
Semantic Web Service Choreography:

Contracting and Enactment

Dumitru Roman1 and Michael Kifer2

1 STI Innsbruck, University of Innsbruck, Austria
2 State University of New York at Stony Brook, USA

Abstract. The emerging paradigm of service-oriented computing re-
quires novel techniques for various service-related tasks. Along with au-
tomated support for service discovery, selection, negotiation, and com-
position, support for automated service contracting and enactment is
crucial for any large scale service environment, where large numbers of
clients and service providers interact. Many problems in this area involve
reasoning, and a number of logic-based methods to handle these prob-
lems have emerged in the field of Semantic Web Services. In this paper,
we build upon our previous work where we used Concurrent Transaction
Logic (CTR) to model and reason about service contracts. We signifi-
cantly extend the modeling power of the previous work by allowing it-
erative processes in the specification of service contracts, and we extend
the proof theory of CTR to enable reasoning about such contracts. With
this extension, our logic-based approach is capable of modeling general
services represented using languages such as WS-BPEL.

1 Introduction

The area of Semantic Web Services is one of the most promising subareas of the
Semantic Web. It is the main focus of large international projects such as OWL-
S,3 SWSL,4 WSMO,5 DIP,6 and SUPER,7 which deal with service discovery,
service choreography, automated contracting for services, service enactment and
monitoring. In this context, the focus of this paper is modeling of behavioral
aspects of services, and service contracting and enactment.

In a service-oriented environment, interaction is expected among large num-
bers of clients and service providers, and contracts through human interaction is
out of question. To enable automatic establishment of contracts, a formal con-
tract description language is required and a reasoning mechanism is needed to be
able to verify that the contract terms are fulfilled. A contract specification has
to describe the functionality of the service, values to be exchanged, procedures,

3
http://www.daml.org/services/owl-s/

4
http://www.w3.org/Submission/SWSF-SWSL/

5
http://www.wsmo.org/

6
http://dip.semanticweb.org/

7
http://ip-super.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357266312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and guarantees. This paper develops such a formal framework with a particular
focus on service contracting.

Our approach is based on Concurrent Transaction Logic (CTR) [3] and con-
tinues the line of research that looks at CTR as a unifying formalism for mod-
eling, discovering, choreographing, contracting, and enactment of Web services
[5, 12, 6, 9]. This previous work, however, was confined to straight-line services,
which cannot do repeated interactions—a serious limitation in view of the fact
that the emerging languages for specifying the behavior of Web services, such
as the Web Services Choreography Description Language (WS-CDL)8 or Web
Services Business Process Execution Language (WS-BPEL),9 identify iterative
processes as core elements of their models. The present paper closes this gap by
extending the previous work to cover choreography of iterative processes. CTR
can thus be used to model and reason about general service choreographies, in-
cluding the ones definable by very expressive languages such as [13], WS-CDL,
and WS-BPEL. We obtain these results by significantly extending the language
for service contracts and through a corresponding extension to the proof theory
of CTR. In this way, we also contribute to the body of results about CTR itself.

This paper is organized as follows. Section 2 describes the basic techniques
from process modeling, such as control flow and constraints. We then review the
modeling framework of [9]. Section 3 gives a short introduction to CTR to help
keep the paper self-contained. Section 4 shows how the framework outlined in
Section 2 is formalized in CTR. Section 5 describes the reasoning procedure—
the key component of service contracting in our framework. Section 6 presents
related work, and Section 7 concludes this paper.

2 Modeling, Contracting, and Enactment of Services

In [9] we identified three core service behavior aspects of service contracting: (1)
Web service choreography—a specification of how to invoke and interact with the
service in order to get results; (2) Service policies—a set of additional constraints
imposed on the choreography and on the input; and (3) Client contract require-
ments—the contractual requirements of the user, which go beyond the basic
functions (such as selling books or handling purchase orders) of the service.

The choreography of a service is described with control and data flow graphs,
and service policy and clients’ contract requirements are described with con-
straints. We defined the problem of service contracting as: given a service chore-
ography, a set of service policies, and a set of client contract requirements, decide
whether an execution of the service choreography exists, that satisfies both the
service policies and the client contract requirements. Furthermore, the problem
of service enactment was defined as finding out whether enactment of a ser-
vice is possible according to a contract and, if so, finding an actual sequence of
interactions that fulfils the contract.

8
http://www.w3.org/TR/ws-cdl-10/

9
http://www.oasis-open.org/committees/wsbpel/

The present paper deals with the same type of problems, but the settings are
significantly different: the service choreographies (control-flow graphs) are more
complex since now we allow iterative interactions (whereas [9] could deal only
with iteration-free interactions), and the set of allowed constraints is likewise
different: it allows complex constraints on iterative interactions. We illustrate
the new approach through an example of a virtual manufacturing service, which
handles purchase orders (POs). Apart from the clients, the virtual manufac-
turing service may interact with service providers to purchase the various items
requested in the purchase order. It may also contract with shippers to deliver the
purchased items to the client. For each item in a PO, the virtual manufacturing
service checks item availability with producers. Depending on the availability
and for other reasons (e.g., the reputation of the item producers) the virtual ser-
vice may choose a certain item producer-service, or it may inform the client that
an item is unavailable. If an item is available, the client may choose to accept
or to reject the offered item. To ship the items in the PO, the virtual service
contacts shipping services. Depending on the availability of shipping services and
taking a host of other considerations into account (e.g., shipper’s reputation) the
virtual service may book a specific shipper for delivering some or all of the items.
Clients are required to provide payment guarantees. If a guarantee is provided,
payment can be made for all items at once or separately for each item.

Service Choreographies. Figure 1 shows a service choreography depicted as
a control flow graph of a fairly complex virtual manufacturing service. Control
flow graphs are typically used to specify local execution dependencies among the
interactions of the service, since they are a good way to visualize the overall flow
of control. The nodes in such a graph represent interaction tasks, which can be
thought of as functions that take inputs and produce outputs. In Figure 1, tasks
are represented as labeled rectangles. The label of a rectangle is the name of
the task represented by that rectangle, and a graph inside the rectangle is the
definition or decomposition of that task. Such a task is called composite. Tasks
that do not have associated graphs are primitive. A control flow graph can thus
be viewed as a hierarchy of tasks. There is always one composite task at the root
of the hierarchy. In our example, handle order is the root; its subtasks include
handle items and handle shippers. These subtasks are composite and their
rectangles are shown separately (to avoid clutter). The task place order is an
example of a primitive task. To differentiation primitive and composite tasks,
we use rectangles with gray background to depict primitive tasks.

Each composite task has an initial and the final interaction task, the suc-
cessor task for each interaction task, and a sign that tells whether these suc-
cessors must all be executed concurrently (indicated by AND-split nodes),
or whether only one of the alternative branches needs to be executed non-
deterministically (indicated by OR-nodes). For instance, in Figure 1(a), all
successors of the initial interaction place order must be executed, whereas in
Figure 1(e) either item available or item unavailable is executed. The node
payment guarantee is also an OR-split, but with a twist. The lower branch
going out of this node represent a situation where the client provides a payment.

Fig. 1. A hierarchy of control-flow graphs with iterative tasks.

The upper branch, has no interactions, and it joins the lower branch. This means
that the lower branch is optional : the service may or may not accept a payment.

Control flows of some of the composite tasks in Figure 1 have dashed arrows
pointing from the final task to the initial task in the respective graphs. Such
arrows represent the fact that a composite task can execute iteratively multiple
times. We call these iterative tasks and differentiate them from non-iterative
tasks. For example, Figure 1(b) depicts handle items as an iterative task where
a sequence of two sub-tasks, select item and manage item, can be executed
multiple times (for example for each item in the PO). Note also the condition
credit limit > price attached to the arc leaving the node payment guarantee.
Such a condition is called transition condition. It says that in order for the next
interaction with the service to take place the condition must be satisfied. The
parameters credit limit and price may be obtained by querying the current state
of the service or they may be passed as parameters from one interaction to
another—the actual method depends on the concrete representation. In general,
transition conditions are Boolean expressions attached to the arcs in control flow
graphs. Only the arcs whose conditions are true can be followed at run time.

With these explanations, it should be clear how the control flow graph in Fig-
ure 1 represents the virtual manufacturer scenario described earlier. The top-level
composite task, handle order is used to process orders. Figure 1(a) depicts its
decomposition: first the order is placed (place order), then the items in the
PO are processed (handle items), delivery is arranged (handle shippers),
and a payment process is initiated (handle payment). These three tasks are

executed in parallel. Once all of them completes, the order handling is finished
(end order). The other parts of the figure show how each of the above subtasks
are executed. The important things to observe here is that some tasks are com-
plex and some primitive; some are to be executed in parallel (the AND-nodes)
and some in sequence; some tasks have non-deterministic choice (the OR-nodes)
and some are iterative (those that have dashed arcs in their definitions).

Service Policies and Client Contract Requirements. Apart from the local
dependencies represented directly in control flow graphs, global constraints often
arise as part of policy specification. Another case where global constraints arise
is when a client has specific requirements to the interaction with the service.
These requirements usually have little to do with the functionality of the service
(e.g., handling orders), but rather with the particular guarantees that the client
wants before entering into a contract with the service. We call such constrains
client contract requirements. In (1) we give an example of global constraints
that represent service policy and client contract requirements for our running
example. Note that all the constraints in this example are on iterative tasks.

Service policy:

1. A shipper is booked only if the user accepts at least 7 items.

2. If pay per item is chosen by the user, then the payment must happen immediately
before each item delivery.

3. Payment guarantee must be given before the client is informed about the availability
of items.

Client contract requirements:

4. All items purchased by the client must be shipped at once.

5. If full payment is chosen by the client, then it must happen only after all purchased
items are delivered.

6. Before the client purchases items the service must have booked a shipper.

(1)

Service Contracting and Enactment. With this modeling mechanism in
place, we define service contracting and enactment as follows:

– Service contracting : given a service choreography (i.e. a hierarchical control-
flow graph containing iterations), a set of service policies and client contract
requirements (i.e. constraints), decide if there is an execution of the service
choreography that complies both with the service policies and the client
contract requirements.

– Service enactment : if service contracting is possible, find out an actual order
of interactions that fulfils the contract, and execute it.

3 Overview of CTR

Concurrent Transaction Logic (CTR) [3] is an extension of the classical predicate
logic, which allows programming and reasoning about state-changing processes.
Here we summarize the relevant parts of CTR’s syntax and give an informal
explanation of its semantics. For details we refer the reader to [3].

Basic syntax. The atomic formulas of CTR are identical to those of the classical
logic, i.e., they are expressions of the form p(t1, . . . , tn), where p is a predicate

symbol and the ti’s are function terms. More complex formulas are built with
the help of connectives and quantifiers. Apart from the classical ∨, ∧, ¬, ∀, and
∃, CTR has two additional connectives, ⊗ (serial conjunction) and | (concur-
rent conjunction), and a modal operator ⊙ (isolated execution). For instance,
⊙(p(X)⊗ q(X)) | (∀Y (r(Y) ∨ s(X,Y))) is a well-formed formula.

Informal semantics. Underlying the logic and its semantics is a set of database
states and a collection of paths. For the purpose of this paper, the reader can
think of the states as just a set of relational databases, but the logic does not
rely on the exact nature of the states—it can deal with a wide variety of them.

A path is a finite sequence of states. For instance, if s1, s2, ..., sn are states,
then 〈s1〉, 〈s1 s2〉, and 〈s1 s2 ... sn〉 are paths of length 1, 2, and n, respectively.

Just as in classical logic, CTR formulas assume truth values. However, unlike
classical logic, the truth of CTR formulas is determined over paths, not at states.
If a formula, φ, is true over a path 〈s1, ..., sn〉, it means that φ can execute starting
at state s1. During the execution, the current state will change to s2, s3, ..., etc.,
and the execution terminates at state sn.

With this in mind, the intended meaning of the CTR connectives can be
summarized as follows:

– φ ⊗ ψ means: execute φ then execute ψ. Or, model-theoretically, φ ⊗ ψ is true over a path
〈s1, ..., sn〉 if φ is true over a prefix of that path, say 〈s1, ..., si〉, and ψ is true over the suffix
〈si, ..., sn〉.

– φ | ψ means: φ and ψ must both execute concurrently, in an interleaved fashion.
– φ ∧ ψ means: φ and ψ must both execute along the same path. In practical terms, this is best

understood in terms of constraints on the execution. For instance, φ can be thought of as a
transaction and ψ as a constraint on the execution of φ. It is this feature of the logic that lets
us specify constraints as part of service contracts.

– φ ∨ ψ means: execute φ or execute ψ non-deterministically.
– ¬φ means: execute in any way, provided that this will not be a valid execution of φ. Negation

is an important ingredient in temporal constraint specifications.
– ⊙φ means: execute φ in isolation, i.e., without interleaving with other concurrently running

activities. This operator enables us to specify the transactional parts of service contacts.

CTR contains a predefined propositional constant, state, which is true only
on paths of length 1, that is, on database states. As we shall see in the next
section, state is used in the definition of iterative tasks in service choreogra-
phies. Another propositional constant that we will use in the representation of
constraints is path, defined as state ∨ ¬state, which is true on every path.

Concurrent-Horn subset of CTR. Implication p ← q is defined as p∨¬q.
The form and the purpose of the implication in CTR is similar to that of Datalog:
p can be thought of as the name of a procedure and q as the definition of
that procedure. However, unlike Datalog, both p and q assume truth values on
execution paths, not at states.

More precisely, p← q means: if q can execute along a path 〈s1, ..., sn〉, then
so can p. If p is viewed as a subroutine name, then the meaning can be re-phrased
as: one way to execute p is to execute its definition, q.

The control flow parts of service choreographies are formally represented as
concurrent-Horn goals and concurrent Horn rules. A concurrent Horn goal is:

– any atomic formula is a concurrent-Horn goal;
– φ⊗ ψ, φ | ψ, and φ ∨ ψ are concurrent-Horn goals, if so are φ and ψ;
– ⊙φ is a concurrent-Horn goals, if so is φ.

A concurrent-Horn rule is a CTR formula of the form head← body, where
head is an atomic formula and body is a concurrent-Horn goal. The concurrent-
Horn fragment of CTR is efficiently implementable, and there is an SLD-style
proof procedure that proves concurrent-Horn formulas and executes them at the
same time [3]. Observe that the definition of concurrent-Horn rules and goals
does not include the connective ∧. In general, ∧ represents constrained execution.
The present work deals with a much larger class of constraints than [5, 9], which
includes iterative processes, and formulas of the form ConcurrentHornGoal ∧
Constraints are handled by the extended proof theory in Section 5.

Elementary updates. In CTR elementary updates are formulas that change
the underlying database state. Semantically they are binary relations over states.
For instance, if 〈s1 s2〉 belongs to the relation corresponding to an elementary
update u, it means that u can cause a transition from state s1 to state s2.

Constraints. Because transactions are defined on paths, CTR can express a
wide variety of constraints on the way transactions execute. One can place con-
ditions on the state of the database during transaction execution (constraints
based on serial conjunction), or may forbid certain sequences of states (con-
straints based on serial implication). To express the former, the proposition
constant path, introduced above, is used; for example, path⊗ψ⊗path specifies
a path on which ψ must be true. To express the latter, the binary connectives
“⇐” and “⇒” are used. The formula ψ ⇐ φ means that whenever ψ occurs,
then φ occurs right after it. The formula ψ ⇒ φ means that whenever φ occurs,
then φ must have occurred just before it.

4 Formalizing Service Contracts

We begin our formalization by showing how service choreographies are repre-
sented in CTR (Section 4.1). Section 4.2 proceeds to formalize service policies
and contract requirements as constraints expressed in CTR. Section 4.3 provides
a discussion on the assumption we take when modeling service contracts.

4.1 Modeling Service Choreography with CTR

In CTR, tasks are represented as formulas of the form p(X1, . . . , Xn), where p
is a predicate symbol and the Xi’s are variables. The predicate symbol is the
name of the task, and the variables are placeholders for data items that the task
manipulates (e.g. inputs, outputs, etc.). A task instance is a task whose variables
are substituted with concrete values.

Definition 1. (Dependency between tasks) A task p1 depends on a task p2 if
p2 appears in the body of a rule that has p1 as its head.

Definition 2. (Primitive task) A task is primitive if it does not depend on any
other task.

We conceptualize primitive tasks as opaque actions that produce some ex-
ternal action. In CTR, such actions are represented as elementary updates and
so ground instances of primitive tasks are treated as CTR’s elementary updates.

Definition 3. (Non-iterative task) A non-iterative composite task, p, is a task
defined by a rule of the form p← q, where q is a CTR goal none of whose tasks
depends on p.

Definition 4. (Iterative task) An iterative task, p, is a task defined by a rule
of the form p ← (q ⊗ p) ∨ state, where q is a CTR goal none of whose tasks
depends on p. This is equivalent to a pair of concurrent-Horn rules.

Definition 5. (Service choreography) A service choreography is an iterative or
non-iterative composite task that represents the root of the task hierarchy, along
with the rules defining it.

A CTR representation of the service choreography from Figure 1 is shown in
(2), below. The handle order task is the root of task hierarchy; it is followed by
the rules that define it.

handle order ← place order⊗
(handle items | handle shippers | handle payment)⊗ end order

handle items← (select item⊗manage item⊗ handle items) ∨ state

manage item← (contact producer ⊗ (inform client ∨ state)⊗manage item) ∨ state

handle shippers← (contact shipper ⊗ (manage shipper ∨ state)⊗ handle shippers) ∨ state

manage shipper ← book shipper ⊗ deliver

handle payment← payment guarantee⊗ ((credit limit > price⊗ pay) ∨ state)

inform client← (item available⊗ accept producer) ∨ item unavailable

accept producer ← accept ∨ reject

pay ← full payment ∨ item payment

item payment← (pay per item⊗ item payment) ∨ state

(2)

4.2 Modeling Constraints using CTR

We now define an algebra of constraints, CONST R, which we will use in this paper
to model service policies.

Definition 6. (Constraints) The following constraints form the algebra CONST R

(and nothing else):

1. Primitive constraints: If a is a task in a service choreography, then the
following are primitive constraints:

– existence(a, n)—task a must execute at least n times (n ≥ 1): ▽≥na ≡
▽≥1a⊗ ...⊗ ▽≥1a
︸ ︷︷ ︸

n≥1

, where ▽≥1a ≡ path⊗ a⊗ path. 10

– absence(a) - task a must not execute: ¬▽a ≡ ¬(path⊗ a⊗ path)

10
We will also use ▽a as an abbreviation for ▽≥1a as this constraint occurs very frequently.

– exactly(a, n) - task a must execute exactly n times (n ≥ 1): ▽na ≡
▽1a⊗ ...⊗ ▽1a
︸ ︷︷ ︸

n≥1

, where ▽1a ≡ ¬▽a⊗ a⊗ ¬▽a.

2. Serial constraints: If a, b are tasks in a service choreography then the
following are serial constraints:

– after(a, b) - whenever a executes, b has to be executed after it. Task b

does not have to execute immediately after a, and several other instances
of a might execute before b does: (path⊗ a)⇒ ▽b

– before(a, b) - whenever b executes, it must be preceded by an execution of
a. Task a does not have to execute immediately before b: ▽a⇐ (b⊗path)

– blocks(a, b) - if a executes, b can no longer be executed in the future:
(path⊗ a)⇒ ¬▽b

– between(a, b, a) - b must execute between any two executions of a, i.e.
after an execution of a, any subsequent execution of a is blocked until b
is executed: (path⊗ a)⇒ ▽b⇐ (a⊗ path)

– not-between(a, b, a) - b must not execute between any pair of executions
of a. If b executes after a, no future execution of a is possible: (path ⊗
a)⇒ ¬▽b⇐ (a⊗ path)

3. Immediate serial constraints: If a, b are tasks in a service choreography
then the following are immediate serial constraints:

– right-after(a, b) - whenever a executes, b has to execute immediately
after it: (path⊗ a)⇒ (b⊗ path)

– right-before(a, b) - whenever b executes, a has to be executed immedi-
ately before it: (path⊗ a)⇐ (b⊗ path)

– not-right-after(a, b) - whenever a and b execute, b must not execute
immediately after a, i.e. between the execution of a and b there must
be an execution of a task other than a and b: (path ⊗ a) ⇒ (¬state ∧
¬▽a ∧ ¬▽b)⇐ (b⊗ path)

The negation of right-before(a, b) is equivalent to not-right-after(b, a), so
we do not define it explicitly.

4. Complex constraints:If C1, C2 ∈ CONST R then so are C1∧C2, and C1∨C2.

The following examples illustrate the diverse set of constraints that can be ex-
pressed with the help of CONST R.

– ¬▽a∨▽1a∨▽2a∨...∨▽na — task a must execute at most n times. We denote this constraint by
at-most(a,n). This constraint together with the primitive constraints introduced earlier capture
the set of existence formulas from [13].

– ¬▽a ∨ ▽b — if a is executed, then b must also execute (before or after a).
– (¬▽a ∨ ▽b) ∧ (¬▽b ∨ ▽a) — if a is executed, then b must also be executed, and vice versa.
– after(a, b) ∧ before(a, b) — every occurrence of task a must be followed by an occurrence of

task b and there must be an occurrence of a before every occurrence of b.
– ¬▽a∨ between(a, b, a) — if task a is executed then b must execute after it, and before that b

there can be no other a.
– ¬▽b ∨ (before(a, b) ∧ between(b, a, b)) — if task b is executed, it has to be preceded by an

occurrence of a. The next instance of b can executed only after another occurrence a.
– between(a, b, a) ∧ between(b, a, b) — tasks a and b must alternate.
– right-after(a, b) ∧ right-before(a, b) — executions of a and b must be next to each other

with no intervening tasks in-between.

– ¬▽a ∨ ¬▽b — it is not possible for a and b to execute in the same choreography run.
– not-between(a, b, a)∧ not-between(b, a, b) — b must not execute between any two executions

of a, and a must not execute between any two executions of b.

With the modeling mechanism in place, we can now represent the constraints
from (1) formally:

1. (at-most(accept, 6) ∧ absence(book shipper)) ∨
(existence(accept, 7) ∧ after(accept, book shipper))

2. absence(item payment) ∨ right before(pay per item, deliver)
3. before(payment guarantee, inform client)
4. exactly(deliver, 1)
5. absence(full payment) ∨ (before(deliver, full payment) ∧ block(full payment, deliver))
6. before(book shipper, pay)

(3)

4.3 Service Contracts Assumption

We now introduce the assumptions about the forms of the constraints and tasks
involved in service choreography. These assumptions do not limit the model-
ing power of the language in the sense that any service choreography can be
simulated by another choreography that satisfies these assumptions.

Primitive Tasks Independence Assumption. A service choreography, G,
satisfies the independence assumption iff all of its primitive tasks are indepen-
dent of each other; two primitive tasks are said to be independent iff they are
represented by disjoint binary relations over database states.11 This assumption
means that a transition between two states is caused by precisely one primitive
task, and no other task can cause the transition between those states. It is easy
to see that the independence assumption does not limit the modeling power
in the following sense: there is a 1-1 correspondence between executions of the
original choreography and executions of the instrumented choreography.

Constraints Based on Primitive Tasks. Our service contracting reasoning
technique (developed in Section 5) assumes that constraints are based on prim-
itive tasks: a set of constraints, C, is said to be based on primitive tasks iff all
tasks appearing in C are primitive tasks. As with the independence assumption,
the above restriction on constraints does not limit the modeling power of the
language. It is easy to instrument composite tasks in such a way that constraints
that the resulting set of constraints will be based on primitive tasks only. More
specifically, every composite task, p, can be changed as follows: pstart ⊗ p ⊗ pend,
where pstart and pend are new unique primitive tasks. The effect is that now each
composite task has a clearly identified begin- and end-subtask, which can be used
in constraints. For instance, the constraint between(a,b,a) is now equivalent to
between(a,bstart,a) ∧ between(a,bend,a). We can also have constraints such as
before(astart,bend) and between(astart,bstart,aend).

Unique Task Occurrence Assumption. Some of our results depend on the
unique task occurrence assumption, which informally says that each task can
occur only once in the conjunctive part of the definition of any composite task.

11
Recall that primitive tasks are represented by elementary updates of CTR, and an elementary
update is a binary relation over database states.

The unique task occurrence assumption does not limit the modeling power of
our language, since the different occurrences of such tasks can be renamed apart.

Definition 7. (Service Contracts Assumption) A service choreography G and a
set of constraints C satisfy the service contract assumption iff the primitive tasks
of G satisfy the independence assumption and G has the unique task occurrence
property. In addition, the set of constraints C must be based on primitive tasks.

5 Reasoning about Contracts

Let C be a constraint from CONST R, which includes the service policy and the
client contract requirements. Let G be a a service choreography. Suppose G and
C satisfy the service contracts assumption. Then

1. Contracting: The problem of determining if contracting for the service is
possible is finding out if an execution of the CTR formula G ∧ C exists.

2. Enactment: The problem of enactment is formally defined as finding a
constructive proof for formulas of the form G ∧ C. A constructive proof is
a sequence of inference rules of CTR that starts with an axiom and end
with the formula G ∧ C. Each such proof gives us a way to execute the
choreography so that all constraints are satisfied.

The rest of this section develops a proof theory for formulas of the form G ∧C,
where G is a service choreography and C is a constraint in CONST R. Section 5.1
presents a simplification operation used by the extended proof theory, and Sec-
tion 5.2 presents the actual proof theory.

5.1 The Simplification Transformation

First, we define an auxiliary simplification transformation, S. If G is a choreog-
raphy and σ a primitive constraint, then S(G, σ) is also a service choreography
(in particular, it does not contain the logical connective ∧). If G has the unique
task occurrence property then S(G, σ) is defined in such a way that the following
is true: S(G, σ) ≡ G ∧ σ. In other words, S is a transformation that eliminates
the primitive constraint σ from G ∧ σ by “compiling” it into the service chore-
ography.12 The following defines the simplification transformation S.

Definition 8. (Simplification transformation) Let s be a primitive task from
T ASKS. Let t be a another primitive task from T ASKS. Then:

S(t,▽t) = t; S(t,▽≥nt) = ¬path; S(t,¬▽t) = ¬path; S(t,▽1t) = t;
S(t,▽nt) = ¬path; S(t,▽s) = ¬path; S(t,▽≥ns) = ¬path;
S(t,¬▽s) = t; S(t,▽1s) = ¬path; S(t,▽ns) = ¬path;

We remind that ¬path means inconsistency so if a conjunct reduces to ¬path
then the whole conjunction is inconsistent and if a disjunct is found to be incon-
sistent then it can be eliminated.
12 Note that the conjunction G ∧ σ can be an inconsistency.

Let p ∈ T ASKS be an iterative task of the form (4) (i.e. p← (q⊗ p)∨ state)
that satisfies the unique task assumption. Then:

S(p,▽≥ns) =
W

n=k1+...+km
(p⊗ S(q,▽≥k1s)⊗ p ⊗ S(q,▽≥k2s)⊗ p ⊗

. . . ⊗ S(q,▽≥km
s)⊗ p)

S(p,¬▽s) = p′, where p′ is defined as: p′ ← (S(q,¬▽s)⊗ p′) ∨ state

S(p,▽ns) =
W

n=k1+...+km
(S(p,¬▽s)⊗ S(q,▽k1s) ⊗ S(p,¬▽s) ⊗

S(q,▽k2s)⊗ S(p,¬▽s) ⊗
.

S(q,▽km
s)⊗ S(p,¬▽s))

Let r ∈ T ASKS be a composite non-iterative task of the form (3) (i.e. r ← q)
that satisfies the unique task assumption. Let δ stand for ¬▽s, ▽≥ns, or ▽ns,
where n ≥ 1. Then, S(r, δ) = S(q, δ). Since q can have the forms u ⊗ v, u | v,
⊙u, or u ∨ v, S(q, δ) is obtained as follows:

S(u⊗ v, δ) =

{

(S(u, δ)⊗ v) ∨ (u⊗ S(v, δ)), if δ is ▽≥ns or ▽ns

S(u, δ)⊗ S(u⊗ v, δ), if δ is ¬▽s

S(u | v, δ) =

{

(S(u, δ) | v) ∨ (u | S(v, δ)), if δ is ▽≥ns or ▽ns

S(u, δ) | S(v, δ), if δ is ¬▽s

S(⊙u, δ) = ⊙S(u, δ)
S((u ∨ v), δ) = S(u, δ) ∨ S(v, δ)

5.2 Extended Proof Theory

This section develops a proof theory for formulas of the form G∧C, where G is
a service choreography and C ∈ CONST R.

It is easy to see that C is equivalent to ∨i(∧j Cij), where each Cij is either
a primitive or serial constraint. To check if there is an execution of ψ ∧ C, we
need to use the inference rules introduced below and apply them to each disjunct
ψ ∧ (∧j Cij) separately. Therefore, we can assume that our constraint C is a set
of primitive or serial constraints.

Hot Components. We remind the notion of hot components of a formula from
[3]: hot(ψ) is a set of subformulas of ψ which are “ready to be executed.” This
set is defined inductively as follows:

1. hot(()) = {}, where () is the empty goal
2. hot(ψ) = ψ, if ψ is an atomic formula
3. hot(ψ1 ⊗ ...⊗ ψn) = hot(ψ1)
4. hot(ψ1 | ... | ψn) = hot(ψ1) ∪...∪ hot(ψn)
5. hot(⊙ψ) ={⊙ψ}
6. hot(ψ1 ∨ ... ∨ ψn) = hot(ψ1) or ... or hot(ψn)

Eligible Components. The set of eligible components is used in deciding which
inference rules are applicable at any given moment in a proof. Let ψ be a service

choreography and C a set of constraints. Let tasks(C) denote the set of all tasks
mentioned by the constraints in C. The set of eligible components of a CTR goal
ψ with respect to a set of constraints C is initially defined as follows:

eligible(ψ,C) = {t | t ∈ hot(ψ), and C has no constraints of the form
before(X, t) or right-before(X, t),
where X ∈ tasks(C) or X =?}

The eligible set keeps changing as the tasks in the choreography execute. The
exact mechanism of these changes is described in the inference rule 4. Note the
use of the “?” symbol in the definition of eligible: it appears in constraints of the
form before(?,t), which are added or deleted during the execution, by inference
rule 4. The constraint before(?, t) means that for t to execute, one task (which
is different from t), denoted by “?”, must execute prior to t. The symbol “?”
also occurs as part of a new kind of constraints which are used internally by the

proof procedure: right-before+(a, b)
def

= ?⊗ right-before(a, b).
This constraint means that the first task can be anything (denoted by “?”),

but beginning with the second action the constraint right-before(a, b) must hold
during the rest of the execution. Such constraints are not present initially, but
they are introduced by the proof theory system.

Sequents. Let P be a set of composite task definitions. The proof theory ma-
nipulates expressions of the form P, D --- ⊢ (∃)φ, called sequents, where P is
a set of task definitions and D is the underlying database state. Informally, a
sequent is a statement that the transaction (∃)φ, which is defined by the rules
in P, can execute starting at state D. Each inference rule has two sequents, one
above the other, which is interpreted as: If the upper sequent is inferred, then
the lower sequent should also be inferred. As in classical resolution, any instance
of an answer-substitution is a valid answer to a query.

This inference system extends the system for Horn CTR given in [3] with one
additional inference rule (rule 3). The other rules from [3] are also significantly
modified. The new system reduces to the old one when the set C of constraints
is empty. The new system also extends the proof theory developed in [9].

Axioms. P, D --- ⊢ ()∧C, for any database state D, where C does not contain
constraints of the form ▽≥ns or ▽ns, where n ≥ 1.

Inference Rules. In rules 1-5 below, σ denotes a substitution, ψ and ψ′ are
service choreographies, C and C ′ are constraint sets, D, D1, D2 denote database
states, and a is an atomic formula in eligible(ψ).

1. Applying transaction definitions: Let b ← β be a rule in P, and assume that
its variables have been renamed so that none are shared with ψ. If a and b
unify with the most general unifier σ then

P , D ---⊢ (∃) (ψ′ ∧ C) σ
P , D ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by replacing an eligible occurrence of a by β.

2. Querying the database: If (∃)aσ is true in the current state D and aσ and
ψ′σ share no variables then

P , D ---⊢ (∃) (ψ′ ∧ C) σ
P , D ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting an eligible occurrence of a.
3. Simplification: If δ is a primitive constraint, then

P , D ---⊢ (∃) (S(ψ,δ) ∧ C)
P , D ---⊢ (∃) ψ ∧ (C ∧ δ)

4. Execution of primitive tasks: If aσ is a primitive task that changes state D1

to D2 then

P , D2 ---⊢ (∃) (ψ′ ∧ C ′) σ
P , D1 ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting an eligible occurrence of a. C ′ is
obtained from C as follows. Suppose T, S ∈ tasks(C) are arbitrary task
names, and that T 6= a. Then:

– Step 1: Initially C ′ is C.
– Step 2:

(a) replace every constraint of the form right-before+(T, S) in C ′ with
a constraint of the form right-before(T, S)

(b) delete every constraint of the form before(a, T) in C ′

(c) delete every constraint of the form before(?, T) in C ′

(d) replace every constraint of the form right-before(a, T) in C ′ with a
constraint of the form right-before+(a, T)

(e) for every constraint of the form not-between(a, T, a) in C ′, add a
constraint of the form blocks(T, a) to C ′

(f) for every constraint of the form after(a, T) in C ′, add a constraint
of the form existence(T) to C ′

(g) for every constraint of the form blocks(a, T) in C ′, add a constraint
of the form absence(T) to C ′

(h) for every constraint of the form right-after(a, T) in C ′, for all S in
tasks(C), S 6= T , add before(T, S) to C ′

(i) for every constraint of the form not-right-after(a, T) in C ′, add a
constraint of the form before(?, T) to C ′

(j) for every constraint of the form between(a, T, a) in C ′, add a con-
straint of the form before(T, a) to C ′

5. Execution of atomic transactions: If ⊙α is a hot component in ψ then

P , D ---⊢ (∃) (α⊗ ψ′) ∧ C
P , D ---⊢ (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting an eligible occurrence of ⊙α.

Theorem 1. The above inference system is sound and complete for proving
constraint service choreographies, if the service choreographies and constraints
satisfy the service contracts assumption.

Proof : The proof is given in the technical report [10].

6 Related Work

The closest to the present paper is our earlier work [9]. By allowing iterative
processes in choreography descriptions, as well as new kind of constraints that
can be applied to iterative processes, the current paper significantly extends the
modeling power of the service contract framework developed in [9]. The extension
of the reasoning mechanism developed in this paper is also quite different and
more general than the approach taken in [9].

DecSerFlow [13] is a service flow language that is closely related to our service
behavior modeling framework. It uses Linear Temporal Logic to formalize service
flows and automata theory to enact service specifications. The relations between
tasks are entirely described in terms of constraints. First, our constraint algebra
CONST R is more expressive than DecSerFlow. Second, by combining constraints
with control-flow graphs, our framework appears closer to the current practices
in workflow modeling. Third, data flow and conditional control flow are easily
available in our framework [9], while, to the best of our knowledge, they have
not been developed in the context of DecSerFlow.

An emerging area related to our work is that of compliance checking between
business processes and business contracts. For example, in [7, 8] both processes
and contracts are represented in a formal contract language called FCL. FCL
is based on a formalism for the representation of contrary-to-duty obligations,
i.e., obligations that take place when other obligations are violated as typically
applied to penalties in contracts. Based on this, the authors give a semantic
definition for compliance, but no practical algorithms. In contrast, our work
provides a proof theory for the logic we use for service contracting.

Several other works, although not directly related to our approach to ser-
vice contracting and enactment, are relevant [11, 1, 2, 4]. Most of them present
logical languages for representing contracts in various contexts. However, they
are mainly based on normative deontic notions of obligation, prohibition, and
permission, and thus could be seen as complementary to our approach.

In process modeling, the main other tools are Petri nets, process algebras,
and temporal logic. The advantage of CTR over these approaches is that it is
a unifying formalism that integrates a number of process modeling paradigms
ranging from conditional control flows to data flows to hierarchical modeling to
constraints, and even to game-theoretic aspects of multiagent processes (see, for
example, [6]). Moreover, CTR models the various aspects of processes in distinct
ways, which enabled us to devise algorithms with better complexity than the
previously known techniques from the area of model checking for temporal logic
specifications [5].

7 Conclusions

We have extended the CTR-based logic language for specifying Web service
choreography and contracts to include iterative processes. As mentioned in the
introduction, many practical languages for describing service behavior include it-
erative processes in their models and enabling reasoning about iterative processes

opens up new possibilities for automated service contracting and enactment on
top of existing behavioral languages. In this way, we have closed most of the
outstanding problems in logic-based process modeling, which were raised in [5].
We have also extended the proof theory of CTR and made it capable of handling
complex practical problems in process modeling and enactment. Due to space
limitation, we did not include such modeling aspects as dataflow and conditional
control flow, but this can be handled similarly to [9].

Some problems still remain. For instance, reasoning about dynamically cre-
ated multiple instances of subprocesses is largely future work.
Acknowledgments. Part of this work was done while Michael Kifer was visiting
Free University of Bozen-Bolzano, Italy. His work was partially supported by the
BIT Institute, NSF grant IIS-0534419, and US Army Research Office under a
subcontract from BNL. Dumitru Roman was partly funded by the BIT Institute,
and the projects SUPER (FP6-026850), Knowledge Web (FP6-507482), SWING
(FP6-26514), SHAPE (ICT-2007-216408), and EASTWEB (Contract TH/Asia
Link/010 (111084)).

References

1. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Tor-
roni. Expressing and verifying business contracts with abductive logic program-
ming. Number 07122 in Dagstuhl Seminar Proceedings, 2007.

2. J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen. Composi-
tional specification of commercial contracts. Int. J. Softw. Tools Technol. Transf.,
8(6):485–516, 2006.

3. A. J. Bonner and M. Kifer. Concurrency and Communication in Transaction Logic.
In Joint International Conference and Symposium on Logic Programming, 1996.

4. S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of
contracts for web services. In WS-FM, pages 148–162, 2006.

5. H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic Based
Modeling and Analysis of Workflows. In PODS, pages 25–33, 1998.

6. H. Davulcu, M. Kifer, and I. Ramakrishnan. CTR–S: A Logic for Specifying Con-
tracts in Semantic Web Services. In WWW2004, pages 144+, 2004.

7. G. Governatori, Z. Milosevic, and S. Sadiq. Compliance checking between business
processes and business contracts. In EDOC ’06, pages 221–232, 2006.

8. G. Governatori, Z. Milosevic, S. Sadiq, and M. Orlowska. On compliance of busi-
ness processes with business contracts. Technical report, File System Repository
[http://search.arrow.edu.au/apps/ArrowUI/OAIHandler] (Australia), 2007.

9. D. Roman and M. Kifer. Reasoning about the behavior of semantic web services
with concurrent transaction logic. In VLDB, pages 627–638, 2007.

10. D. Roman and M. Kifer. Service contracting: A logic-based approach. Tech report,
available at http://www.wsmo.org/TR/d14/ServiceContracting140508.pdf, 2008.

11. P. G. S. Angelov. B2B E-Contracting: A Survey of Existing Projects and Stan-
dards. Report I/RS/2003/119, Telematica Instituut, 2003.

12. P. Senkul, M. Kifer, and I. Toroslu. A Logical Framework for Scheduling Workflows
under Resource Allocation Constraints. In VLDB 2002, pages 694–705, 2002.

13. W. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service
Flow Language. In The Role of Business Processes in Service Oriented Architec-

tures, number 06291 in Dagstuhl Seminar Proceedings, 2006.

