sunsh starli mo moon starl st sta star moonl sunshi moonli starlig sunshin moonlig starligh sunshine moonligh starlight moonlight

Algorithm 1 Matching Process of TFD Algorithm

Require: o f f set = text + m − B, end = text + textlen − B.

BFCompare represents matching using BF algorithm, DA-

Compare represents matching using double-array.

1: while o f f set ≤ end do
2: value ← h1(o f f set);
3: skip ← shift[value];

4: if skip = 0 then
5: value ← h2(o f f set);
6: skip ← hash[value].skip;

7: num ← hash[value].num;

8: if num ≥ 0 then
9: if num = 1 then

10: BFCompare(o f f set, hash[value].pat);
11: else
12: DACompare(o f f set, hash[value].arr);

13: end if
14: end if
15: end if
16: o f f set ← o f f set + skip;

17: end while

V. Evaluations and Discussions

In this section, we evaluate and compare performance of

TFD with other best known multi-pattern matching algorithms,

such as AC, Double-Array, WM and MDH in terms of

matching speed, memory usage and preprocessing time. These

metrics are measured by pattern sets from small to large scale

with the same matching rate. Besides, we also use pattern sets

which have different hash collision degrees to compare the

matching speed variation of these algorithms.

A. Data-set and Test-bed

We first present how to get the data sets for our experiments.

As the amount of published malicious URLs is just 3.50

million, far less than our requirement. Thus the URL data sets

used in our experiments are all obtained from network crawler.

Specifically, we obtain two large data set: URL A (2.08G) and

URL B (3.4G).

1) Input Text Set: URL A is used as the input text set.

2) Pattern Sets I: Pattern sets I are used in the first three

experiments. By integrating URL A and URL B, we get pattern

sets from 10K to 10 million but with the same matching rate

of 10%.

3) Pattern Sets II: Pattern sets II are used in the fourth

experiment. They are obtained from pattern sets I, and have

the scale of 50K URLs. In addition, pattern sets II have the

same matching rate but different degrees of hash collision.

4) Test Platform: The experiments are running on the

platform: the processor is Intel R© Xeon R© CPU E5504 running

at 2GHz; the memory is 8GB (DDR3 800MHz) and the

Smart Cache is 4MB; the operating system is CentOS Linux

release 6.0 (Final). For the aim of fairness, in performance

comparison, all the algorithms are tested on a single thread.

B. Experimental Results

1) Matching speed vs. Pattern sets scale: Matching speed

for different scale pattern sets is illustrated in Fig.4. From

this figure, we can see that the matching speed of WM and

MDH declines rapidly with the increase of pattern sets scale,

whereas TFD’s matching speed only decreases linearly. When

the pattern sets scale is larger than 50K, AC and Double-

Array cannot work because of memory explosion, and WM’s

matching speed is 60% less than that of TFD. For the scale of

ten million, the matching speed of TFD reaches 13.1MB/s,

which is 217.5 and 600 times faster than WM and MDH

respectively.

2) Memory storage vs. Pattern sets scale: From Fig.5

we can see the memory storage of AC and Double-Array

algorithm is almost identical as they are all based on FSM. For

the pattern sets scale between 10K and 50K, TFD consumes

4.5% memory storage compared with that of AC or Double-

Array algorithm. However, as the pattern sets become larger,

the memory storage they consume increases extremely fast.

TFD respectively requires 2GB and 4GB memory for pattern

sets with 5 and 10 million signatures. In comparison, MDH

and WM consume 1GB memory storage on the 10 million

pattern set. Fortunately, as the computer hardware develops,

it is cheap enough to buy servers with large memory such as

8GB or 16GB.

3) Preprocessing time vs. Pattern sets scale: Preprocessing

time of AC, Double-Array, WM, MDH and TFD is shown

in Fig.6. We can see that all the experimented algorithms

consume very little time in preprocessing if the pattern set

is less than 2 million. But when the scale is larger than 2

million, the preprocessing time of TFD and MDH tends to

rise. In fact, we just preprocess once in practical use, hence

it is acceptable to preprocess for dozens of minutes especially

for large-scale pattern sets.

4) Matching speed vs. Hash collision: Fig.7 shows how

the matching speed of these algorithms changes when handling

pattern sets which have different degrees of hash collision.

The hash collision degree increases from Data 1 to Data
4. We notice that TFD has the most efficient performance
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compared with other algorithms under any hash collision

degree. However, the speed of WM and MDH algorithm

declines rapidly when hash collision becomes more severe.

In the worst case, it declines to 20% of the speed of TFD

algorithm. In comparison, TFD’s speed tends to be stable in

matching process as the degree of hash collision changes.

C. Discussion

Theoretically, the advantage of AC algorithm is that it has

linear matching speed, while WM algorithm can skip by build-

ing the hash table. TFD not only gathers the two superiorities

above, but also solves both the problem of memory explosion

and hash collision. This explains why it has more superior

performance than AC, Double-Array, WM and MDH for large-

scale URL filtering.

Crucially, the most significant superiority of TFD algorithm

is the high matching speed which is also the most concerned

performance metric in practical use. Furthermore, the memory

storage problem can be solved by the improvement of com-

puter hardware.

VI. Conclusion

The key method of URL filtering, such as URL blacklist

filter, is more challenging due to the limited performance of

existing multi-pattern matching algorithms. In this paper, we

propose a novel multi-pattern matching algorithm named TFD

for large-scale URL filtering. TFD combines the ideas of Two-
phase hash, Finite state machine and Double-array storage.

Experimental results on real-life URL pattern sets show that,

even for 10 million URLs, TFD can still achieve more than

100Mbps matching speed with single thread. This performance

can also be improved by parallelism.
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