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1 Introduction

Certain constructions in computability theory lend themselves well to realiz-
ability, the latter being based on an abstract notion of computation. A coarse
example of this is the notion of a Turing computable function itself, as the col-
lection of Turing machines makes an applicative structure and so provides an
example of realizability. This model is closely tied to Turing computation, nat-
urally enough, and so provides finer examples. Consider Weak König’s Lemma,
WKL, which is among constructivists more commonly studied in its contrapos-
itive form, the Fan Theorem FAN. (For background on realizability, the Fan
Theorem, and constructive mathematics in general, there are any of a number
of standard texts, such as [3, 23, 25].) Kleene’s well-known eponymous tree is a
computable, infinite tree of binary sequences with no computable path. In the
context of reverse mathematics, this shows that RCA0 does not prove WKL.
Within the realizability model, the same example shows IZF does not prove
FAN.

Perhaps a word should be said on the choice of the ground theory. For the
classical theory, it’s RCA0, while for the constructive, it’s IZF. The former is
notably weak, the latter strong. Why is that? And why those theories in partic-
ular? This is not the place to discuss the particular choice of RCA0. As for IZF,
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its use is of secondary importance. The point is that much of reverse classical
mathematics is to show the equivalence of various principles, for which a weaker
base theory provides a stronger theorem. Even for independence results, which
on the surface would be better over a stronger base, are often of the form that
a weaker theory does not imply a stronger one, where the latter easily implies
the former; clearly here, the base theory is the weaker of the two. Also for those
cases where the independence result desired is an incomparability, the principles
in question are all weak set existence principles, weak in the sense that they use a
tiny fragment of ZF, and hence a weak base theory is needed, to keep the theories
in question from being outright provable. In contrast, reverse constructive math-
ematics studies not set existence principles, but rather logical principles. Instead
of fragments of ZF, the subject is fragments of Excluded Middle. Especially when
discussing independence, when a stronger base theory gives a stronger theorem,
in order to highlight that it really is the logic that is up for grabs, and not set
existence, strong principles of set theory are taken as the base theory. IZF is
used here, since it is the simplest and most common constructive correlate to
ZF, the classical standard. Even for equivalence theorems, there would still be a
tendency to work over IZF, since the degree to which a result depended on the
IZF axioms is the degree to which the result is ultimately classical. In practice,
if any theorem needs less than full IZF, what is actually used could be read off
from the proof anyway.

Returning to realizability, the picture is not quite so rosy when it comes
to other constructions. A case in point is the distinction between WKL and
WWKL, Weak Weak König’s Lemma. WWKL states that for every binary tree
(of finite, 0-1 sequences) with no path there is a natural number n such that at
least half the sequences of length n are not in the tree. This principle has been
studied in reverse mathematics, both classical [22] and constructive [20]. Yu and
Simpson [26] showed that WWKL does not imply WKL (over RCA0). That’s
not so simple as merely taking the computable sets; while that would falsify
WKL, as discussed above, it invalidates WWKL too. What they do is to extend
the computable sets by a carefully selected real R0 (implicitly closing under
Turing reducibility) which provides a path through all the “bad” trees while not
destroying the Kleene tree counter-example. That’s not enough, though, because
the construction of a counter-example to WWKL relativizes. So while R0 kills
off the bad computable trees, it introduces new bad trees of its own. Hence
the construction must be iterated: R1, R2, ... In the end, the union of the (reals
computable in the) Rn’s suffices.

The statement of WWKL carries over just fine to a constructive setting,
where we will call it the Weak Fan Theorem W-FAN, as well as the question
of whether W-FAN implies FAN. For better or worse, the construction though
doesn’t. One might first think to use the Yu-Simpson set of reals as the set of
realizers. An immediate problem is that we need an applicative structure: the
realizers need to act on themselves. It is immediate and routine to view these
reals as functions from the naturals to the naturals – that’s a trivial identification
these days. It doesn’t help though. If the realizers are those functions, well, those
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functions act on naturals, not on functions. What we would need would be integer
codes for those functions. The realizers from this point of view would be that
set of naturals, which as need be could be taken to be functions. But here’s the
problem: what code do you give a function which showed up in some increasing
tower? If you were looking at those functions computable in some fixed oracle,
you could consider all the naturals as each coding such a machine. If instead
your oracle is continually changing, it’s not clear what to do and still maintain
an applicative structure. The fixes we tried did not work, as we were warned.

The same issue comes up with another distinction around FAN, namely the
distinction between FAN and WKL. In order to show their inequivalence, one
might want to come up with a model of FAN falsifying WKL. This has already
been done using K2 realizability, Kleene’s notion of functional realizability. It
is another matter to prove this theorem via K1 realizability. The problem is as
above: every Turing degree has an infinite binary tree with no path of the same
or lesser degree (the Kleene tree relativized to that degree). One could take a
set of degrees, any of the trees of which have a path in some other degree. The
problem here is how to turn that into a realizability structure.

The goal of this paper is a realizability model in which the realizers code
functions from the natural numbers to themselves with no highest Turing degree
among them. As corollaries to this method we get the two results just cited.

2 The Main Construction

The main idea here is to build a Kripke model, and then within that a realiz-
ability model, which has sometimes been called relative realizability [25]. This
kind of construction was apparently first suggested by de Jongh [10]. Variants
have been used by several people: having the Kripke partial order consist of only
two points and the realizers be at ⊥ certain computable objects which are then
injected into a full set of realizers [1, 2], or using instead of Kripke semantics
either double-negation [14] or a kind of Beth [24] semantics. For more detail on
all of this, see the last two sections of [25].

To help keep things simple, we assume ZFC in the meta-theory. For most of
this work, neither classical logic nor the Axiom of Choice is necessary, but we
will not be careful about this.

Let the underlying Kripke partial order be ω<ω. Let M be the full Kripke
model built on that p.o. Intuitively, that means throw in all possible sets. More
formally, a set in the model is a function f from ω<ω to the sets of the model
(inductively) which is non-decreasing (i.e. if σ ⊆ τ then f(σ) ⊆ f(τ)). Equality
and membership are defined by a mutual induction. On general principles, M |=
IZF. Moreover, the ground model V has a canonical image in M: given x ∈ V ,
let x̌ be such that x̌(σ) = {y̌ | y ∈ x}. We often identify x with x̌, the context
hopefully making clear whether we’re in V or in M. For slightly more detail on
the full model, defined over any partial order, see for instance [17].

Within M, we will identify a special set R of natural numbers, based on a
prior sequence Rn of reals (n ∈ ω). We assume the Rn are of strictly increasing
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Turing degree. At node ⊥ = 〈〉, R looks empty: ⊥ 6|= s ∈ R; equivalently,
R(〈〉) = ∅. Suppose inductively R(σ) is defined, where σ has length n. Let Rin
list all the reals that differ from Rn in finitely many places. Let R(σ_i) be
R(σ) ∪ {〈n, s〉 | s ∈ Rin}. In words, at level n+ 1, beneath each node on level n,
put into the nth slice of R all of the finite variations of Rn, spread out among
all the successors. So R is a kind of join of the Rn’s, just not all at once.

Because R is (in M) a real, it makes sense to use R as an oracle for Turing
computation. At ⊥, if a computation makes any query s ∈ R of R, there are some
nodes at which s is in R and others where it is not, so the oracle cannot answer
and the computation cannot continue. This follows from the formal model of
oracle computability: a run of an oracle machine is a tuple of natural numbers
coding a correct computation; the rule for extending a tuple when the last entry
is an oracle call is that the next entry must contain the right answer; if there
is, at a node, no right answer, then there can be no extending tuple. Hence the
only convergent computations are those that make no oracle calls, and the only
R-computable functions are the computable ones. More generally, at node σ of
length n, any query of the form 〈k, s〉 ∈ R with k ≥ n will be true at some future
nodes and false at others, hence unanswerable at σ. The computable functions
at σ are those computable in Rn−1.

In M, let App be the applicative structure of the indices of functions com-
putable in R (using, of course, the standard way of turning such indices into an
applicative structure). In M, let M[App] be the induced realizability model. On
general principles, M[App] |= IZF. The natural numbers of M[App] can be iden-
tified with those of M, so any set of such in M[App] can be identified with one in
M. Furthermore, at any node, a decidable real in one structure corresponds to a
decidable real in the other, and that can be identified with a real in the ambient
classical universe. Henceforth these various reals will not even be distinguished
notationally. For instance, if σ |= “M [App] |= “T ⊆ ω is decidable” ” then we
might refer to the real T in V.

For notational convenience, we will abbreviate σ |= “M [App] |= φ” as σ |=App

φ.

Lemma 1. For σ of length n and R a real, σ |=App “X is decidable” iff X is
Turing computable in Rn−1.

Proof. The statement “X is decidable” is ∀m ∈ ω m ∈ X ∨m 6∈ X. A realizer r
of the latter would be a function that, on input m, decides whether m is in or
out of X. If in the course of its computation r asked the oracle any question of
the form 〈k, s〉 with k ≥ n then the computation would not terminate at σ. So r
can access only Rn−1, making X computable in Rn. The converse is immediate.

Lemma 2. If σ |=App “X is an infinite branch through the binary tree” then
σ |=App “X is decidable.”

Proof. To be an infinite branch means for every natural number m there is a
unique node of length m. The realizer that X is an infinite branch has to produce
that node given m.
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Often people are concerned about the use of various choice principles. The
independence results presented here are that much stronger because Dependent
Choice holds in our models.

Proposition 1. 〈〉 |=App DC

Proof. The same proof that DC holds in standard Kleene K1 realizability works
here.

3 D-FAN and W-D-FAN

When adapting the classical results to the current setting, we need an additional
stipulation. All of the trees, and hence principles, we consider will be decidable:
for all binary sequences b and trees T , either b ∈ T or b 6∈ T . So, for instance,
instead of the full Fan Theorem FAN, we will be considering the Decidable Fan
Theorem: if a decidable tree in {0,1}N has no infinite path, then the tree is finite.
Also, Weak FAN, also known as WWKL, when applied to decidable trees, would
read: if a decidable tree in {0,1}N has no infinite path, then there is an n such
that at least half of {0,1}n is not in the tree.

This brings us to an annoying point about notation. Decidable FAN has been
referred to in various places as D-FAN, FAND, ∆-FAN, and FAN∆. So notation
for Weak Decidable FAN could be any of those, with a “W” stuck in somewhere.
To make matters worse, even though the statement of Weak FAN is a weakening
of FAN and not of WKL, the name WWKL for it is already established in the
classical literature, and so one could make a case to stick with it, and insert
decidability (“D” or “∆”) somewhere in there. These same considerations apply
to other variants of FAN, whether already identified (c-FAN, Π0

1 -FAN) or not.
Whatever we do here will likely not settle the matter. Still, we have to choose
something. It strikes us as confusing to distinguish between FAN and WKL, and
then call a variant of FAN by a variant of WKL. Also, what if somebody someday
wants to study the contrapositive of “WWKL”? Hence we stick with the name
W-FAN. As for how to get in the decidability part, we choose the option that’s
the easiest to type: W-D-FAN.

Returning to the matter at hand, Yu-Simpson [26] construct a sequence Xn

of reals of increasing Turing degree such that:
i) if T is a tree computable in Xn the branches through which form a set of

positive measure, then a path through T is computable in Xn+1, and
ii) no path through the Kleene tree is computable in any Xn.
We apply the construction from the previous section, with Rn set to Xn.

From this, the following lemmas are pretty much immediate.

Lemma 3. 〈〉 |=App W-D-FAN

Proof. At any node, a decidable tree T is computable in some Xn. If in V the
measure of the branches through T were positive, then there would be a branch
computable through Xn+1. So no node could force that there are no branches
through T . To compute a level at which half the nodes are not in T , just go
through T level by level until this is found.
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Lemma 4. 〈〉 |=App ¬D-FAN

Proof. The Kleene tree provides a counter-example.

While we expect that even full W-FAN does not imply D-FAN, this model
does not satisfy W-FAN. To see that, recall that any path through the binary tree
is decidable, hence computable in some Xn. There are only countably many such
paths. It is easy in V to construct a tree avoiding those countably many paths
with measure (of the paths) being as close to 1 as you’d like. The internalization
of such a tree in M[App] will not be decidable, but will be internally a tree with
no paths.

4 FAN and WKL

The distinction between FAN and WKL is a strange case. Their relation is that
WKL implies FAN, but not the converse. With some exaggeration, it seems as
though everyone knows that but no one has proven it. 3 At the very introduction
of non-classical logic, Brouwer himself must have realized this distinction, as he
made a conscious choice which variant of this class of principles he accepted.
Moreover, while he accepted FAN (having proven it from Bar Induction), it is
easy to see that WKL implies LLPO, which Brouwer rejected. So while Brouwer
did not provide what we would today consider a model of FAN + ¬WKL, we
would like to honor him in the style of the Pythagoreans by attributing this
result to him, whatever may actually have been going through his mind.

Such models have since been provided, for instance by Kleene, using his
functional realizability K2 [16, 21]. However, in neither of those sources is it
mentioned that WKL fails. In [5], both FAN and WKL are analyzed into con-
stituent principles, it is shown that WKL’s components imply the corresponding
FAN components, and it is nowhere stated that the converse does not hold. In
[7], equivalents are given for what is there called FAN and WKL, although their
FAN is actually D-FAN, and it is at least asked how much stronger WKL is than
FAN. The one proof we have been able to find of some fan theorem not implying
WKL is in [19], where once again the fan principle used is D-FAN. For what
it’s worth, that argument, like ours, uses relative realizability [8], albeit with K2

realizability.
Below we give a full proof that FAN does not imply WKL. We would be

interested in hearing of other extant proofs of such, and would find it amusing
if there were none. What might be new here, if anything, is not the result itself,
but rather the methodological point that this model is based on K1. That is,
while K1 is usually used to falsify even D-FAN, its variant below validates full
FAN.

Theorem 1. (Brouwer) FAN does not imply WKL.

3 Thanks are due here to Hannes Diener for first pointing this out to us and Thomas
Streicher for useful discussion.
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Proof. Take a countable ω-standard model of WKL0 (see [22], ch. VIII). There
is a sequence Xn of reals of increasing Turing degree such that the reals in this
model are exactly those computable in some Xn. This induces a model M[App]
as in section 2 above (with Rn being set to Xn).

To see that WKL fails, suppose to the contrary σ |=App “n r WKL”. So
if σ |=App “e r T is an infinite binary tree” then, at σ, {n}(e) must compute
a path through T . But a path through a tree is not computable in the tree, as
is standard, by considering the Kleene tree. This shows moreover that WKL for
decidable trees fails.

To show FAN, suppose at some node σ in the Kripke partial order r realizes
that B is a bar. We must show how to compute a uniform bound on B. To do this,
we will build a decidable subset C of B. Inductively at stage n, suppose we have
decided C on all binary sequences of length less than n. Consider each binary
sequence b̄ of length n (except if b̄ extends something in C of shorter length, in
which case what happens with b̄ just doesn’t matter anymore). Consider the path
Pb̄ which passes through b̄ and is always 0 after that. Applying r to Pb̄ produces
a sequence b+ in B on Pb̄. If b+ has length at most n, include in C all extensions
of b+ of length n, else just include b+ in C. After doing this for all b̄ of length n,
anything of length n not put into C is out of C. This procedure terminates only
when we have a uniform bound on C, hence on B. If this never terminates, we
have a decidable, infinite set of binary sequences not in C computable from r.
Hence at any child τ of σ there will be an infinite path P avoiding C. Applying
r to P produces an initial segment of P in B, say b. This computation itself
used only an initial segment of P , say c. Letting n be the maximum length of b
and c, at stage n no initial segment of either has been put into C, by the choice
of P . So the procedure would consider the path through b and c which is all 0s
afterwards. This would then put the longer of b and c into C, contradicting the
choice of P . So this procedure must terminate, producing a bound for B.

5 Questions

1. The second construction was developed for an entirely different purpose.
One way of stating FAN is that every bar is uniform. Weaker versions of

FAN can be developed by restricting the bars to which the assertion applies. For
instance, Decidable FAN, D-FAN, states that for every decidable set B (i.e. for
all b either b ∈ B or b 6∈ B), if B is a bar then B is uniform. Constructively,
decidability is a very strong property; in fact, it is the strongest hypothesis on
a bar yet to be identified. D-FAN is trivially implied by FAN; it has long been
known that D-FAN is not provable in IZF (via the Kleene tree, described in any
standard reference, such as [3, 23]; see [18] for a different proof). A somewhat
milder restriction on a bar B is that it be the intersection of countably many
decidable sets; that is, B is Π0

1 definable. Between decidable and Π0
1 bars are

c-bars: if there is a decidable set B′ such that b ∈ B iff for every c extending
b c ∈ B′, then B is called a c-set, and if it’s a bar to boot then it’s called a
c-bar. Often this definition seems at first unnatural and rather technical. All
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that matters at the moment is that this is a weaker condition than decidability:
every decidable bar is a c-bar. c-FAN is the assertion that every c-bar is uniform.
Such principles occur naturally in reverse constructive mathematics [15, 4, 12],
and are all inequivalent [18].

The first proof that D-FAN does not imply c-FAN, by Josef Berger [6], went
as follows. Classically, for X any collection of bars, X-FAN and X-WKL are
equivalent (as contrapositives). Furthermore, the Turing jump of a real R can
be coded into a tree computable in R, so that c-WKL implies that jumps always
exist. Hence over RCA0 c-WKL implies ACA. D-FAN and WKL (which, in the
setting of limited comprehension, is just D-WKL) are equivalent. So if D-FAN
implied c-FAN, constructively or classically, then WKL would imply ACA, which
is known not to be the case [22].

A limitation of this argument is that it works over a very weak base theory. It
leaves open the question of whether D-FAN implies c-FAN over IZF. While this
has been settled [18], a question of method still remains open. Could Berger’s
argument be re-cast to provide an independence results over IZF? The obvious
place to look seemed to be a model of WKL + ¬ACA, using the functions there,
which necessarily have no largest Turing degree, as realizers. Our analysis of
such a model did not achieve that goal. Is there another way of turning such a
model into a separation of D- and c-FAN?

More generally, could there be any realizability model separating D- and
c-FAN? All of the realizability models we know about either falsify D-FAN or
satisfy full FAN. Perhaps that’s because of the difficulty of realizing that some-
thing is a bar. That is, to falsify any version of the FAN, one might well want
to provide a counter-example, which would be a non-uniform bar. If a bar is
not uniform, realizing the non-uniformity would typically be trivial, as nothing
could realize that it is uniform, which suffices. Realizing that a set is a bar is
different: given a binary path, you’d have to compute a place on that path and
realize that that location is in the alleged bar. If this set is decidable, that’s easy:
continue along the path, checking each node on the way, until you’re in it. If the
set cannot be assumed decidable, it is unclear to us how to realize that it’s a
bar. This is something we would like to see: a way of realizing a non-decidable
set being a bar.

2. The differences among D-FAN, c-FAN, Π0
1 -FAN, and FAN have to do with

the hypothesis; they apply to different kinds of bars. In contrast, the difference
between FAN and W-FAN has to do with the conclusion, with whether the bar
is uniform or half-uniform, to coin a phrase. So these variants can be mixed and
matched. There are D-FAN, c-FAN, Π0

1 -FAN, FAN, and also W-D-FAN, W-c-
FAN, W-Π0

1 -FAN, and W-FAN. Clearly any version of FAN implies its weak
cousin. Other than that, we conjecture there is complete independence between
the variants of FAN and the variants of Weak FAN. This is, we conjecture W-
FAN does not imply D-FAN, and conjoined with D-FAN does not imply c-FAN,
and so on. Furthermore, we expect that D-FAN, while of course implying W-D-
FAN, does not imply W-c-FAN, and c-FAN does not imply W-FAN, and so on
for other variants that might appear.
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