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ABSTRACT 
 

This paper studies the proposed models by S.Lertworasirikul et al.(2011) in the present of non-discretionary and 
discretionary data. We consider the inverse BCC model for a resource allocation problem, where increases of some 
outputs and decreases of the other outputs of the considered DMU can be taken into account simultaneously. The 
inverse BCC problem is in the form of a multi objective non-linear programming model (MONLP), which is not 
easy to solve. We propose a linear programming model, which gives a Pareto-efficient solution to the inverse BCC 
problem. However, there exists at least an optimal solution to the proposed model if and only if the new output 
vector is in the set of current production possibility set.  
KEYWORDS: Data envelopment analysis(DEA), Non-discretionary data, Discretionary data, Efficiency, Linear 

programming, Variable returns to scale. Inverse optimization, Resource allocation. 
 

1. INTRODUCTION 
 

Data envelopment analysis (DEA), is currently a popular technique for analysing technical efficiency and it has 
been used in a number of applications. DEA originally proposed by Charnes, Cooper, and Rhodes [6] is a non-
parametric technique for measuring and evaluating the relative efficiencies of a set of entities, called decision 
making units (DMUs), with the common inputs and outputs. 

An interesting problem is how to preserve the relative efficiency value of a considered DMU if the internal 
technical structure of the considered DMU slightly changes in a short term. In recent years, inverse optimization of 
DEA models has been studied. For DEA models, constraint parameters are input and output values of DMUs. 
Therefore, inverse problems of DEA models can be classified into two types depending on what parameters are 
changed and what parameters need to be varied to keep the optimal objective value unchanged. Resource allocation 
problem and investment analysis problem. The resource allocation problem of DEA is an inverse DEA problem of 
determining the best possible inputs for given outputs such that the current efficiency value of a considered DMU 
(DMU ) with respect to other DMUs remains unchanged. The investment analysis problem of DEA is an inverse 
DEA problem of determining the best possible outputs for given inputs such that the current efficiency value of a 
considered DMU  with respect to other DMUs remains unchanged. 

  Normally, the internal technical structure of a DMU should not change dramatically in a short term (Yan et.al. 
[18]). Therefore, the inverse DEA models can be used to such resource allocation and investment analysis problems. 
Wei et al. [17] proposed, for the first time, an inverse DEA model for input and output estimation. In their work, an 
inverse DEA model was discussed to answer the following question: 

  Among a group of DMUs, if we increase certain inputs of a particular unit and assume that the DMU 
maintains its current efficiency value with respect to other units, how much more outputs could the unit produce? 
Or, if the outputs need to be increased to a certain value and the efficiency of the unit remains unchanged, how much 
more inputs should be provided to the unit? In their developed inverse DEA model, the increases in input and output 
values were assumed to be nonnegative values, and the inverse DEA model was transformed into and solved as a 
multi-objective linear programming (MOLP) problem. Yan, et al. [18] discussed an inverse DEA problem with 
preference cone constraints to represent decision makers’ preferences, which was useful in resource planning. 
Jahanshahloo et al. [11]. extended the inversed DEA problem and the developed solution method by Yan, et al. [18] 
to the case of determining outputs of the considered DMU when some or all of  inputs were increased and the 
efficiency value of the considered DMU with respect to other DMUs needed to be improved by specified percentage 
of its current efficiency value. They proposed by using inverse data envelopment analysis model, a method to 
estimate output levels of a decision making unit is presented when some or all of its input entities are increased and 
its current efficiency level is improved. Jahanshahloo et al. [12] showed that the inversed DEA models could be 
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used to estimate inputs for a DMU when some or all outputs and the efficiency value of the DMU were increased or 
preserved, and also identified extra inputs when outputs were estimated using the proposed models by Yan et al. 
[18] and Jahanshahloo  et al. [11]. Jahanshahloo et al [13] proposed a modified inverse DEA model for sensitivity 
analysis of efficiency classifications of efficient and inefficient DMUs in which important policies over inputs, 
outputs and DMUs were represented by preference cones. 

  Hadi-Vencheh and Foroughi [10] discussed an extended inverse DEA model where an increase of some inputs 
(outputs) and a decrease due to some of the other inputs (outputs) are taken into account at the same time. A 
proposed solving method was based on DEA and MOLP. In their paper, they also showed that the solution proposed 
by Wei et al. [17] did not guarantee the efficiency result for input estimating, i.e., it might fail in a special case. 
Actually, in the paper of Wei, et al. [17], only the increase of inputs (outputs) is considered whereas each DMU may 
concern the increase of some of inputs (outputs) and the decrease of the other inputs (outputs) simultaneously. 
Alinezhad et al [1] proposed a methodology that uses an interactive MOLP for solving the inverse DEA problems. 
Previous studies on inverse DEA problems mostly consider the efficiency value of the considered DMU without 
considering the effect of input/output changes on efficiency values of other DMUs. Recently, Lertworasirikul et al. 
[15] studied the inverse Data Envelopment Analysis (inverse DEA) for the case of variable returns to scale (inverse 
BCC). The developed inverse BCC model can preserve relative efficiency values of all decision making units 
(DMUs) in a new production possibility set composing of all current DMUs and a perturbed DMU with new input 
and output values. They considered the inverse BCC model for a resource allocation problem, where increases of 
some outputs and decreases of the other outputs of the considered DMU can be taken into account simultaneously. 
They proposed a linear programming model, which gives a Pareto-efficient solution to the inverse BCC problem.  

  In this paper, we discuss the proposed models by Lertworasirikul et al. [15]  when some of  inputs and outputs 
values are non-discretionary. 

  Often the assumption of homogeneous environments is violated and factors that describe the differences in the 
environments need to be include in the analysis .these factors, and other factors outside the control of the DMUs ,are 
frequently called non-discretionary factors instances from the DEA literature include snowfall or weather in 
evaluating the efficiency of maintenance units, the number of competitors in the branches of a restaurant china. In 
this paper, we discuss the proposed models by Lertworasirikul et al. [15] in the presence of such data. 

  In Section 2, we provide a brief review on DEA models. Section 3 states the inverse BCC model in the present 
of non-discretionary and discretionary data and presents our proposed model to determine the best possible values of 
inputs for the perturbed DMU to preserve relative efficiency values of all DMUs. In Section 4, a solution approach 
to the inverse BCC in the present of non-discretionary and discretionary data  is presented. Finally, conclusions are 
given in Section 5. 
 
2. The DEA model in the present of non-discretionary and discretionary data 

  Assume that there are n DMUs, where each 퐷푀푈 (i=1,…,n),  uses m different inputs,푥  (j=1,…,m), to 
produce r different outputs, 푦  (k=1,. . . ,r) . We denote 푦  (k=1,. . . ,r)  by the level of the kth output  from unit 
i(i=1,. . . ,n) and by 푥  (i=1,. . . ,n)the level of the jth input to the ith unit. Let i=o be the evaluated unit. Assume that 
input and output data are semi-positive and some of them are non-discretionary. So we have: 

푥  =   

x
x
⋮

x
≥	0,	푥 ≠ 0,	푦  = 

y
y
⋮

y
≥	0,	푦 ≠ 0  

푥  =

x
x
⋮

x
≥	0,	푥 ≠ 0,	푦  =   

y
y
⋮

y
≥	0,	푦 ≠ 0 

The primal and dual BCC models for obtain efficiency of DMU   are in the following form. 
(푷푩푪푪풐)  maximize (−∑ x v∈{ } + ∑ 푢 푦 +∑ 푢 푦∈{ }∈{ } − 푢 ) 
푠. 푡:				 ∑ 푣 푥∈{ } = 1  
											−∑ 푣 푥∈{ } − ∑ 푣 푥∈{ } + ∑ 푢 푦 + ∑ 푢 푦∈{ }∈{ } − 푢 ≤ 0	, 푓표푟		푖 = 1, … , 푛  

												푢 	푖푠	푓푟푒푒	, 푢 ,푣 ≥ 0, 푗 = 1, … ,푚, 푘 = 1, … , 푟																																																																																		(ퟏ)  
(푫푩푪푪풐  ) minimize (휃 − 휀(∑ 푠∈{ } 		+∑ 푠∈{ } ) 
푠. 푡:    ∑ 휆 푥 + s = 휃 푥 		 ,						푗 ∈ {퐷퐼}  
											∑ 휆 푥 + s = 푥 				,								푗 ∈ {푁퐼}  

											∑ 휆 푦 − s = 푦 		,									푘 ∈ {퐷표}  
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											∑ 휆 푦 − s = 푦 		,									푘 ∈ {푁표}  

											∑ 휆 = 1  

											휆 ≥ 0	, s ≥ 0, s ≥ 0, 휃	푖푠	푓푟푒푒,   					       																																																																																														   (2) 

Where i = 1,. . . ,n, j = 1,. . . ,m, k=1,. . . , r, 푥 		 is the input j of the considered DMU (DMU ), 푥 		is the input j 
of	DMU , 푦 		 is the output k of		DMU , 푦 		is the output k of  	DMU , 푢  is the weight of output k, 푣  is the weight 
of input j,  푢 is scalar 휆   is the convex combination of 	DMU , 휃  is the objective function or the technical 
efficiency valueof   DMU . The indices and notation will be used throughout this paper.  

From the BCC models, DMU will be technically efficient if the maximal efficiency,휃∗, is equal to 1. If  휃∗ < 1, 
it is possible to produce the given outputs using smaller input values, which may be obtained as a convex 
combination of inputs of other DMUs. Theλ , i = 1,. . . ,n obtained from the DBCC  model provide a reference set for 
inefficient DMUs. The convex combination of the reference set is the projected point on the production frontier of 
the inefficient DMUs. The set of feasible activities or all DMUs is called production possibility set. The BCC model 
has its production frontier spanned by the convex hull of the existing DMUs. From the production frontier of the 
BCC model, a DMU is inefficient if it is possible to reduce any input without increasing any other inputs and 
achieve the same value of outputs or it is possible to increase any output without reducing any other outputs and use  
the same values of inputs (Lertworasirikul, et.al.[14]). 

  In this paper we propose an inverse BCC model to preserve efficiency values of all DMUs relative to other 
DMUs based on the current production frontier. With the same production frontier, relative efficiency values of all 
DMUs can be maintained. To preserve the production frontier, the production possibility set is composed of all 
current DMUs and the considered DMU with the changes in its input and output values. 
 
3. The inverse BCC model 

  Denote the considered DMU with current input and output values by DMU and the considered DMU with its 
input and output changes (perturbedDMU ) byDMU ′	. The developed inverse BCC model for a resource allocation 
problem is introduced to answer the following question. For a group of current DMUs with their relative efficiency 
values of   휃∗,	휃∗,	휃∗,…,	휃∗, suppose that the output values of are changed from y 		to	y + ∆y ≥ 0,∆y ≠ 0,we 
want to find the minimum x + ∆x  where x + ∆x 	is a semi-positive vector such that DMU ′ 	with new input and 
output values (x + ∆x ,	y + ∆y ) still has its relative efficiency value of		휃∗, and all other DMUs still have their 
relative efficiency values of 휃∗,	휃∗,	휃∗,…,	휃∗. 

  Note that the current production possibility set before the changes of input and output values of DMU  is 
composed of n DMUs (DMU , i = 1,. . . ,n). However, after input and output values of DMU 	are changed, we 
consider the new production possibility set composing of n + 1 DMUs (DMU , i = 1,. . . ,n, and		DMU ) and try to 
preserve the production frontier. For non–discretionary data  we let: ∆푥 =0 , ∆푦 =0,(j∈ {푁퐼},	푘 ∈
{푁푂})where{NI},{NO}  refer to non–discretionary input and  outputs indices. . 
 
3.1. Primal form of the inverse BCC model 
  The mathematical models (primal and dual models) of the inverse BCC for a resource allocation problem when 
some data are non-discretionary are as follows. 
(퐈퐁퐂퐂퐨) minimize   ∆푥  
s.t.   ∑ 푣 (푥 + ∆푥∈{ } ) = 1  
								−∑ 푣 푥∈{ } −∑ 푣 푥∈{ } +∑ 푢 푦 +∑ 푢 푦∈{ }∈{ } − 푢 ≤ 0	, 푓표푟		푖 = 1, … ,푛  
       −∑ 푣 (푥 + ∆푥∈{ } )− ∑ 푣 (푥 + ∆푥∈{ } ) 	+∑ 푢∗푦 +∑ 푢∗푦∈{ }∈{ } − 푢 ≤ 0 
										푥 + ∆푥 ≥ 0  

							푢 	푖푠	푓푟푒푒	, 푢 ,푣 ≥ 0, 푗 = 1, … ,푚,푘 = 1, … , 푟																																																																																				(ퟑ)  
Where x + ∆x ≠ 0		for each and ∑ u∗y +∑ u∗y∈{ }∈{ } −∑ x v∗∈{ } − u = ∑ u (y + ∆y ) +∈{ }
∑ u (y + ∆y )∈{ } − ∑ x v∈{ } − u = θ 	

∗ 				is the relative efficiency value of DMU  before the changes in its 
output values. Using			∆x  from the IBCC  model, the relative efficiency values of all		DMU  for l = 1,2, . . . ,n from 
solving the following 퐼퐵퐶퐶  model must be equal to 휃 	

∗ where 휃 	
∗ is the current relative efficiency value of 

DMU before DMU changes its output values. 
(퐈퐁퐂퐂퐥) maximize(∑ 푢 푦 +∑ 푢 푦∈{ }∈{ } −∑ x v∈{ } − 푢 ) 
s.t.   ∑ 푣 푥∈{ } = 1  
								−∑ 푣 푥∈{ } −∑ 푣 푥∈{ } +∑ 푢 푦 +∑ 푢 푦∈{ }∈{ } − 푢 ≤ 0	, 푓표푟		푖 = 1, … ,푛  
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								−∑ 푣 (푥 + ∆푥∈{ } )−∑ 푣 (푥 + ∆푥∈{ } )	∑ 푢 (푦 + ∆푦 ) + ∑ 푢 (푦 + 								∆푦 )∈{ }∈{ } −
푢 ≤ 0  

								푢 	푖푠	푓푟푒푒	, 푢 ,푣 ≥ 0, 푗 = 1, … ,푚, 푘 = 1, … , 푟																																																																																						(ퟒ) 
 
3-2. Dual form of the inverse BCC model 
We have : 
(퐃퐈퐁퐂퐂퐨) minimize   ∆푥  
s.t.   ∑ 휆 푥 + 휆 푥 + ∆푥 + s = θ∗(푥 		 + ∆푥 ),							푗 ∈ {퐷퐼}  
								∑ 휆 푥 + 휆 푥 + ∆푥 + s = 푥 		 ,																										푗 ∈ {푁퐼}  

								∑ 휆 푦 + 휆 (푦 + ∆푦 )− s = 푦 		 + ∆푦 ,														푘 ∈ {퐷표}  

								∑ 휆 푦 + 휆 (푦 + ∆푦 )− s = 푦 													,																	푘 ∈ {푁표}  

								∑ 휆 + 휆 = 1  

								푥 + ∆푥 ≥ 0 
								휆 ,휆 ≥ 0, 푖 = 1, … ,푛.																																																																																																																																		(ퟓ) 

Where 푥 + ∆푥 ≠ 0 and  휃 	
∗ 	is the relative efficiency value of DMU  before the changes in its output values. Using 

∆푥  from the DIBCC0 model, the relative efficiency value of DMU for l = 1,2,. . . ,n from solving the 퐷퐼퐵퐶퐶  model 
must be equal to  휃 	

∗. 
(퐃퐈퐁퐂퐂퐨) minimize   (휃 − 휀(∑ 푠∈{ } 		+ ∑ 푠∈{ } ) 
s.t.  ∑ 휆 푥 + 휆 푥 + ∆푥 + s = 휃 푥 		,										푗 ∈ {퐷퐼}  
							∑ 휆 푥 + 휆 푥 + s = 푥 		,																										푗 ∈ {푁퐼}  

							∑ 휆 푦 + 휆 (푦 + ∆푦 )− s = 푦 		,										푘 ∈ {퐷표}  

							∑ 휆 푦 + 휆 (푦 )− s = 			 푦 										,													푘 ∈ {푁표}  

							∑ 휆 + 휆 = 1  

						휆 ,휆 ≥ 0, 푖 = 1, … ,푛.																																																																																																																																			(ퟔ) 

Note that the IBCC and DIBCC are in the form of multi-objective non-linear programming (MONLP) form. 
 
4. A solution  approach  to  the  inverse  BCC  model  in the present of  discretionary and non–discretionary 
data 
  To solve the inverse BCC model for the resource allocation problem, we need to find the value of ∆푥 = 
(∆푥 ,	∆푥 , … ,	∆푥 ),which keeps the relative efficiency values of all DMUs unchanged. This can be done by 
solving the IBCC 	and	IBCC  models or by solving		DIBCC  and 	DIBCC  models. However, these models are in the 
form of MONLP, which is not easy to solve. In this section, we propose a multi-objective linear programming model 
(MLDIBCC ), which gives an optimal solution for the inverse BCC model. Later we propose a linear programming 
model (LDIBCC ) in Theorem 2, which gives a Pareto solution to the		MLDIBCC  model. Therefore, 
Theorem 1. Assume that the relative efficiency value of		DMU  with respect to other DMUs in a group of 
comparable DMUs (i = 1,. . .,n) is 휃 	

∗ . Given the changes in output values of DMU , ∆푦 ≠ 0, the minimum ∆푥 of 
the perturbed DMU  (퐷푀푈 ), which does not make any changes to the relative efficiency values of all DMUs (l = 
1,. . .,n,	푂 ), can be obtained by solving the		MLDIBCC  model. For non–discretionary data let: ∆푥 =0 , ∆푦 =0. 
(퐌퐋퐃퐈퐁퐂퐂풐) minimize		∆푥 =(∆푥 ,∆푥 , . . . ,∆푥 )  
s.t.   ∑ 휆 푥 + s = θ∗ 푥 		 + ∆푥 ,											푗 ∈ {퐷퐼}  
								∑ 휆 푥 + s = (푥 		),																													푗 ∈ {푁퐼}  

								∑ 휆 푦 − s = 푦 		 + ∆푦 ,																	푘 ∈ {퐷표}  

								∑ 휆 푦 − s = 	 푦 												,																			푘 ∈ {푁표}  

								∑ 휆 = 1  

								∆푥 	 = 0				, 푗 ∈ {푁퐼} 

								휆 ≥ 0, 푖 = 1, … ,푛.																																																																																																																																										(ퟕ) 

 Proof.The BCC model for 퐷푀푈 ′  relative to other DMUs (l =1,… ,n) is thDBCC ′ model. 
(퐃퐁퐂퐂퐎′)minimize(	휃 − 휀(∑ 푠∈{ } 		+∑ 푠∈{ } )) 
s.t.  ∑ 휆 푥 + 휆 푥 + ∆푥 + s = 휃 (푥 		 + ∆푥 ),											푗 ∈ {퐷퐼}  
								∑ 휆 푥 + 휆 푥 + ∆푥 + s = 푥 		 ,																														푗 ∈ {푁퐼}  

								∑ 휆 푦 + 휆 (푦 + ∆푦 )− s = 푦 		 + ∆푦 ,																	푘 ∈ {퐷표}  

								∑ 휆 푦 + 휆 (푦 + ∆푦 )− s = 푦 											,																						푘 ∈ {푁표}  
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								∑ 휆 + 휆 = 1  

								휆 ,휆 ≥ 0, 푖 = 1, … ,푛.																																																																																																																																		(ퟖ) 

The set of constraints in the 퐷퐵퐶퐶 ′  model can be rearranged in the following form: 
∑ 휆 푥 +s = (휃 − 휆 ) 푥 		 + ∆푥 ,								푗 ∈ {퐷퐼}  

∑ 휆 푥 +s = (1− 휆 ) 푥 		 ,																									푗 ∈ {푁퐼}  

∑ 휆 푦 − s = (1 − 휆 )(푦 		 + ∆푦 ),									푘 ∈ {퐷표}  

∑ 휆 푦 − s = (1 − 휆 )(푦 		)										,													푘 ∈ {푁표}  

∑ 휆 + 휆 = 1  

휆 ,휆 ≥ 0, 푖 = 1, … ,푛.																																																																																																																																										(ퟗ) 

 
Case 1:	θ∗ < 1 

From the set of constraints in (9),  if 휆 ′ = 1, then 휆 = 0	 ,for i = 1,2,. . . ,n and 휃 ′ = 1 . The solution (휆 = 0 for     
i =1, 2, . . ., n; 휆 ′ = 1,휃 ′ = 1 )is not the optimal solution to the 퐷퐵퐶퐶 ′  model When  θ∗ < 1 ,because we can 
find a better solution at 휆 ′ = 0 .When		휆 ′ = 0, the constraints of the 퐷퐵퐶퐶 ′  model are in the same form as the 
constraints in the MLDIBCC  model. Thus, the objective value is θ∗ , which is less than 1.Since 1− 휆 ′ ≠ 0, we 

divide all constraints in the 퐷퐵퐶퐶 ′   model by 1− 휆 ′  and set θ ′ =
( ′ ′)

′
and λ =

′
  for i=1, 2, . . .,n.  

Then the 퐷퐵퐶퐶 ′	 model becomes: 
minimize(	휃 − 휀(∑ 푠∈{ } 		+∑ 푠∈{ } )) 

s.t.  ∑ λ 푥 +
′

= (	θ ′)(푥 		 + ∆푥 ),											푗 ∈ {퐷퐼}  

							∑ λ 푥 +
′

= 푥 		 ,																																			푗 ∈ {푁퐼}  

							∑ λ 푦 −
′

= (푦 		 + ∆푦 ),																				푘 ∈ {퐷표}  

							∑ λ 푦 −
′

= (푦 		)											,																								푘 ∈ {푁표}  

							∑ λ + ′

′
= 1  

							휆 ,휆 ≥ 0, 푖 = 1, … ,푛.															 

 From 	∑ 휆 + = 1,	  we find that   휆 = ( ∑ )
( ∑ )

 .Let: 

∀푗 = 1, … ,푚							푠 = 		 ( ́ )
			,  ∀k = 1, … . r									s	 = ( ́ )

  

By substituting that	휆 ′ = ( ∑ λ )
( ∑ λ )

	 into	θ ′ =
( ′ ′)

′
	,we can find that the objective function of the 퐷퐵퐶퐶  model 

is to minimize   휃 ′ = 	
(θ ′ ∑ λ )

( ∑ λ )
.	thus, the 퐷퐵퐶퐶  model becomes: 

minimize		(
(θ ′ ∑ λ )

( ∑ λ )
− 휀(∑ 푠∈{ } 		+ ∑ 푠∈{ } )) 

s.t.  ∑ λ 푥 + 푠 = (	θ ′)(푥 		 + ∆푥 ),										푗 ∈ {퐷퐼}  
							∑ λ 푥 + 푠 = 푥 		 ,																																푗 ∈ {푁퐼}  

							∑ λ 푦 − s = (푦 		 + ∆푦 ),																		푘 ∈ {퐷표}  

							∑ λ 푦 − s = (푦 		)											,																				푘 ∈ {푁표}  

							λ ≥ 0, 푖 = 1, … , 푛.																																																																																																																																					(ퟏퟎ)		 
Note that a fractional number is invariant under multiplication of both numerator and denominator by the same 
nonzero number. We set the denominator of the model (10) equal to 1, move it to a constraint, and minimize the 
numerator. This results in the following model. 
minimize		((θ ′ + 1− ∑ λ )− 휀(∑ s∈{ } 		+∑ s∈{ } )) 

s.t.   ∑ λ 푥 + s = (	θ ′)(푥 		 + ∆푥 ),									푗 ∈ {퐷퐼}  
								∑ λ 푥 + s = 푥 		 ,																																푗 ∈ {푁퐼}  

								∑ λ 푦 − s = (푦 		 + ∆푦 ),																		푘 ∈ {퐷표}  

								∑ λ 푦 − s = (푦 		)											,																				푘 ∈ {푁표}  
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								(2−∑ λ ) = 1  

							λ ≥ 0, 푖 = 1, … ,푛.							 
Since ∑ λ ) = 1		, the	above	model	becomes	the	model	(11). 
minimize		(θ ′ − 휀(∑ s∈{ } 		+ ∑ s∈{ } )) 

s.t.   ∑ λ 푥 + s = (	θ ′)(푥 		 + ∆푥 ), 푗 ∈ {퐷퐼}  
								∑ λ 푥 + s = 푥 		 ,																									푗 ∈ {푁퐼}  

								∑ λ 푦 − s = (푦 		 + ∆푦 ),										푘 ∈ {퐷표}  

								∑ λ 푦 − s = (푦 		)											,													푘 ∈ {푁표}  

								∑ λ = 1  

								λ ≥ 0, 푖 = 1, … , 푛.																																																																																																																																(ퟏퟏ)						 
The optimal solution of the model (11) is also optimal for the model (10) since the above transformation is 

reversible. The models (10) and (11) therefore have the same optimal objective value. Note that the constraints in 
the model (11) are in the same form of the constraints in the MLDIBCC   model. Using the minimum ∆푥 		obtained 
from solving the MLDIBCC 	model, all constraints in the model (11) are satisfied and the objective function is 
minimized at θ = θ∗   , otherwise ∆푥  is not optimal for the MLDIBCC 	model.Therefore, the relative efficiency 
value of 퐷푀푈 ′ with respect to the set of 	퐷푀푈 (l = 1, . . . ,n,표′) will remain equal to θ∗   . 
 
Case 2:	θ∗   =1 
If 휆 ′ 	≠ 1in the 퐷퐵퐶퐶 ′ model, we can prove that the optimal objective value of the  퐷퐵퐶퐶 ′  model (휃 ′) is equal 
to θ∗   =1 by using the same way for the proof of case 1. And if 휆 ′ = 1, then 휆 = 0 for i = 1,2,. . .,n and 휃 ′ = θ∗ =
1 .Now let us consider the inverse BCC (퐷퐼퐵퐶퐶 ) model. If 휆 ′ = 1, then, 휆 = 0 for i = 1,2,. . .,n , 휃 ′ = 1	  
and		푥 + ∆푥 = 0. However, we assume at the beginning that 		푥 + ∆푥 	must be a semi-positive vector. Therefore, 
the solution    휆 ′ = 1 ,	휆 = 0 for i = 1,2,. . .,n, 휃 ′ = 1	 and		푥 + ∆푥 = 0	 is not an optimal solution for the 
inverse BCC model. Consequently, given the changes in output values of 퐷푀푈 ,	∆푦 ≠ 0, the minimum ∆푥 	of 
퐷푀푈 ′, which does not make any change to the relative efficiency value of 퐷푀푈 ′, can be obtained by solving 
the			MLDIBCC  model. For other DMUs, the 퐼퐵퐶퐶model in (4) can be written in the vector-metric form as follows: 
 
max 	푢 푦 − ∑ x v∈{ } − 푢   
푠. 푡.		 ∑ 푣 푥∈{ } = 1  
									−푣 푥 + 푢 푦 − 푢 ≤ 0								푖 = 1, … ,푛  
								−푣 푥 + Δx −푣 푥 + 푢 (푦 + Δy ) + 푢 (푦 )− 푢 ≤ 0								 
																	{	푗 ∈ 퐷퐼}										{	푗 ∈ 푁퐼	}							{푘 ∈ 퐷푂	}									{	푘 ∈ 푁푂	}																																					  
								푢 	푖푠	푓푟푒푒,푈,푉 ≥ 0 
 
where				푈 = [푢 ,푢 , … , 푢 ]  ,	푉 = [푣 ,푣 , … ,푣 ] 
 

푥  =   

x
x
⋮

x
	,		푦  =   

y
y
⋮

y
  , 푥  =   

x
x
⋮

x
,	∆푥  =   

∆x
∆x
⋮

∆x

 ,∆푥 =
∆푥 																					푗 ∈ 퐷퐼											

0																												푗 ∈ 푁퐼	  

 
From the constraints   in the 	MLDIBCC  model , (푥 + ∆푥 ,푦 + ∆푦 ) ∈ 푝   where   p is a production   possibility 
set of all 	DMU 	, i = 1, … , n			and					p = 		 {(x, y)|		x ≥ Xλ	, y ≤ Yλ, e λ = 1, λ ≥ 0}					, X = x 		 ∗ 				

, Y =
[y ] ∗ 			, λ = (λ ) ∗ , λ ∈ R .if	(		푥 + ∆푥 ,푦 + ∆푦 ) ∈ 푝	, then	we	have: 
−푣 푥 + Δx −푣 푥 + 푢 (푦 + Δy ) + 푢 (푦 )− 푢 ≤ 
									{	푗 ∈ 퐷퐼}										{	푗 ∈ 푁퐼	}							{푘 ∈ 퐷푂	}									{	푘 ∈ 푁푂	}																																					  
≤ −V (X휆) + U (Y휆)− u ≤ −∑ 푉 푥 휆 +∑ 푈 푦 휆 − 푢   
≤ ∑ (−푉 푥 +푈 푦 )휆 − 푢   
From the 		IBCC 	model −V x + U y ≤ u 	for i = 1, . . . ,n. Therefore −V (x + Δx ) + U (y + Δy ) − u ≤
∑ u λ − u ≤ 0 .This shows that −V (x + Δx ) + U (y + Δy ) − u ≤ 0 in the 		IBCC  model is redundant 
and can be dropped out from the model without changing the solution set and the optimal objective value. In other 
words, the 		IBCC model is equivalent to the BCC model for DMU  before DMUo changes its output values. This 
implies   that the relative efficiency values of allDMU , (l = 1,. . . ,n) remains unchanged.  
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Lemma 1. Assume that the relative efficiency value of DMUo with respect to other DMUs in a group of comparable 
DMUs (i = 1, . . .,n) is θ∗   . Also, assume the output values of  DMUo    are changed from  yo   to y + ∆y ≥ 0. 
(∆y ≠ 0) .There exists at least an optimal solution to the MLDIBCCo model, if and only if y + ∆y ∈
P 	,	where		P = {y|y ≤ Yλ, e λ = 1	, λ ≥ 0}	, Y = [y ] × , λ = (λ ) × 	, λ ∈ R 		. 
Proof. Ify + ∆y ∈ P 		, then the constraints∑ λ y ≥ y + ∆y , k ∈ {DO}			,∑ λ y ≥
y 	,			k ∈ {NO},		∑ λ = 1		, λ ≥ 0		(	i = 1, … , n) in the MLDIBCCo model are satisfied. The 
constraints ∑ λ x ≤ θ∗ x 	,			k	 ∈ {NI} 		 ,∑ λ x ≤ θ∗ x + ∆x 			, k ∈ {DI} can be satisfied by 
finding the appropriate value of ∆x . Also, from the constraints  ∑ λ x ≤ θ∗ x 	, j ∈ {NI}	 
,∑ λ x ≤ θ∗ x + ∆x 			, j ∈ {DI}   , we know that		x + ∆x ≥ 0 , j = 1, … , m .The  objective of 
the MLDIBCCo model is to minimize ∆x , therefore,there exists at least an optimal solution to the 
MLDIBCCo model. This proves that there exits at least an optimal solution to the MLDIBCCo model if 
y + ∆y ∈ P 		. 
  If there exists at least an optimal solution to the MLDIBCCo model, from the set of 
constraints ∑ λ y − s = y 			, k	 ∈ {NO} ,∑ λ y − s = y + ∆y 		, k	 ∈ {DO} in 
the MLDIBCCo model, then  y + ∆y ∈ P  . 
  From Lemma 1, we can check whether y + ∆y  is in P  or not by determining a set of non-dominated DMUs 
based on the output comparison. Then if all elements of y + ∆y   is less than or equal to all elements of the outputs 
of at least one DMU in the non-dominated set, then y + ∆y 		is in P . 
 
Theorem 2	.		∆x = (∆x , … ,∆x ) obtained by solving the LDIBCCo model is a Pareto solution for the 
MLDIBCCo model. 
(퐋퐃퐈퐁퐂퐂퐨)			min 	w ∆x   
s. t.				 ∑ λ x ≤ θ∗ x + ∆푥 		,				푗 ∈ {퐷퐼}  
										∑ 휆 푥 ≤ 휃∗ x 		,																	푗 ∈ {푁퐼}				   
										∑ 휆 푦 ≥ 푦 +∆푦 		,											푘 ∈ {퐷푂}  
 
										∑ 휆 푦 ≥ 푦 		,																								푘 ∈ {푁푂}  
										∑ 휆 = 1													  
											휆 ≥ 0							،									푖 = 1, … ,푛  
										 ∆푥 = 0			,				푗 ∈ {푁퐼}} 
Where  푤 ∈ 푅 . 
Proof. Assume that   휆∗ = (휆∗ , … , 휆∗ )	, 훥푥∗ ∈ 푅  are the optimal solution from solving the LDIBCC  model but 
they were not Pareto solution to the MLDIBCCo model. There should be a possible   ∆x ∈ R  ,     λ =
λ , … , λ from the MLDIBCCo model where∆x ≤ ∆x∗    and thus w ∆x < w ∆x∗ , w > 0 .Note 

that					∆x ≤ 		∆x∗   represents a set of inequalities ∆x ≤ ∆x∗ 	, j = 1, … , m with at least one strict inequality, 
∆x ≤ ∆x∗  Since the MLDIBCCo model and the LDIBCC  model have the same constraint sets, ∆x ∈ R and λ are 
also the solution to the LDIBCC  model. This leads to a contradiction; therefore, ∆x∗ ∈ R  and λ∗from the LDIBCC  
model would also be a Pareto solution to the MLDIBCCo model.  
   From Theorem 2, if we find any positive vector, w ϵR, we would be able to find a Pareto solution for the 
MLDIBCCo model from solving the LDIBCC  model, which is a linear programming model. Consequently, the input 
and output vector of 	(x + Δx , y + Δy )	،	DMU ́  obtained from the LDIBCC  model will be a Paretoefficient 
solution to the inverse BCC model. 
 
5. Numerical example  

  There are 15 decision making units in this study that use 2 inputs to produce 2 outputs. The second input and 
output are non-discretionary .Input and output values of DMUs  are given in Table 1 for the efficiency analysis. 
After solving the BCC models (PBCC  or DBCC ) for all DMUs with the data from Table 1, the relative efficiency 
values  θ∗		of  all DMUs are given in Table 2.From Table 2, there are only 5  technically efficient DMus, which are 
DMU 		,퐷푀푈 	,	DMU ,퐷푀푈 ,	DMU . All other DMUs are technically inefficient. If we compare the performance 
of all DMUs based on outputs only, the set of non-dominated DMUs includes DMU  .Let us consider an 
inefficientDMU , the optimal objective value is   θ∗ 		=  0/42 which is less than 1. Suppose that the output vector of 
DMU  is changed from (10,1)  to(11/7,1)  and let 푤  = (1, 1) for input weights. Solving the LDIBCC  model we 
can observe that the new output values are in P 		the first output of DMU 	is less than or equal to the first output of 
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DMU 		.By solving the LDIBCC  model forDMU , we find that the optimal solution is  ∆x∗ =13/37 ,	∆x∗ =0 and the 
optimal objective value is equal to 13/37 . Therefore, the new input vector is (18/37,100) . Using the new input 
and output vectors for DMU , the relative efficiency values of all DMUs still remain the same . 

 
 

6.Conclusions 
 

In this paper, we extended the proposed models by S. Lertworasirikul et al.(2011) in the present of non-
discretionary and discretionary data. The traditional inverse DEA model is used to determine the best possible 
values of inputs (outputs) for given values of outputs (inputs)  of a considered DMU such that relative efficiency 
value of a considered DMU with respect to other DMUs remain unchanged. We study the inverse BCC model for 
the resource allocation problem. We propose a linear programming model, which gives a Pareto-efficient solution to 
the inverse BCC problem. 
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