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ABSTRACT

We propose a multi-modal object tracking algorithm that combines
appearance, motion and audio information in a particle filter. The
proposed tracker fuses at the likelihood level the audio-visual ob-
servations captured with a video camera coupled with two micro-
phones. Two video likelihoods are computed that are based on a 3D
color histogram appearance model and on a color change detection,
whereas an audio likelihood provides information about the direction
of arrival of a target. The direction of arrival is computed based on
a multi-band generalized cross-correlation function enhanced with
a noise suppression and reverberation filtering that uses the prece-
dence effect. We evaluate the tracker on single and multi-modality
tracking and quantify the performance improvement introduced by
integrating audio and visual information in the tracking process.

Index Terms— Audiovisual tracking, particle filter, multimodal
processing, color histogram, change detection.

1. INTRODUCTION

The use of multiple modalities in object detection and tracking helps
compensating for noisy, partial or missing observations obtained with
a single modality. For example, the most appropriate camera view
can be selected depending on speech activity in multi-camera video
conferencing [1]. Moreover, audio can compensate for the failure
of video when an object is visually occluded by vegetation or dust
in surveillance scenarios [2]. Video and audio observations can be
fused using Particle Filter (PF), Probabilistic Data Association (PDA),
Kalman Filter (KF) [3], or Decentralized Kalman Filter [4]. The
joint likelihood can be computed as the product ([5, 6, 7, 1, 8]) or
as a linear combination of the single modality likelihoods [9]. An
independent PF for each target is used in [10], whereas a PF tracker
that uses audio information for consistent vehicles tracking during
occlusions is presented in [11]. A video likelihood based on the dis-
tance from detections is fused with an audio likelihood computed on
STFT coefficients in [12]. Sound source localization is performed
using SPR-PHAT [7], Expectation Maximization based Maximum
Likelihood, or Cross Power Spectrum based on the 2D Global Co-
herence Function [5].

A variety of sensor configurations have been used for audio-
visual object detection and tracking. Figure 1 shows a summary of
these configurations, which range from a single microphone-camera
pair to single or stereo cameras with stereo, circular arrays or lin-
ear arrays of microphones. Camera-microphone pairs are used for
speaker detection in environments with limited reverberation under
the assumption that the speakers face the microphone [13]; single
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or stereo cameras with multiple microphones are used in meeting
rooms and teleconferencing [14, 8]. In particular, simple Stereo Au-
dio and Cycloptic (STAC) vision sensors are suitable for wide area
surveillance. STAC sensors are used to perform audio-visual track-
ing with a probabilistic graph model and fusion by linear mapping
([15]) or with PF ([16]). However, the position of the speaker with
respect to the sensor is constrained by limiting assumptions.

In this paper, we propose a multiple object tracker for STAC
sensors that is based on particle filtering and combines the audio-
visual observations at the likelihood level. Visual measurements are
derived from an appearance model based on 3D color histograms
and from a motion model based on color change detection. Audio
measurements are derived from a multi-band generalized cross cor-
relation that is used for audio source localization. To improve the
localization accuracy, we define a reverberation filtering based on
onset detection. The proposed algorithm is capable of detecting and
tracking an active speaker and of tracking audio-visual objects in
scenes where visual occlusions occur.

The paper is organized as follows. In Section 2 we present the
multi-modal detection and tracking algorithm, the reverberation re-
duction algorithm and data fusion using PF. Experimental results are
discussed in Section 3. Finally, in Section 4 we draw the conclu-
sions.

a)                    b) c)

d)                     e) f) g)

Fig. 1. Examples of sensor configurations for audio-visual object
detection and tracking (filled circles indicate microphones; empty
circles indicate cameras – single or stereo): (a) single microphone-
camera pair; (b-c) STAC sensors; (d-e) circular microphone ar-
ray with single camera; (f) triangular microphone array with single
camera; (g) linear microphone array with single camera

2. MULTI-MODAL TRACKING

The problem of multiple audio-visual object tracking can be formal-
ized as a continuous estimation, from audio and video observations,
of the state xt of each target at time t. Let us define the state as
xt = (x, y,w, h), where (x, y) is the position and w and h are the
width and the height of the object. At any time t, one the follow-
ing conditions is possible: (i) a complete audio-visual observation is
available, (ii) only the sound cues is available, or (iii) only the visual
cues are available. We discuss below how to improve the estima-
tion accuracy of xt by fusing audio-visual information using STAC
sensors.
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2.1. Particle filtering

Particle filtering solves the tracking problem based on the state equa-
tion

xt = ft(xt−1,vt), (1)

and on the measurement equation zt = ht(xt,nt), where ft and ht

are non-linear and time-varying functions. {vt}t=1,... and {nt}t=1,...

are assumed to be independent and identically distributed stochastic
processes. The problem consists in calculating the pdf p(xt|z1:t) at
each time instant t. This pdf can be obtained recursively with a pre-
diction and an update step. The prediction step uses xt from Eq. (1)
to obtain the prior pdf as

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (2)

with p(xt−1|z1:t−1) known from the t − 1 and p(xt|xt−1) deter-
minated by Eq. (1). Given the measurement zt, the update step is
performed using the Bayes’ rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)∫

p(zt|xt)p(xt|z1:t−1)dxt
. (3)

Particle filtering approximates the densities p(xt|z1:t)with a sum of
Ns Dirac functions centered in

{
xi

k

}
i=1,...Ns

as

p(xt|z1:t) ≈
Ns∑
i=1

ωi
tδ

(
xt − xi

t

)
, (4)

where ωi
t are the weights associated to the particles. The weights are

calculated as

ωi
t ∝ ωi

t−1

p(zt|xi−1
t )p(xi

t|xi
t−1)

q(xi
t|xi

t−1, zt)
. (5)

q(.) is the importance density function. When q(.) = p(xt|xi
t−1),

then ωi
t ∝ ωi

t−1p(zt|xi−1
t ).

Next, to avoid the degeneracy problem re-sampling is applied by
setting ωi

t−1 = 1/Ns ∀ i, therefore

ωi
t ∝ p(zt|xi−1

t ). (6)

The weights are therefore proportional to the likelihood function that
will be discussed in the next sections.

2.2. Audio likelihood

A STAC sensor can estimate the horizontal position x of a target us-
ing sound source localization. Let s1(t) and s2(t) be the signals
captured by the two STAC microphones. Since the microphones
are spatially separated, the signal emitted by a sound source reaches
the two microphones at different time instants. The signals s1(t)
and s2(t) can be written as s1(t) = v(t) + n1(t) and s2(t) =
λv(t + τ ) + n2(t), where v(t) is the sound wave emitted by the
source, n1(t) and n2(t) are noise components, τ is the delay time of
arrival of the wave to the two microphones, and λ is the attenuation
component. The position x of the sound source can be estimated by
computing the cross-correlation R̂s1s2 of s1 and s2 using the Gener-
alized Cross Correlation function-Phase Transform (GCCF-PHAT).
To reduce the effect of reverberation in the source localization pro-
cess, we exploit the precedence effect and Multi-Band Frequency
Analysis. The GCCF-PHAT R̂s1s2 is estimated only on ensemble
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Fig. 2. Deviation from the ground truth for source localization using
the GCC-PHAT transform (blue) and the proposed method (green)

of frames that are classified as onset FO(t) using the precedence ef-
fect. Onset frames FO(t) are frames containing a significant signal
component and a limited or absent reverberation component caused
by the signal itself. These onsets are located at the beginning of a
signal audio block (the audio segment between two salient segments
of the audio signal). A frame F (t) is considered a signal frame if
the SNR at both microphones is larger than a threshold (see Section
3). Assuming that the frame under analysis, F (t), is the first frame
of an onset FO(1), the subsequent T frames are processed if identi-
fied as signal frames; whereas the signal frames from F (t + T ) to
the first null frame are considered reverberant frames and therefore
discarded.

The multi-band frequency analysis is based on the observation
that low frequencies are less subject to reverberation than high fre-
quencies and that the effects of correlated noise, located in a single
frequency band, can be reduced by evaluating the signal in differ-
ent frequency bands [17]. The two audio signals s1(t) and s2(t)
are divided into three different frequency bands. Using a normal-
ized frequency notation, a low frequency band (B1), a middle fre-
quency band (B2), and a high frequency band (B3) are defined.
The frequency band division is computed using three different 36-
coefficient band-pass linear phase FIR filters, frame-by-frame, for
onset frames. The cross-correlation function is then estimated for
each frequency band. The final estimation of the GCC is obtained
by a weighted combination of the three sub-band cross-correlations
as

R̂s1s2(f) =

3∑
i=1

wi
Gi

s1s2(f)

γ|Gi
s1s2(f)|+ (1− γ)|N i(f)|2 , (7)

whereGi
s1s2(f) is the cross power spectral density function in band

Bi, γ ∈ [0, 1] and N i(f) is the noise spectral density in band
Bi. N i(f) is estimated during the initialization assuming stationary
noise. The weights wi (

∑3
i=1 wi = 1) are chosen such that higher

frequency components contribute less than the low frequency ones.
In the experiments they are set to w1 = 0.5, w2 = 0.3, w3 = 0.2.
A peak is retained if it is simultaneously located in the same po-
sition in the three GCCs. Peaks that appear in a single band only
are reduced proportional to the weight associated. The resulting im-
provements compared to the plain GCCF-PHAT can be seen in Fig.2.
The green line shows the distance between the ground truth and the
results obtained with the proposed approach. The blue line shows
the distance between the ground truth and the GCC-PHAT result. It
can be seen that error for the proposed system (green line) is much
smaller than that of the GCC-PHAT (blue line) result. The audio
likelihood, p(A|xt), is finally computed by applying a univariate
Gaussian N (μA, σA) to the estimated cross-correlation R̂s1s2 as

p(A|xt) =
1

σA
√

2π
e

(R̂s1s2 (f))2

2σ2
A (8)

This results in a non-linear amplification of the autocorrelation func-
tion that emphasizes the major peaks.
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Fig. 3. Example of change detection results used in the visual likeli-
hood

2.3. Visual likelihood

The visual likelihood is composed of two cues, a color measurement
and a motion measurement. The color likelihood, p(C|xt), is com-
puted in theRGB color space using 3D color histograms, uniformly
quantized with 10x10x10 bins, as

p(C|xt) = e
−

(
d[p(x),q]

σ

)2

, (9)

where d[.] is the distance based on the Bhattacharyya coefficient,
computed as

d [p(x), q] =

√√√√1−
m∑

u=1

√
pu(x) · qu, (10)

with

pu(x) = B
∑

i

Ke,θ

(∥∥∥y −wi

h

∥∥∥2
)

δ [b(wi)− u] , (11)

where wi are the pixels of the target and b(wi) associates each wi

to its histogram bin [18]. The elliptic kernelKe,θ(.) is used to lower
the weight of the pixels that are closer to the border of the target.
The normalization factor B ensures that the sum of the bins is 1.

The motion likelihood, p(D|xt), is computed as distance from
the results of a change detector. The change detection is computed
as a thresholded absolute frame difference on each channel of the
RGB color space, fused using a logical OR operator. Median filter-
ing and morphology are then applied to reduce the resulting noise.
The median filtering is applied with a Ns = 5 kernel size and the
morphology uses a 15x5 elliptical structuring element to perform
dilation. Sample change detection results are shown in Fig. 3. The
motion likelihood from the detection is finally computed by applying
a multi-variate Gaussian comprising of 4 dimensions as

p(D|xt) = N4(μD, σD). (12)

The visual likelihoods are then fused with the audio likelihood, as
described in the next section.

2.4. Audiovisual fusion

The cues are fused in the particle filter as product of the audio and
visual likelihoods [12]. The overall likelihood is computed as

p(O|xt) = p(D|xt)p(C|xt)p(A|xt), (13)

whereO is the observation, p(D|xt) is the motion likelihood, p(C|xt)
is the color likelihood, and p(A|xt) is the audio likelihood. When
one modality is unavailable, its likelihood is set to 1.

Once p(O|xt) is computed, the weights are set proportional to
the likelihood (Eq. 6). The final estimation of the state xt at time t is
computed based on the discrete approximation of Eq. (4) using the
Monte Carlo approximation of the expectation:

E[xt|z1:t] ≈ 1

Ns

Ns∑
i=1

ωi
tx

i
t (14)

Audio-only tracking

Video-only tracking

Audio-visual tracking

(a) (b) (c)

Fig. 4. Comparison of tracking results (sequence VO) using audio-
only tracking (first row), video-only tracking (second row) and
audio-visual tracking (third row), and the computed correlation af-
ter reverberation filtering (fourth row). Frames: (a) 804; (b) 922;
(c); 996

3. EXPERIMENTAL RESULTS

We demonstrate and evaluate the proposed multi-modal tracker on
a dataset recorded with a STAC sensor composed of two Beyer-
dynamic MCE 530 condenser microphones and a KOBI KF-31CD
analog CCD surveillance camera. The distance between the micro-
phones is 95 cm and the video camera is located in the middle (Fig.
1(c)). The image resolution is 360x288 pixels (25 Hz) and the audio
is sampled at 44.1 KHz. Sample videos are taken from the sequences
VO (that contains a visual occlusion) and the sequence SD (that con-
tains two moving speakers). The data were collected in a reverberant
room with significant audio-visual background noise.

The evaluation is performed by computing the distance between
the estimated track and the ground truth. The tracker is tested on
scenarios without occlusions, with video occlusion, and with sin-
gle and multiple targets. The normalized frequency bands are B1 =
[0, 0.25],B2 = [0.25, 0.6], andB3 = [0.6, 1]; with fmax = 6000 Hz.
The number of particles used by PF is Np = 200. The variances
(σs, σd, σm) are set to 0.15 for the position parameters and to 10 for
the size parameters. The onset interval is of T = 6 frames. The
parameters of the algorithm used were the same for all sequences.

Figure 4 shows sample audio-visual target tracking results dur-
ing a visual occlusion. The changes in the color of the ellipse corre-
spond to the identity switches of a target. It is possible to notice that
the audio-only tracker is capable of tracking the target during and af-
ter the occlusion and that there are no identity switches, although the
accuracy is low. The video-only tracker fails during the visual occlu-
sion and generates an identity switch when the target reappears. The
audio-visual tracker correctly follows the target during occlusion and
also improves the localization accuracy compared to the audio-only
tracker. The improvement in the tracking accuracy is summarized
in Table 3: an error reduction of 12-24 pixels is obtained when us-
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GCC-PHAT Plain with RF with RF and MB
Audio only 28.63 23.35 15.36
Audio-visual 4.47 3.93 3.47

Table 1. Comparison of tracking accuracy results (sequence VO).
Error reduction between audio-only tracking, audio-visual tracking
with reverberation filtering (RF) and with RF and multi-band anal-
ysis (MB)

ing audio-visual fusion compared to audio only. As the video-only
tracker fails due to a track loss, its results are not considered in this
comparison. Table 3 also shows the error reduction when using the
reverberation filtering (RF vs. Plain) and the multi-band frequency
analysis (RF and MB vs. RF).

Figure 5 shows an example of application of the proposed multi-
modal tracker to an active speaker detection and tracking scenario,
with two people moving freely in a room and alternatively speaking.
By comparing the sample results with the ground truth, it is possi-
ble to notice that the algorithm accurately detects the active speaker
(white circle).

Although in this section the proposed method is evaluated with-
out changing its parameter set or its configuration, the overall frame-
work is modular and appropriate blocks can be optimized for the
specific application at hand. For example, an illumination invariant
change detector can be used for outdoor scenarios. Moreover, the
framework is extensible and adding additional features is straightfor-
ward using the fusion at the likelihood level presented in Eq. (13).

4. CONCLUSIONS
We presented an audio-visual detection and tracking algorithm for
STAC sensors. Audio observations are combined with video obser-
vations in a particle filter framework. Video observations generate
two likelihoods that are based on the distance from an appearance
model based on 3D color histograms and the distance from regions
identified with a color change detection. Audio observations gener-
ate a source localization likelihood based on the time difference of
arrival between the two microphones of the STAC sensor. The algo-
rithm reduces localization distortions due to reverberations using the
precedence effect and a multi-band frequency analysis, and can be
used in indoor environments. Experimental results showed how au-
dio information helps maintaining the track identity through visual
occlusion. Moreover, the tracker can accurately select and follow an
active speaker in the presence of significant noise and reverberation.

Future work includes the evaluation of the tracker in outdoor
sequences and the comparison of the fusion strategy based on the

(a) (b) (c)

Fig. 5. (top) Detection and tracking of alternating speakers using
audio-visual cues for the sequence SD. (a) Frame 50, (b) Frame 313,
(c) frame 425. (bottom) Ground truth of speaker detection: the green
and the red lines represents the speaking activity of the two people

product of the likelihoods with the one based on the weighted sum
of likelihoods. This second solution could enable a better control
of the likelihood when one of the modalities is available, but less
reliable.
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