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ABSTRACT

This paper studies the proposed models by S.Lertworasirikul et al.(2011) in the present of non-discretionary and
discretionary data. We consider the inverse BCC model for a resource allocation problem, where increases of some
outputs and decreases of the other outputs of the considered DMU can be taken into account simultaneously. The
inverse BCC problem is in the form of a multi objective non-linear programming model (MONLP), which is not
easy to solve. We propose a linear programming model, which gives a Pareto-efficient solution to the inverse BCC
problem. However, there exists at least an optimal solution to the proposed model if and only if the new output
vector is in the set of current production possibility set.

KEYWORDS: Data envelopment analysis(DEA), Non-discretionary data, Discretionary data, Efficiency, Linear

programming, Variable returns to scale. Inverse optimization, Resource allocation.

1. INTRODUCTION

Data envelopment analysis (DEA), is currently a popular technique for analysing technical efficiency and it has
been used in a number of applications. DEA originally proposed by Charnes, Cooper, and Rhodes [6] is a non-
parametric technique for measuring and evaluating the relative efficiencies of a set of entities, called decision
making units (DMUs), with the common inputs and outputs.

An interesting problem is how to preserve the relative efficiency value of a considered DMU if the internal
technical structure of the considered DMU slightly changes in a short term. In recent years, inverse optimization of
DEA models has been studied. For DEA models, constraint parameters are input and output values of DMUs.
Therefore, inverse problems of DEA models can be classified into two types depending on what parameters are
changed and what parameters need to be varied to keep the optimal objective value unchanged. Resource allocation
problem and investment analysis problem. The resource allocation problem of DEA is an inverse DEA problem of
determining the best possible inputs for given outputs such that the current efficiency value of a considered DMU
(DMU,) with respect to other DMUs remains unchanged. The investment analysis problem of DEA is an inverse
DEA problem of determining the best possible outputs for given inputs such that the current efficiency value of a
considered DMU,, with respect to other DMUs remains unchanged.

Normally, the internal technical structure of a DMU should not change dramatically in a short term (Yan et.al.
[18]). Therefore, the inverse DEA models can be used to such resource allocation and investment analysis problems.
Wei et al. [17] proposed, for the first time, an inverse DEA model for input and output estimation. In their work, an
inverse DEA model was discussed to answer the following question:

Among a group of DMUs, if we increase certain inputs of a particular unit and assume that the DMU
maintains its current efficiency value with respect to other units, how much more outputs could the unit produce?
Or, if the outputs need to be increased to a certain value and the efficiency of the unit remains unchanged, how much
more inputs should be provided to the unit? In their developed inverse DEA model, the increases in input and output
values were assumed to be nonnegative values, and the inverse DEA model was transformed into and solved as a
multi-objective linear programming (MOLP) problem. Yan, et al. [18] discussed an inverse DEA problem with
preference cone constraints to represent decision makers’ preferences, which was useful in resource planning.
Jahanshahloo et al. [11]. extended the inversed DEA problem and the developed solution method by Yan, et al. [18]
to the case of determining outputs of the considered DMU when some or all of inputs were increased and the
efficiency value of the considered DMU with respect to other DMUs needed to be improved by specified percentage
of its current efficiency value. They proposed by using inverse data envelopment analysis model, a method to
estimate output levels of a decision making unit is presented when some or all of its input entities are increased and
its current efficiency level is improved. Jahanshahloo et al. [12] showed that the inversed DEA models could be
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used to estimate inputs for a DMU when some or all outputs and the efficiency value of the DMU were increased or
preserved, and also identified extra inputs when outputs were estimated using the proposed models by Yan et al.
[18] and Jahanshahloo et al. [11]. Jahanshahloo et al [13] proposed a modified inverse DEA model for sensitivity
analysis of efficiency classifications of efficient and inefficient DMUs in which important policies over inputs,
outputs and DMUSs were represented by preference cones.

Hadi-Vencheh and Foroughi [10] discussed an extended inverse DEA model where an increase of some inputs
(outputs) and a decrease due to some of the other inputs (outputs) are taken into account at the same time. A
proposed solving method was based on DEA and MOLP. In their paper, they also showed that the solution proposed
by Wei et al. [17] did not guarantee the efficiency result for input estimating, i.e., it might fail in a special case.
Actually, in the paper of Wei, et al. [17], only the increase of inputs (outputs) is considered whereas each DMU may
concern the increase of some of inputs (outputs) and the decrease of the other inputs (outputs) simultaneously.
Alinezhad et al [1] proposed a methodology that uses an interactive MOLP for solving the inverse DEA problems.
Previous studies on inverse DEA problems mostly consider the efficiency value of the considered DMU without
considering the effect of input/output changes on efficiency values of other DMUs. Recently, Lertworasirikul et al.
[15] studied the inverse Data Envelopment Analysis (inverse DEA) for the case of variable returns to scale (inverse
BCC). The developed inverse BCC model can preserve relative efficiency values of all decision making units
(DMUs) in a new production possibility set composing of all current DMUs and a perturbed DMU with new input
and output values. They considered the inverse BCC model for a resource allocation problem, where increases of
some outputs and decreases of the other outputs of the considered DMU can be taken into account simultaneously.
They proposed a linear programming model, which gives a Pareto-efficient solution to the inverse BCC problem.

In this paper, we discuss the proposed maodels by Lertworasirikul et al. [15] when some of inputs and outputs
values are non-discretionary.

Often the assumption of homogeneous environments is violated and factors that describe the differences in the
environments need to be include in the analysis .these factors, and other factors outside the control of the DMUs ,are
frequently called non-discretionary factors instances from the DEA literature include snowfall or weather in
evaluating the efficiency of maintenance units, the number of competitors in the branches of a restaurant china. In
this paper, we discuss the proposed models by Lertworasirikul et al. [15] in the presence of such data.

In Section 2, we provide a brief review on DEA models. Section 3 states the inverse BCC model in the present
of non-discretionary and discretionary data and presents our proposed model to determine the best possible values of
inputs for the perturbed DMU to preserve relative efficiency values of all DMUs. In Section 4, a solution approach
to the inverse BCC in the present of non-discretionary and discretionary data is presented. Finally, conclusions are
given in Section 5.

2. The DEA model in the present of non-discretionary and discretionary data

Assume that there are n DMUs, where each DMU(i=1,...,n), uses m different inputsx;; (j=1,...,m), to
produce r different outputs, y,; (k=1,...,) . We denote y,; (k=1,. .. ,r) by the level of the kth output from unit
i(i=1,...,n) and by x;; (i=1,. .. ,n)the level of the jth input to the ith unit. Let i=0 be the evaluated unit. Assume that
input and output data are semi-positive and some of them are non-discretionary. So we have:

Xqi Yii
X5i i
x; = 21 20,xi¢0,yi=y;21 20,y;#0
XXml )g/ri
10 1o
X
X, = ?0 =>0,x,#0,y;= y?o =0,y,#0
Xmo Yro

The primal and dual BCC models for obtain efficiency of DMU,, are in the following form.
(PBCC,) maximize (= Xieini XjoVj + Zke(poy UkYko + Lkeno} UkYio — Uo)
s.t. XieppnViXj, =1
= Yjeton ViXji — Zjeniy ViXji + Dkeipoy Uk Vi + Dkevoy UiV —Uo <0, for i=1,..,n
uoisfree,uk,v]-20,j=1,...,m,k=1,...,r (€))
(DBCC, ) minimize (6 — e(TjepnS; + Lkeipoy Sk)
s.tt X, Aix; +s7 = 0., , JE€{DI}
i ix+sy =x, . jE{NI}
X1 AiVii = SK = Yo k € {Do}
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L1 AiYki = SK = Yio s k € {No}

=i =1

A =0,sf 20,57 20,0 s free, )

Wherei=1,...,nj=1....mk=1...,r1, x;, istheinputj of the considered DMU (DMU,), x;; is the input j
of DMU;, yy, is the output k of DMU,,, yy; is the output k of DMU;, u, is the weight of output k, v; is the weight
of input j, wu,is scalar A4; is the convex combination of DMU;, 6, is the objective function or the technical
efficiency valueof DMU,. The indices and notation will be used throughout this paper.

From the BCC models, DMU, will be technically efficient if the maximal efficiency,8;, is equal to 1. If 6} <1,
it is possible to produce the given outputs using smaller input values, which may be obtained as a convex
combination of inputs of other DMUs. Thea;, i = 1,.. . ,n obtained from the DBCC, model provide a reference set for
inefficient DMUs. The convex combination of the reference set is the projected point on the production frontier of
the inefficient DMUs. The set of feasible activities or all DMUs is called production possibility set. The BCC model
has its production frontier spanned by the convex hull of the existing DMUs. From the production frontier of the
BCC model, a DMU is inefficient if it is possible to reduce any input without increasing any other inputs and
achieve the same value of outputs or it is possible to increase any output without reducing any other outputs and use
the same values of inputs (Lertworasirikul, et.al.[14]).

In this paper we propose an inverse BCC model to preserve efficiency values of all DMUs relative to other
DMUs based on the current production frontier. With the same production frontier, relative efficiency values of all
DMUs can be maintained. To preserve the production frontier, the production possibility set is composed of all
current DMUs and the considered DMU with the changes in its input and output values.

3. The inverse BCC model

Denote the considered DMU with current input and output values by DMU_ and the considered DMU, with its
input and output changes (perturbedDMU,) byDMU - . The developed inverse BCC model for a resource allocation
problem is introduced to answer the following question. For a group of current DMUs with their relative efficiency
values of 87, 63, 63,..., 6, suppose that the output values of are changed from y, toy, + Ay, = 0, Ay, # O,we
want to find the minimum x, + Ax, where x, + AX, is a semi-positive vector such that DMU_ with new input and
output values (X, + AX,, Y, + Ay,) still has its relative efficiency value of 87, and all other DMUs still have their
relative efficiency values of 67, 65, 63,..., 0.

Note that the current production possibility set before the changes of input and output values of DMU, is
composed of n DMUs (DMU;, i = 1,. . . ,n). However, after input and output values of DMU, are changed, we
consider the new production possibility set composing of n + 1 DMUs (DMU,, i = 1,. .. ,n, and DMU,’) and try to
preserve the production frontier. For non-discretionary data  we let: Ax;,=0 , Ay,=0,(j€ {NI}, k €
{NO})where{NI}{NO} refer to non—discretionary input and outputs indices. .

3.1. Primal form of the inverse BCC model
The mathematical models (primal and dual models) of the inverse BCC for a resource allocation problem when
some data are non-discretionary are as follows.
(IBCC,) minimize Ax,
st Xjepnvj (X0 +Axj,) =1
= Yjen ViXji — Ljenn ViXji + Xke(poy UiVii + Dkevoy Ui Vki —Uo <0, for i=1,..,n
= Yjeton Vi (Xjo + Bxjo) — Xjienny Vi (Xjo + AXjo) + Xetpoy Uk Vi + Zkeivoy UiVii — Uo < 0
Xjo + Axj, = 0
uoisfree,uk,v]-20,j=1,...,m,k=1,...,r 3)
Where x;, + AX;, # 0 for each and Yye(po} UxYko + Zketno} UxYko — Zje(Ni} XjoVj — Uy = Ykeoy Uk (Yo + Ay,) +
Ykepnoy Uk (Yo + AY,) — Xieqni XjoVj — Uo = 85 is the relative efficiency value of DMU,, before the changes in its
output values. Using Ax, from the IBCC, model, the relative efficiency values of all DMU, for I = 1,2, ... ,n from
solving the following IBCC; model must be equal to 6 where 6; is the current relative efficiency value of
DMU, before DMU,changes its output values.
(IBCC,) maximize(Xxe(poy UrVir + Zkeino} Uk Vil — Zje{NI} XjoVj = Up)
st. Xjeppnvixi =1
= Yjepn ViXi — Zjenn ViXin + Zkeipoy WieVi + Dkevoy UiV — Uo <0, for i=1,..,n
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= Yjenn Vi (Xjo + Bxjo) — Xjenny Vi (Xjo + Do) Zketpoy Uk Vo + AVko) + Likeivoy Uk Vo + Ayyo) —
u, <0
uoisfree,uk,v]-20,j=1,...,m,k=1,...,r (4)

3-2. Dual form of the inverse BCC model

We have :

(DIBCC,) minimize Ax,

st X Aix;; + /Ior(x]-o + ijo) +s; = 05(x;, +A4x;), JjE{DI}

iji

L A + Ao (x50 + Do) + 57 = (x5 ), j €{NI}
Y AV + 2ot Vo + BVko) — SE = Vio + AVko: k € {Do}
2 AV + 2o Vo + AVko) = SE = Yo ) k € {No}

midi+ Ay =1
X, +Ax, =0
A ;i 20,i=1,...n (5)
Where x, + Ax, # 0 and 8, is the relative efficiency value of DMU, before the changes in its output values. Using
Ax, from the DIBCCO model, the relative efficiency value of DMU,for | =1,2,. .. ,n from solving the DIBCC, model
must be equal to 6;.
(DIBCC,) minimize (6, — e(XjerpnyS; + Lkepo} Sk )

st X, Ax; + /Ior(x]-o + ijo) +s7 =0,x j e{DI}
Xieq Aixji +/10'(xjo) +S =X, Jj €{NI}
2 AV + Ao OVko + AVko) — S§ = Vit k € {Do}
2l AV + o' Vo) = SiE = Vi ) k € {No}
"nA+Ar=1
=1’" (4]
Ao A =0,i=1,..,n (6)

Note that the IBCC,and DIBCC,are in the form of multi-objective non-linear programming (MONLP) form.

4. A solution approach to the inverse BCC model in the present of discretionary and non—discretionary
data

To solve the inverse BCC model for the resource allocation problem, we need to find the value of Ax,=
(Axyp, Axyy, .., Axpy,),Which keeps the relative efficiency values of all DMUs unchanged. This can be done by
solving the IBCC, and IBCC; models or by solving DIBCC, and DIBCC; models. However, these models are in the
form of MONLP, which is not easy to solve. In this section, we propose a multi-objective linear programming model
(MLDIBCC,), which gives an optimal solution for the inverse BCC model. Later we propose a linear programming
model (LDIBCC,) in Theorem 2, which gives a Pareto solution to the MLDIBCC, model. Therefore,
Theorem 1. Assume that the relative efficiency value of DMU, with respect to other DMUs in a group of
comparable DMUs (i = 1,...,n) is 8;. Given the changes in output values of DMU,, Ay, # 0, the minimum Ax,of
the perturbed DMU, (DMU ), which does not make any changes to the relative efficiency values of all DMUs (I =
1,...,n,0"), can be obtained by solving the MLDIBCC, model. For non—discretionary data let: Ax;,=0, Ay;,=0.
(MLDIBCC,) minimize Ax,=(Ax;,,A%50, ..., AXppo)T
st X, g + 57 = 05(x, + Axj,), je{pn}

iAji

=1 X 57 = (x5 ), j €{NI}
L1 AiYii — Sk = Yko + DVko, k € {Do}
21 AV — Sk = Yio , k € {No}

noAa=1

=174
Axj, =0 ,j€{ND}

,=20i=1..n (7)

Proof.The BCC model for DMU - relative to other DMUs (I =1,... ,n) is thDBCC,' model.
(DBCCO’)mlnlmlze( 901 - E(ZjE{DI} S]-_ + Zke{DO} S,:-))
s.t. Z?:l /L-x]-l- + /’lo’(xjo + ijo) + S]_ = Ho’(xjo + ijo), ] € {DI}

Ly Ay + Ay (a0 + Axj) + 57 = (55 ), je{NI}
Y AV + 2o Vo + BVko) — S§ = Yio + AVko: k € {Do}
2 AV + 2o Uko + AVko) = SE = Yio ) k € {No}
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LA+ Ay =1
Ao A =0,i=1,..,n (8)
The set of constraints in the DBCC,- model can be rearranged in the following form:
LAy +sT = (0, — A,) (x5, +Dx;,),  j€{DI}

iji
A+ = (L= 2,)(x5 ), jE{ND}
Zl.:l/’ll.ykl Sl_: = (1 - Ao')(yko + Ayko)v k € {DO}
L1 Ay =S¢ = (L= 2,) ko ) , k € {No}
LA+ 2y =1
A, A;=20,i=1,..,n 9)

Casel:6; <1

From the set of constraints in (9), if A, =1,then4; =0 ,fori=12,...,nand §, =1. The solution (1; = O for
i=1,2...,n1,=186,=1)is not the optimal solution to the DBCC,, model When 6, < 1 ,because we can
find a better solution at 1, = 0 .When 4_- = 0, the constraints of the DBCC, model are in the same form as the
constraints in the MLDIBCC, model. Thus, the objective value is 6;, which is Iess than 1.Since (1 —24,) # 0, we

9 .
divide all constraints in the DBCC,, model by (1 — 4,/) and set (1_ )a nd A = (13 ] fori=1,2,...n

Then the DBCC,» model becomes:
mlnlmlze(H = E(Z]E{DI}S +Zk€{DO}SI:—))

s.t. Zl 1 1l ]l. ( ) (e )( +ijo)v ]E{Dl}

Lo +(1; = (%50 ), j E{NI}
— S+
=1 M Yii — (1_]; ) = ko +AVko), k € {Do}
— S+
n:l)"i Vii — (1 ]/{1 ) (yko ) ' ke {NO}
[ o= 1
i=1™M (1 2 )_
A ;i 20,i=1,...n
From Y™ A +—2°" =1 we find that A = (220D ) o
=17 (1_’10’) T of _( _Zz 1 1) '
. — sj — + — Sk
vi=1.,m si = oy vk=1,...r Sy = TR
—y AT 6 =21
By substituting that 4, = gg;—ﬂi‘_; into0_ = ((1" R ")) ,we can find that the objective function of the DBCC,, model
Taj=1M o'
. L. O +1-3247)
is to minimize 6, = ‘zzzn—ﬂ thus, the DBCC,» model becomes:
i=1M
SH1-Y ) _ +
minimize (W eQjepnS; + Lke(poySk))
s.t. Z 1A x+ s = (0)(x5, + Axp), j €{DI}
n, Xlle+s] = (x5 ), j e{NI}
P )"EYki =Sk = Vo + AVko) k € {Do}
YV =Sk = Wko ) ; k € {No}
AN =20,i=1,..,n (10)

Note that a fractional number is invariant under multiplication of both numerator and denominator by the same
nonzero number. We set the denominator of the model (10) equal to 1, move it to a constraint, and minimize the
numerator. This results in the following model.

minimize ((0; +1— X4 ) — €QjepnS) + Zkefpoy Sk))

st Ximi A x + 55 = (0,)(x5, + Ax;,), j € {DI}

Lohxg+sT = (x5, ), je{NI}
Xy )"EYki =S¢ = Wko + AYVio) k € {Do}
M Vi — Sk = ko ) ) k € {No}
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@-¥L ) =1

A =20i=1,..,n
Since Y, &) = 1 ,the above model becomes the model (11).
minimize (0, — eQjenS; + Lrepo}Sk))
st XA xji+s7 = (0,)(x5, +Ax;,), j € {DI}

ahi g+ s = (%), j E{NT}
n Ty . — gt = +
i=
Z =1 )\’l_ykl. Sk (yko Ayko)v ke {DO}
2 Vi — Sk = o ) , k € {No}
noAn =1
=1
AN =0i=1.,n (11)

The optimal solution of the model (11) is also optimal for the model (10) since the above transformation is
reversible. The models (10) and (11) therefore have the same optimal objective value. Note that the constraints in
the model (11) are in the same form of the constraints in the MLDIBCC, model. Using the minimum Ax, obtained
from solving the MLDIBCC, model, all constraints in the model (11) are satisfied and the objective function is
minimized at 6, = 6, , otherwise Ax, is not optimal for the MLDIBCC, model.Therefore, the relative efficiency

value of DMU , with respect to the set of DMU,(I=1,...,n,0") will remain equal to 0, .

Case 2: 0, =1

If 4,7 # 1in the DBCC, model, we can prove that the optimal objective value of the DBCC,- model (6,') is equal
to 6, =1 by using the same way for the proof of case 1. And if 1, = 1, then 4; =0 fori=1,2...,nand 6, =0, =
1 .Now let us consider the inverse BCC (DIBCC,) model. If A, =1, then, ;=0 fori=12...n,6,=1
and x, + Ax, = 0. However, we assume at the beginning that x, + Ax, must be a semi-positive vector. Therefore,
the solution 4, =1,4;,=0fori=12...n 6,=1 and x, +Ax, =0 is not an optimal solution for the
inverse BCC model. Consequently, given the changes in output values of DMU,, Ay, # 0, the minimum Ax, of
DMU ,, which does not make any change to the relative efficiency value of DMU,,, can be obtained by solving
the MLDIBCC, model. For other DMUSs, the IBCC;model in (4) can be written in the vector-metric form as follows:

max u’y; — Yietniy XjoVj — U
s-t. Ljepn VX =1
—vlx;+uly,—u, <0 i=1..,n
—vT (x50 + AXjo) =07 (X56) + u” (Vo + AYio) + U (Vio) — Uy < O
{jeply {jeNI} {keDo} {keNO}
U, is free, U,V =0

where UT =[uy,uy, .., u,] , VT =[v,,v,,...,0,]

X1i Y1i X10 AXqq
Xi i X Ax;; j € DI

% = 21 = ngl X, = ?0 Ax, = A)Ezo ,Axi={ (])L j) Cent
Xmi Yri Xmo Axmo

From the constraints in the MLDIBCC, model , (x, + Ax,,y, + Ay,) € p where p isa production possibility
set of all DMUj,i=1..nand p= {xy| x=XA,y<YreTA=121>0} X=][x; ]mn Y=
[yki]r*n v)" = (}\i)n*lv)" € Rnlf( Xo + Axovyo + Ayo) € p vthen we have:
_vT(x]'o + ijo)_vT(xjo) + uT(yko + Ayko) + uT(yko) — Uy <

{j € DI} {jeNI} {keD0} {keNO}
< =VIXD) +UT(YA) —u, < — XL VA + Zi, UTyids — u,
<YL (Vi +UTy)A —u,
From the IBCC, model —VTx; + UTy; < u, fori=1,...,n. Therefore —=VT(x, + Ax,) + UT(y, + Ay,) — U, <
YL UoA — Uy < 0.This shows that —VT(x, + Ax,) + UT(y, + Ay,) — U, < 0inthe IBCC, model is redundant
and can be dropped out from the model without changing the solution set and the optimal objective value. In other
words, the IBCC,model is equivalent to the BCC model for DMU, before DMU, changes its output values. This
implies that the relative efficiency values of alIDMU,, (I = 1,. .. ,n) remains unchanged.
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Lemma 1. Assume that the relative efficiency value of DMUo with respect to other DMUs in a group of comparable
DMUs (i =1, .. .,n) is 87 . Also, assume the output values of DMU, are changed from vy, toy, + Ay, = 0.
(Ay, # 0) .There exists at least an optimal solution to the MLDIBCC, model, if and only if y, + Ay, €
Pout » Where Py ={yly < YA eTA=1,2>0},Y = [Viidrxns A = (M) px1 A ER® .
Proof. Ify, + Ay, € Pyt o then the constraints), L, A;Vii = Yko + AViko K € {DO} 2L AV =
Vo, KE{NO}, XL, 43=1,4=0(i=1,..,n) in the MLDIBCC, model are satisfied. The
constraints XL, Ax;; < 05(x;0), k € {NI} X, Ax; < 05(x;, + AX;,) KE€{DI} can be satisfied by
finding the appropriate value of Ax;,. Also, from the constraints Yty AiXi < eg(xjo) , J €{NI}
LA < 05(Xjo +AX;,) , j E{DI} , we know that Xj, +AX;, =0,j=1,..,m.The objective of
the MLDIBCC, model is to minimize Ax,, thereforethere exists at least an optimal solution to the
MLDIBCC, model. This proves that there exits at least an optimal solution to the MLDIBCC, model if
yo + Ayo € Pout .

If there exists at least an optimal solution to the MLDIBCC, model, from the set of
constraints M AYki =S = Yio (K € {NO} I AYid = SE = Yio + AYio 1K € {DO} in
the MLDIBCC, model, then y, + Ay, € P, -

From Lemma 1, we can check whether y, + Ay, is in P, or not by determining a set of non-dominated DMUs
based on the output comparison. Then if all elements of y, + Ay, is less than or equal to all elements of the outputs
of at least one DMU in the non-dominated set, then y, + Ay, isin P,;.

Theorem 2. Ax, = (AXq,...,AXy,,) oObtained by solving the LDIBCC, model is a Pareto solution for the
MLDIBCC, model.

(LDIBCC,) min wTAXx,

st X AX; < 05(% +Axj,) , jE{DI}

n A < 05(%0) j €{NI}
2ot AiYii = Yo AYko k € {D0O}
21 AiYii = Vio k € {NO}

il =1

A4, =20« i=1..,n
(Ax;,) =0, je{NI}
Where wT € R™.
Proof. Assume that A1* = (17,...,4;,), 4x} € R™ are the optimal solution from solving the LDIBCC, model but

they were not Pareto solution to the MLDIBCC, model. There should be a possible  Ax, € R™, A=
(A, ... A,)from the MLDIBCC, model whereAx, <, AX; and thus wTAx, <wTAx;,wT >0 .Note
that Ax, <, Axg represents a set of inequalities Rio < AXj,,J =1,..,m with at least one strict inequality,

Rio < Axj, Since the MLDIBCC, model and the LDIBCC, model have the same constraint sets, AX, € R™and X are
also the solution to the LDIBCC, model. This leads to a contradiction; therefore, Ax; € R™ and A*from the LDIBCC,
model would also be a Pareto solution to the MLDIBCC, model. [

From Theorem 2, if we find any positive vector, wTeR, we would be able to find a Pareto solution for the
MLDIBCC, model from solving the LDIBCC, model, which is a linear programming model. Consequently, the input
and output vector of (x, + AX,, Y, + Ay,) « DMU, obtained from the LDIBCC, model will be a Paretoefficient
solution to the inverse BCC model.

5. Numerical example

There are 15 decision making units in this study that use 2 inputs to produce 2 outputs. The second input and
output are non-discretionary .Input and output values of DMUs are given in Table 1 for the efficiency analysis.
After solving the BCC models (PBCC, or DBCC,) for all DMUs with the data from Table 1, the relative efficiency
values 6; of all DMUs are given in Table 2.From Table 2, there are only 5 technically efficient DMus, which are
DMU, ,DMU,,DMUy, DMU,,, DMU,;. All other DMUs are technically inefficient. If we compare the performance
of all DMUs based on outputs only, the set of non-dominated DMUs includes DMU,. .Let us consider an
inefficientDMU,, the optimal objective value is 87 = 0/42 which is less than 1. Suppose that the output vector of
DMU;, is changed from (10,1)7 to(11/7,1)T and let wT = (1, 1) for input weights. Solving the LDIBCC, model we
can observe that the new output values are in P, the first output of DMUj, is less than or equal to the first output of
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DMU, By solving the LDIBCC, model forDMU,, we find that the optimal solution is Axj,=13/37, Ax3,=0 and the
optimal objective value is equal to 13/37 . Therefore, the new input vector is (18/37,100)T. Using the new input
and output vectors for DMU,, the relative efficiency values of all DMUs still remain the same .

Table 1:Input and output values of 15 DMUs.

DMU; Inputl Input2 Outputl Output2
DMU, 5 100 10 1
DMU, 7 95 12 10
DMU; 3 120 11 20
DMU, 2 70 9 3
DMUs 8 30 11 17
DMUs 2/2 100 10 2
DMU; 3 20 12 15
DMU; 3/5 55 12/3 5
DMU, 2/5 67 1317 67.1
DMUy 6/6 15 14 67
DMUy 7/5 66 9/8 43
DMUp, 9 33 9/96 6
DMUg; 5/5 76 14/4 53
DMUy 5/8 90 7/8 40
DMUss 4 100 15 50
Table 2.The relative efficient values 8;of DMU; ,i=1,..., 15.
DMU; 0; DMU; 0; DMU; o;
DMU, 42 DMUs 96 DMUy 30
DMU, 33 DMU; 1 DMUy, 30
DMU; 74 DMU; 72 DMUys 70
DMU, 1 DMU, 1 DMUy 38
DMUs 35 DMUy 1 DMUss 1

6.Conclusions

In this paper, we extended the proposed models by S. Lertworasirikul et al.(2011) in the present of non-
discretionary and discretionary data. The traditional inverse DEA model is used to determine the best possible
values of inputs (outputs) for given values of outputs (inputs) of a considered DMU such that relative efficiency
value of a considered DMU with respect to other DMUs remain unchanged. We study the inverse BCC model for
the resource allocation problem. We propose a linear programming model, which gives a Pareto-efficient solution to
the inverse BCC praoblem.
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