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The common formalism for quantitative analysis in photoelectron spectroscopy and Auger
electron spectroscopy is based on the strait-line approximation (SLA) model. Within the SLA,
elastic scattering and inelastic surface losses of signal electrons are neglected and ideally flat
sample surfaces are assumed. When analyzing real sample surfaces, these assumptions are
not usually fulfilled. As a consequence, non-negligible systematic error is introduced into
the quantitative results. Based on the present knowledge of electron transport at solid sur-
faces, influences of electron elastic scattering, electron surface excitation effects, and surface
roughness on photoelectron peak areas are reviewed together with the presently developed
correcting procedures easy to use in practical surface analysis.

PACS: 68.49.Jk; 79.60.Jv

1 Introduction

The common formalism frequently used in quantitative electron spectroscopy, described by the
straight-line approximation (SLA) model [1], assumes a rectilinear motion of signal electrons
within a solid. The model is based on several simplifying assumptions:

(i) The studied specimen is polycrystalline or amorphous.

(i1) Electron elastic scattering effects are ignored. As a consequence, the signal electron atten-
uation in a solid is exponential.

(iii) Surface inelastic excitations of signal electrons are neglected.
(iv) The analyzed solid surface is ideally flat.

Since analyzed solid surfaces are generally complex, covered by overlayers (e.g. oxide layers,
surface contaminations) and corrugated, such idealized concept of rectilinear electron motion is
only a very rough representation of reality. The above listed assumptions can lead to an overes-
timation or underestimation of the signal currents of emitted photoelectrons or Auger electrons
for particular elements, which in turn will result in a systematic error in quantitative analysis.
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The first assumption can be easily checked by X-ray or electron diffraction methods, however.
Consequences of violation of other assumptions are discussed and illustrated below.

Elastic scattering of signal electrons influences noticeably the measured spectral intensity,
as realized previously by Baschenko and Nefedov [2] and others [3—7]. The elastic scatter-
ing changes both the initial angular distribution of photoelectrons and the escape probability.
Due to complexity of the electron transport, the first attempts to solve the electron transport
problem were carried out by Monte Carlo (MC) methods [2,4,8-11]. Analytical solutions by
solving the Boltzmann kinetic equation in the transport approximation have been also success-
ful [3,5,6, 11-13]. MC calculations as well as analytical approaches to the electron transport
problem accounting for elastic and inelastic electron scattering processes have shown that the
EDDF exhibits generally non-exponential behavior [4, 14, 15]. In particular, it was predicted that
in the case of strongly non-isotropic photoelectron emission, the EDDF could reach a maximum
at a depth smaller than the corresponding inelastic mean free path (IMFP) [4, 10, 16,17]. The
theoretical predictions have been verified experimentally so far only for several materials: for an
aluminum oxide, copper oxide, silver sulphide [10, 12, 16-20] and more recently also for an iron
oxide [21].

Surface excitations result from the boundary conditions of the Maxwell equations near the
interface between regions with different electrical susceptibility. These modes decay exponen-
tially with the distance from the surface and may be excited by an electron at either side of an
interface [22]. Surface excitation effects were underestimated in the past on a base of an idea
that the surface and bulk excitation compensates in a near surface region of a solid. More recent
results showed [23] that the compensation occurs indeed well beneath the surface while above
the surface (in vacuum) the surface excitations are not compensated at all.

The surface electron excitation processes are rather complex. Several models for surface
excitations have been proposed [24-30]. The magnitude of the surface excitation probability
as well as the distribution of energy losses depend in a complex manner on the direction of
surface crossing, the depth below the surface and the energy lost in a surface scattering process.
To describe more easily the influence of surface excitations by a single parameter, Chen [31]
proposed the surface excitation parameter (SEP).

As mentioned above, quantitative electron spectroscopy is usually applied under an assump-
tion of ideally flat surfaces. It was predicted from model calculations [1, 32] that the angular
distribution of peak areas recorded from a homogeneous rough sample is not influenced by the
roughness, provided the isotropic emission of signal electrons from their parents atoms. The
isotropic emission is expected for Auger emission. Contrary, it is well established that the sur-
face roughness influences strongly number of signal electrons recorded from layered samples,
e.g. a thin film grown on a solid surface [1,33-40]. As a consequence, considerable systematic
errors as high as 50% may be introduced when a non-destructive concentration depth profiling or
an overlayer thickness is evaluated from the angular-resolved spectra [33—39]. Due to complex-
ity of the quantitative approaches accounting for the effect of real surface roughness, the effect
is usually neglected in the evaluation of electron spectra.

There are several attempts in the literature to evaluate the surface roughness effects by a sim-
ple regular form of the roughness as triangular or sinusoidal shapes [1,38,39]. However, an im-
portant step to overcome the general problem of the real surface roughness was taken by Gunter
et al. [35,36]. The authors used a fractal model describing the roughness and studied electron
transport by MC calculations. They found that the influence of the surface roughness on photo-
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electron spectra is mainly determined by the average steepness of the surface. They also found
that for an overlayer/substrate sample the error in an overlayer thickness determination due to the
roughness reached a minimum for the so-called magic angle ~35° or ~45° (the emission angle
measured from the surface normal), depending on a simple and fully three-dimensional model of
a rough surface used, respectively. Vutova et al. [38,39] analytically calculated the influence of
surface roughness (including also the shadowing effect and the photoelectron anisotropy) for the
prism-shaped corrugated surface. Werner [32] studied the influence of surface roughness effects
(shadowing as well as the true emission angles) on total and angle-dependent signal electron in-
tensities. He incorporated the influence of surface roughness into an effective depth distribution
function and found dominating influence of surface roughness over the effect of elastic scattering.
The next approach to evaluate the impact of the real sample surface roughness was developed
more recently by Chatelier et al. [37]. The authors analyzed rough samples by atomic force mi-
croscopy (AFM) to provide a frequency histogram of the local slopes, which is incorporated into
the quantitative procedure.

2 Quantitative descriptions and illustrations

To improve and facilitate quantitative analysis in photoelectron spectroscopy, the most important
modifications applied to the SLA approach will be outlined on the bases of present understand-
ing of electron transport at solid surfaces. Specifically, the influence of electron elastic scattering
effects, the influence of electron motion through a solid surface (electron inelastic surface excita-
tions), and the influence of surface roughness on photoelectron peak areas will be discussed and
illustrated.

2.1 Rectilinear motion of signal electrons

Under above mentioned assumptions, the contribution, dI, to the observed signal intensity emit-
ted in the layer of thickness dz at the depth z is given by

dI = CIyAM (do/dQ)c(2) f(E, a)dz, (1)

where the constant C'comprises the instrumental factors, [ is the flux of X-rays, A is the ana-
lyzed area, M is the atomic density, ¢(z) is atomic concentration of a given element at a depth
z, f(E, «) is the escape probability of electrons with kinetic energy E leaving the solid surface
in direction o measured from the surface normal, and do/d2 is the differential photoelectric
cross-section [40] derived for unpolarized radiation and random orientation of atoms in a solid,

do/dY = (0;/47){1 — 0.256(3 cos> © — 1)}, )

where o;is the total photoelectric cross-section, 3 is the asymmetry parameter and © is the angle
between X-ray propagation direction and direction of emitted electron.

The escape probability, f(F,a), called the emission depth distribution function (EDDF)
[41], obeys a simple exponential law within the SLA model. This function describes contribu-
tions dI to the total photoelectron current [ arising from different depths z in a solid. Its decay
rate is determined by IMFP of signal electrons, \;, [42] and the cosine of the emission angle
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Fig. 1. The escape probability (EDDF) of O 1s photoelectrons leaving an iron oxide surface in the so-
called transmission experimental geometry. (a) An X-ray incidence angle of 0° and an emission angle of
0° measured from the surface normal. (b) An X-ray incidence angle of 0° and an emission angle of 60°
measured from the surface normal.

measured from the surface normal.

f(E,a) = exp(—z/)\; cos ). 3)

2.2 Electron elastic scattering effects

The pronounced influence of elastic scattering of signal electrons on the shape of the EDDF of
the O 1s photoelectrons leaving iron oxide surface is illustrated in Fig. 1(a). The experiment
was carried out in the so-called transmission geometry. The X-ray source was positioned on the
opposite side of an iron foil with respect to the analyzer. The sample should be thin enough
to provide good X-ray transmission and should be sufficiently thick with respect to the mean
escape depth of photoelectrons leaving the upper side of the sample adjacent to the analyzer. The
measured EDDF as well as those calculated by MC approach [43] and analytically [44] compare
well clearly demonstrating a non-monotonic behavior of the EDDF. The EDDFs are normalized
so that the f(z, «) satisfies the following condition:

/0 fa) =1, 4
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where z is the depth measured from the sample surface. For increasing angle ©, position of the
EDDF maximum was shifted towards the surface. At ©=60°, the EDDF can be approximated
with a good accuracy by exponential (see Fig. 1(b)). However, the decay rate is determined by
the total mean free path of signal electrons, A,

A= Ader /(i + ), 5)

where Ay, is the transport mean free path [22] accounting for electron elastic scattering effects.
Therefore, the SLA approach can be partially corrected for the electron elastic scattering replac-
ing A;by A\; in Eq. (3).

Another procedure correcting both the initial angular distribution and the escape probability
for elastic-scattering effects have been derived by Jablonski and Powell for experimental geome-
tries frequently used in current XPS analysis on the base of extensive MC calculations [45,46].
In this case, two correcting parameters,  and (3. s, modify the cross-sections given by Eq. (2)

(do/AQ)er = Q/ o5/ 4m){1 = 0258.11(3 c0s* © — )}, ®)
where
Pegp = ar cos? o+ ay cos a + as,

Q = by cos® o + by cos o + bs.

Values of the fitting parameters, a;and b;, are listed for each element, the principal photoelectron
lines, and for Mg and Al Ko excitation lines [46]. Index “el” denotes that the elastic scattering
effects are now taken into account.

Another easy to use practical procedure is to apply a software package SESSA [43] dis-
tributed by the NIST. It enables (among lot of other possibilities) to calculate photoelectron peak
intensities for the experimental geometry used accounting for both elastic and inelastic electron
scattering effects.

In Fig. 2, relative Si 2p intensities, Igop(s54)/{Lsi2p(si) + Lsizp(sio2) }» are plotted against
emission angles for a flat silicon sample covered by a thin silicon oxide film. The MC calcula-
tions compare well with the experimental data in the whole emission angular interval. In addi-
tion, the SLA results systematically deviate from the experiment. The SLA approach partially
corrected for electron elastic scattering effects (Egs. 3 and 5) compare well with the experiment
except for oblique emission angles.

2.3 Inelastic electron surface excitations

The probability for an electron leaving the solid surface without any surface excitations is de-
scribed by the surface excitation parameter, SEP, Ps(E, «). The SEP represents the average
number of surface excitation events experienced by an electron with energy E incoming and/or
leaving the surface at an angle a [47].

Within a model dielectric function, the SEP has been calculated for several metals and
semiconductors by Chen [23] :

Ps(E,0) = ag B2 cos ' a, @)
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Fig. 2. Angular dependencies of relative substrate Si 2p photoelectron intensity recorded from a flat silicon
sample covered by 1.1 nm of silicon oxide and by 0.5 nm of carbon contamination. Points - measurements,
blue solid line - Monte Carlo calculations, black dashed line - the straight-line approximation, red dotted
line - the SLA analytical calculations (partially) corrected for electron elastic scattering using Egs. 3 and 5.

where kinetic energy F is in eV, ay, is the material dependent fitting parameter.

On the base of extensive measurements of reflection energy loss spectra (REELS) for selected
metals and semiconductors, Werner et al. [48] extracted the SEP values from the ratio of the
number of electrons that induced a surface excitation to those elastically reflected. The SEP
values have been fitted with respect to the modified Oswald‘s expression [49].

Ps(E,a) =1/(0.173agEY? cosa + 1), (8)

where kinetic energy E is in eV, ay is the material dependent fitting parameter. The material
parameters for 16 elements were summarized [48]. From Eqns. (7) and (8) it follows that the
surface excitations are more pronounced for low kinetic energy electrons crossing a surface at
oblique angles.

To overcome the lack of the SEP data, Werner et al. [48] derived a simple predictive formula
to estimate the surface excitation parameter for medium energy electrons entering or leaving an
arbitrary material. It is:

aH/aHNFE = 0039719;; + 0.4, (9)

where €, is the generalized plasmon energy and a v FE is the material parameter of nearly free
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electron materials, agypg = 0.173 eV—1/2,

Q, = (4rN Ny /m.)"/?, (10)

where N is the atomic density, Ny is the number of valence electrons per atom, e is the elemen-
tary charge and m. is the electron mass.

The probability for an electron incoming and leaving the solid surface without any surface ex-
citations can be expressed [23] as exp[— Ps(F, )]. Then, the X-ray photoelectron spectroscopy
formalism in which elastic scattering effects have been accounted for can be extended to correct
the surface effects.

5 = CIoAM (do /).t exp[—Ps(E, )] / e(2)f(E, a)dz. (11)
0

Here, I, denotes given photoelectron intensity corrected for electron elastic effects as well as
inelastic surface-related effects. Chen [23] has applied the above corrections on angular distri-
butions of photoelectron intensities for several solids [50]. In addition, the procedure has been
successfully used on electron elastic peak data measured for silicon [51], iron oxide [52] samples
and on the Auger transition Au NOO [53].

2.4 Surface roughness

The present procedure relies on a careful surface roughness measurement by AFM. AFM pat-
terns were evaluated by using the tilt angle histograms method (THM) [54] accounting for both
true emission angles and electron shadowing. Then they were incorporated into the calculations
of the angular resolved intensities by using both analytical approaches based on the straight-line
approximation [1] and MC calculations with a software package SESSA [43] and finally com-
pared with the experiment. In addition, electron elastic scattering and a surface contamination
were considered. The procedure was applied and tested on angular resolved Si 2p photoelectron
line intensities recorded from a flat and an artificially corrugated silicon surfaces covered with a
thin silicon oxide film.

The so-called pyramid-like silicon corrugated surface is displayed in Fig. 3. Characteristic
dimensions of the roughness reached several hundred nm. The surface map was converted into
the histogram representation applying the THM. The THM is based on an idea that any rough
surface consists of a large number of small flat areas. For all flat segments, their area, orientation
and distribution were calculated, as it is illustrated in Fig. 4. In this manner, the true emission
angles are properly evaluated. Also the shadowing effect was included accounting for the factual
position of the electron energy analyser used. Mathematically, the procedure is rather compli-
cated and will be published in detail elsewhere [55].

The resulted equation for total photoelectron current I, considered in the experimental ge-
ometry k holds

Lo = TijTij, (12)

ij
where T, tilt angle matrix represents the area of the sample surface that is oriented to a direction
i, j and, simultaneously, is visible from the analyzer entrance slit in experimental geometry
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Fig. 3. AFM image of a pyramid-like corrugated silicon sample.

Area

Fig. 4. Histogram of local area distributions oriented to the directions ¢, j for a pyramid-like corrugated
silicon sample from Fig. 3.

position k. I;j; is the intensity matrix. This equation completely separates the influence of
surface roughness described by the tilt angle matrix 7’ and the influence of depth distribution
of elements below the surface incorporated in the intensity matrix I;;;. Therefore, the I is
not influenced by the surface roughness. Therefore, the I;;elements can be calculated by a
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Fig. 5. Angular dependencies of relative substrate photoelectron intensity recorded from a pyramid-like
silicon sample (see Fig. 3) covered by 1.1 nm of silicon oxide and by 0.5 nm of carbon contamination.
Points - measurements, blue solid line - Monte Carlo calculations, black dashed line - the straight-line
approximation, red dotted line - the SLA analytical calculations (partially) corrected for electron elastic
scattering, green dotted - dashed line — MC calculations for a flat surface.

common procedure developed for flat samples (analytically by SLA, or SLA corrected for elastic
scattering, or by MC calculations fully accounting electron inelastic and elastic scattering).

Comparison of the theory and the experiment for the silicon artificially corrugated pyramid-
like surface covered by a silicon oxide film and a surface contamination overlayer is shown in
Fig. 5. Here, angular dependencies of the relative substrate contribution to the Si 2p envelope
calculated for the ideally flat surface, for the pyramid-like corrugated surface using the SLA
approach with partial corrections for electron elastic scattering effects and using the MC calcu-
lations properly describing the electron scattering are compared with the measured data. It is
clearly seen that the MC results agree well with the experiment. Contrary, large difference is
evident for the data calculated under the assumption of the flat surface.

3 Summary and concluding remarks

Recent progress in understanding of electron transport at solid surfaces has led to improved relia-
bility and precision of resulted quantitative information. As a consequence, several approximate
procedures to correct effects of electron elastic scattering, surface-related inelastic events and
surface roughness have been developed. In the present contribution, effects of electron elas-



552

J. Zemek

tic scattering, inelastic surface excitations of signal electrons, and surface roughness are briefly

revie

®

(i)

(iii)

wed with the following conclusions.

Corrections for electron elastic scattering effects and full description of electron scattering
accounting for elastic as well as inelastic (bulk) scattering are at present well-established
and easy to use methods of quantitative analysis.

Apart from first attempts to correct electron surface excitations described in the present
work, description of surface-specific inelastic interaction of signal electrons is still in its
infancy. More theoretical works in the field and reliable experiments are needed.

At present, there is no easy to use method how to correct surface roughness effects. The
procedure accounting for the surface corrugation is rather complicated. We present a semi
empirical procedure based on a careful AFM surface mapping and tilt angle histograms. In
this manner, the surface roughness effects (true emission angles and electron shadowing)
are completely separated from the influence of depth distribution of elements below the
surface incorporated in the intensity matrix. Therefore, the intensity matrix can be calcu-
lated in a relatively easy way by a common procedure developed for the ideally flat sample
surfaces.
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