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Abstract

Design by Transformation (DxT) is a top-down approach to mechanically derive high-performance
algorithms for dense linear algebra. We use DxT to derive the implementation of a representative ma-
trix operation, two— sided Trmm. We start with a knowledge base of transformations that were
encoded for a simpler set of operations, the level-3 BLAS, and add only a few transformations to
accommodate the more complex two— sided Trmm. These additions explode the search space
of our prototype system, DxTer, requiring the novel techniques defined in this paper to eliminate
large segments of the search space that contain suboptimal algorithms. Performance results for the
mechanically optimized implementations on 8,192 cores of a BlueGene/P architecture are given.

1 Introduction

Experts compose Dense Linear Algebra (DLA) libraries from a common set of matrix/vector and data
rearrangement operations. For a particular target architecture, in this study a distributed-memory ar-
chitecture (cluster), sequential primitives found in libraries like the Basic Linear Algebra Subprograms
(BLAS) [5, 16} 10] and LAPACK [2] or 1ibflame [25] are composed with data redistribution opera-
tions like the collective communications found in the Message-Passing Interface (MPI) [22]. An expert
relies on his/her knowledge about the algorithms and the target architectures to hand-parallelize and
optimize each operation to be supported. The good news is that many DLA algorithms are sufficiently
similar in that knowledge gained from optimizing one operation can be applied to many others. The
bad news is that the functionality that is expected from a DLA library is vast. More bad news: as new
knowledge arises due, for instance, to architectural changes or a new insight, optimizations must be
re-applied across entire libraries. Bottom-line: we are in a period of great change. We believe the way
forward is automation.

Design by Transformation (DxT) (pronounced “dext”) is a top-down approach to mechanically derive
high-performance algorithms for dense linear algebra; DxTer (pronounced “dexter”) [11]] is our prototype
implementation of DxT. From an input graph that specifies a sequence of DLA operations, DxTer au-
tomatically generates a high-performance implementation using DLA knowledge that is encoded as
graph rewrite rules (transformations). For clusters, it generates code for Elemental [[15], a library with
functionality similar to ScaLAPACK [4]], that we use as a Domain-Specific Language (DSL).

Previously, we demonstrated success with DxT and DxTer for a variety of DLA algorithms [[12| 13ﬂ
and in other domains [[18] ﬂ In this paper, we apply previously encoded knowledge to a new operation,
two-sided Trmm (L AL, where L and A are a lower-triangular and general matrix, respectively) [16]].

'DXT and DxTer were introduced in [13]; we derived efficient algorithms for Cholesky decomposition and SPD inversion.
[12] extended this work to all level-3 BLAS functions, which form the building blocks of much of DLA functionality.
2 In [[18]}, we should how DxT can be effectively applied to other domains.




This operation is important when reducing a generalized Hermitian symmetric positive-definite eigen-
value problem to a standard Hermitian problem; it is illustrative of a non-trivial algorithm in DLA in
general, and Elemental in particular.

We previously reported success with a related operation, two-sided Trsm (L™'AL™H) [13].
For two-sided Trmm, we demonstrate how existing distributed-memory DLA knowledge encoded in
DxTer can be leveraged when a new operation is to be optimized. The only additional transformations
we needed to generate algorithms for two-sided Trmm come from new instantiations of an existing
transformation template and a transformation to support the new two-sided Trmm subproblem. Un-
fortunately, rather than incrementally enlarging the space, these additional transformations explode the
search space, rendering our existing implementation of DxTer incapable of producing a solution.

The main contributions of this paper are new methods to prune the space of suboptimal algorithms,
thereby allowing DxTer to produce efficient solutions for a wider range of DLA operations. These
methods to limit the search space will become more important as DxTer implements and optimizes code
through more layers of architecture (e.g. shared-memory memory). Here, we present important first
steps toward that goal that enabled DxTer to implement two-sided Trmm. Without these developments,
DxTer would not have been successful.

2 Design by Transformation

2.1 What is DxT?

DxT is a top-down, domain-agnostic approach to the mechanical generation of algorithms. It uses
pipe-and-filter graphs and graph transformations to codify the fundamental algorithms and domain ex-
pertise [21]. DXT enables us to automate the activities of experts: selecting and composing algorithm
implementations and applying optimizations.

2.2 Graph Representation

We use a Directed Acyclic Graph (DAG) as an input representation of the algorithm to be implemented.
Each node—also called a box or operation—represents a function call. Box inputs are indicated by
incoming edges and box outputs by outgoing edges.

Each box (node) represents a fundamental operation in a domain. There are two kinds of boxes:
interfaces and primitives. A box with no implementation details, other than preconditions and postcon-
ditions, is an interface. A primitive is a box whose implementation is given to us.

DxT uses refinements to map a graph containing only interconnected interfaces to a graph that
contains only interconnected primitives. A refinement is a transformation that replaces an interface with
a subgraph that exposes an implementation using a specific algorithm. These subgraphs reference lower-
level interfaces and/or calls to primitives. DxT applies refinements until all interfaces are removed and
only primitives remain.

Graphs that result exclusively from refinements generally do not attain the best performance because
refinements can introduce and cannot remove redundant computations and data movements. Therefore,
DxT uses optimizations: transformations that replace one subgraph with another that implements the
same functionality in a different way. Despite the name “optimizations”, such transformations do not
necessarily guarantee improved performance since multiple optimizations are often combined to achieve
a better-performing algorithm.




2.3 Performance Estimation

DxTer takes as input a graph and a knowledge base of transformations. It explores every sequence
of transformations on the input graph, generating a huge space of semantically-equivalent graphs. A
generated graph that has no interfaces is a valid implementation of the input graph because it only ref-
erences primitives. Mapping a graph containing only primitives to source code, called a Model-to-Text
(M2T) transformation, is straightforward, as there is a 1-1 correspondence between primitives and C++
statements that are part of Elemental [13]. Among the many thousands, tens of thousands, or hundreds
of thousands of graphs, some represent the most efficient implementation of the input graph.

To choose a best implementation, DxTer employs a different type of expert knowledge: cost esti-
mates. An expert manually searches a space of implementations for the best-performing one. Expe-
rience (heuristics based on cost estimates) guide him/her to an efficient implementation. DxTer in its
crudest form generates all implementations and then uses cost estimates to choose the best for a given
problem size.

The measure of cost to use is domain-specific, but runtime (time to completion) is common to many
domains. For DLA, DxTer sums the cost of primitive boxes on implementation DAGs to estimate their
runtime, similar to how an expert judges a design by hand. DxTer outputs (i.e. selects as “best”) the
DAG that is least costly for the problem size under consideration.

What constitutes the “best” implementation is typically a function of the sizes of the operands (e.g.,
the sizes of the matrices) since these affect performance issues like load balance and communication
overhead relative to useful computation. Since distributed-memory architectures are typically used to
solve large problems that push the limits of available memory, the choice is typically skewed towards
what is “best” for these large problems. Conveniently, for these large problems, low order terms in cost
functions tend to become unimportant.

3 Applying DxT to DLA

DLA algorithms are almost always loop-based [[12} [13} [24]]. The reason is that computation is orches-
trated so that data in caches can be optimally reused. Figure|[I|shows algorithms for a pair of non-trivial
and representative operations: two-sided Trsm and two-sided Trmm. In each iteration, the algo-
rithm exposes submatrices of the inputs on which computation is performed in what we call update
statements, which are implementation-agnostic DxT interfaces. Their functionality is implemented for
various architectures in libraries like the BLAS, LAPACK, 1ibflame, and Elemental, which build
on each other. For two-sided Trmm and two-sided Trsm, we only need to focus on the BLAS and
Elemental libraries [15], from which we get the DLA primitive operations, local computations, and data
redistributions that we use to implement higher-level DLA operations. In parentheses in Figure [T} we
specify which BLAS interface is used for each update statement. The remaining two operations are
themselves two-sided Trsm and two-sided Trmm on submatrices, described in Section 3.2} Their
implementations are given to us as primitives and/or refinements in our knowledge base.

We input to DxTer a DAG that encodes the loop body of the algorithm to be implemented. In
Figure [T} the DAG for each algorithm is given to the right of the loop body. DxTer applies refine-
ments and optimizations on boxes that represent BLAS and Elemental operations as described in Sec-
tions [3.2] and [3.3] Runtime cost functions for DLA primitives that are used by experts are well-
known [12, [13} 20] and are encoded in DxTer for each primitive box. This works well for block-
synchronous parallel algorithms (a characteristic of Elemental). They are sufficient for DxTer (or a
human expert) to choose between refinements and optimizations in this domain (i.e., to rank-order
implementation options and choose the “best”). A strength of automation is that, if necessary, more

3The implementation choice is not sensetive to the exact blocksize and process grid selection as long as they are reasonble
choices. These can be tuned for a particular architecture after an implementation is chosen.
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Figure 1: Blocked Variant 4 for computing two-sided Trsm and Trmm. To the right of the update
statements, the graph inputs to DxTer are given. Here « indicates the symmetric part of A that is neither
stored nor updated.



accurate cost functions can be used that would be unmanageable for a human expert. So far, simple cost
functions have been sufficient.
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Figure 2: Performance of level-3 BLAS operation variants, generated by DxTer and implemented in
ScaLAPACK [[12]. These results for problem size 50,000 were taken on 8,192 cores of Argonne’s
BlueGene/P machine (Intrepid); the top of the graph is two-thirds of of peak performance.




Distribution | Location of data in matrix
[*, *] All processes store all elements

[Mc, MR] | Process (:%r, j%c) stores element (%, 5)
Mc, * Row ¢ of data stored redundantly on process row ¢%r
Mg, * Row 1 of data stored redundantly on process col. i%c
*, Mc Column ¢ of data stored redundantly on process row 7 %r
*, Mp Column ¢ of data stored redundantly on process col. 1%c¢
Vo, * Rows wrapped around proc. grid in col.-major order
VR, * Rows wrapped around proc. grid in row-major order
*, Vo Columns wrapped around proc. grid in col.-major order
*, VR Columns wrapped around proc. grid in row-major order

Figure 3: Examples of distributions on a p = r X ¢ process grid.

Figure [2] (taken from [12]]) shows that DxTer-generated code noticeably outperforms ScaLAPACK
for a variety of level-3 BLAS operationsE] Why is this important? Elemental is the state-of-the-art DLA
library; few people on earth can write such code. The fact that we can now automate the development of
such code is significant, because it is strong evidence that mechanical generation of high-performance
code is possible and that it need not involve the few experts that do exist.

As said in the introduction, this paper describes the challenge to generate code for yet another DLA
operation, two-sided Trmm. Only a few new rules are needed to generate an efficient implementation
for it. However, these rules explode the search space, requiring a more “intelligent”, rather than
brute-force, search than what we have used so far.

We have found the following approach useful to explain and illustrate DxT: show the derivation
of a high-performance algorithm for some Elemental operation, in this paper two-sided Trmm. This
derivation is one of many thousands of algorithms that DxT generates; we single out the algorithm that
was automatically determined to be the most efficient. In effect, we explain the reasoning behind the
derivation—precisely the reasoning that an Elemental expert would use to produce this algorithm. While
Elemental experts do not necessarily develop code in terms of transformations, it becomes evident that
encoding design knowledge as transformations to replicate expert decision processes is indeed possible.
In turn, we illustrate how DxT works and its generality.

3.1 Elemental Basics

While Elemental is mainly used by computational scientists as a library of DLA operations, for us it is
a framework for parallelizing DLA algorithms. We use it as a DSL for which we generate code. We
provide a minimal background for Elemental, needed to understand its use in DxT.

In Elemental, the p MPI [22] processes of a cluster are viewed as a two-dimensional grid, p = r X c.
The default distribution of matrices is a 2D element-wise cyclic distribution, labeled [M¢, M R]ﬂ

Besides this 2D distribution, Elemental supports other 1D and 2D distributions, with examples listed
in Figure[3] These options allow a programmer to parallelize an algorithm and its suboperations in many
ways. It suffices to understand that to parallelize a computation, submatrices are redistributed from the
default distribution to enable parallel local computation (by calling a locally-sequential function on each
process), after which the result is placed back into the original distribution, possibly with a reduction
operation.

Elemental is written in C++ and encodes matrices and attributes (including distribution) in objects.
Redistribution from one distribution to another is accomplished using the overloaded C++ “="" oper-

4DxTer outperforms or does as well as Elemental.
SWe will not go into explanations for distribution names. Details are in [15} [20].




ation, which hides the (MPI) collective communication required to perform data redistribution. By
hiding such lower-level details, experts can focus on important implementation decisions: how to dis-
tribute data to parallelize computation and how to redistribute data.

An expert tries to balance the expense of collective communication with improvement in parallel
computation (enabled by the communication). We next explain how parallelization choices are made
and how optimizations can reduce communication.

3.2 Parallelization

The knowledge base of [12]] encodes refinements to parallelize level-3 BLAS operations. We reuse these
refinements to parallelize the two-sided Trmm algorithm in Figure

With the exception of A1y := L Aj1L1; (two-sided Trmm itself, which we consider below), the
update statements are standard BLAS operations. For each, there are many ways to parallelize their
computation based on the size of operands, the parameters, and the surrounding code. An expert must
explore these options to choose the best implementation. For each operation, input submatrices are
redistributed from [M¢, Mg] to some other distribution so that local computation can be performed
after which the result is redistributed back to [M¢, Mg].

Figure [ shows the refinement for each update statement in two-sided Trmm that leads to the best
implementation. Many, many others are encoded and explored. We now explain a few of them to give
a feeling of how one parallelizes operations in Elemental and how to encode that knowledge with DxT.
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Figure 4: Refinements used for two-sided Trmm. 7 € {*, Mc, Mg, Ve, Vr} and X is any Elemental
distribution. LTrr2k is a local computation kernel in Elemental that implements Her2k efficiently
using additional distributions of the inputs.

First, we focus on the version of Gemm with operands A and B Normal (C' := C + AB, where
each operand is a general matrix) as opposed to (Hermitian) transposed or Transposed. We call this
operation Gemm NN, and it shows up in the algorithm as Asy := Aoy + As1L1g. The three classes of
parallelization schemes keep one of the A, B, or C' input matrices stationary, meaning that the matrix
is not communicated, avoiding costly redistribution from [M¢, Mg]. The best choice generally keeps
the largest matrix (in terms of data) stationary.



In this case, input Ao is the largest. To parallelize Gemm NN with a stationary Asg, we redistribute
Ly (to [*, Mg]) and Ay (to [M¢, *]), after which a local Gemm can be performed in parallel on all
processes, calculating with disjoint portions of Aag. Figure ] (a) shows this refinement.

Redistribution operations are represented with a node labeled “A — B” where A is the starting
distribution and B is the resulting distribution. This corresponds to Elemental’s C++ “=" operator.
LGemm NN is a Local call to sequential Gemm NN, found in the BLAS library. Refinements propagate
coefficient and parameter information from interfaces to refinement nodes, but we do not show that
information here because there is no novelty in doing so and would clutter our graphical representation.

For axpy (Y := aX + Y, where « is a scalar and X and Y are matrices), the two inputs can
be in any identical distribution (the same holds for both) to enable local computation, as shown in
the template of Figure E] (g). Some choices (e.g. ¥ = [*, Vg]) would result in efficiently distributed
work performed in parallel. Others result in some redundancy of computation (e.g. ¥ = [M¢, #]) or
complete redundancy (e.g. X = [x, *]). For this algorithm, both Axpy operations are best implemented
with a [%, V] distribution, but in fact any distribution with little communication could be used since this
operations contributes very little to the overall cost, as an expert would know.

In our previous study of two-sided Trsm [13]], we only included a few Axpy refinements, which
was sufficient for that algorithm. For two-sided Trmm, we needed additional refinements to pro-
duce the most efficient code due to the different combination of update statements. The template of
Figure 4] (g) allowed for many options; we instantiated two in [13]. Now we needed to instantiate it
completely, for all distributions in Figure Bl except [*, *] (seven more for a total of nine). As Laxpy
computes with the locally-stored portions of the input data, this enables seven new ways to compute
Axpy on the process grid.

The subproblem A := LﬁAHLu is itself an instance of two-sided Trmm. It works on smaller
inputs, so it is implemented differently than the algorithm in Figure |I} Here, both operands can be
redistributed such that they are stored redundantly ([x, *]) and local computation (LTwoSidedTrmm) can
be performed in parallel, redundantly on all processes. This is shown in Figure ] (d). One cannot use
this refinement to implement the operation on the full A and L input matrices because a massive amount
of memory would be required and no parallelism would be achieved. For the suboperation, though, this
is the best refinement. The seven new Axpy refinements and this t wo—sided Trmm refinement were the
only new transformations added to DxTer for this work. We return to this point later.

3.3 Optimizations

Each refinement in Figure [ replaces an interface with a subgraph, meaning that applying a series of re-
finements can ultimately produce a graph containing only primitives, which maps directly to functional
Elemental code. With refinements, two-sided Trmm would be parallelized, but it would not perform
particularly well because of unnecessarily high communication overhead.

Some redistribution operations are implemented via a series of intermediate redistributions, which
the Elemental C++ operation “="" hides. Further, redistributions can be implemented in alternate, sub-
optimal ways that may expose opportunities for subsequent optimizations. We use optimizations to
replace a redistribution box to expose intermediate redistributions (when they are used) and alternate
implementations. Experts explore these options so they can reduce the overall overhead due to com-
munication. Inverse (e.g., a gather followed by a scatter, which is together equivalent to a no-op) and
redundant redistributions are commonly found after parallelizing algorithm update statements, so opti-
mizing transformations encode expert knowledge to remove such inefficiencies.

We now explore a typical example of how an optimization improves performance. After applying
the best refinements (Figure E]), the result of the first Axpy in the algorithm is redistributed from [, Vg]
to [Mc, Mg] (with an A11ToAll within process columns) and then redistributed from [M¢, Mg] to
[¥, Mg] (with an A11Gather within process columns) for the Her2k operation. The top of Figure [3|(c)



shows the graph representing this.
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Figure 5: Optimizations used in two-sided Trmm. ¢ and ¥ can be any Elemental distribution.

An alternate implementation of [M¢, Mg| — [*, Mg] uses an intermediate distribution: [M¢, Mg| —
[¥, Vr] — [*, MRr]. This is an optimization of the operation that internally uses A11ToA11 followed
by AllGather collectives. This implementation performs worse than the default, but applying it ex-
poses a series of redistributions: [x, Vg] — [Mc, Mg] — [*, Vg], shown in the middle Figure [5| (c).
These are inverse redistributions, so we can apply an optimization to remove the inverse operations
and end with the less costly redistribution implementation [x, Vg] — [x, Mg] (an Al1Gather within
process columns). The first transformations increase runtime, but the second transformation removes a
redistribution that is implemented with an expensive A11ToA11, yielding a net gainE]

Figure [5] (a) and (b) show the optimizations to explore an alternate implementation and remove
an inverse operation, respectively. The templatized optimization is used often in DxTer. For another
example application, the output of the Hemm operation Yo := Aj; Ly is distributed as [, V] and is
redistributed to [M¢, Mg]. The Ajg := Ao + %Yw (Axpy) refinement then redistributes it back to
[*, Vg] (see Hemm and Axpy refinements in Figure 4| (e) and (g) with # = Vz and ¥ = [*, Vy]). The
optimization of Figure[5](b) removes the unnecessary redistribution before Laxpy.

DxTer has many optimizations that are all roughly as complicated as these examples. They encode
deep expert knowledge about redistributions, so we do not show many. The key is that they encode this
knowledge in a reusable and simple way (as the discussion shows).

3.4 Transpose Optimizations

One of the benefits of DxT is that new optimizations and refinements can be added and automatically
applied to all algorithms. The rules in Sections [3.2] and [3.3] and others like them are sufficient to gen-
erate code for the algorithms of Figure [T} Further, this code performs well on many clusters. On
some, though, these rules are insufficient. When the expert developer of Elemental tested his code on
an IBM BlueGene/P supercomputer, he discovered that further optimizations were needed to improve
memory access. He reviewed all existing code to apply these optimizations repeatedly. While these
optimizations are especially helpful on BlueGene/P, they are also beneficial on other architectures, so
this optimization is used for all targets. With DxTer, new optimizations can be added to the knowledge
base and automatically applied, relieving the expert’s burden. Comparing DxTer’s generated code to the
expert’s manually-created code, we found many instances where the expert missed optimizations for the
algorithms in this paper and others [[12}|13]].

When MPI collectives are called behind the C++ “=" operation, data is packed into and unpacked
from send and receive buffers. The memory access pattern during these data permutations is some-

6 One might ask why we use transformations to optimize the communication pattern in this example from two “=" operators to
three to one. With only two redistributions, this example is a simple case. More often, there are many redistributions to optimize
in concert and these transformations and others like them enable that.



times more favorable if the matrices being communicated are transposed relative to the original matrix.

This results in more unit-stride memory access while packing and unpacking data [[12]. To enable this,

Elemental redistributions were added to transpose data during communication. Many local DLA com-

putation functions support transposed inputs, so data transposed during redistribution is un-transposed

during computation, allowing the expert, or DXT, to choose whether to leave the data in transposed form.
This is a DxT optimization that requires deep knowl-

edge of Elemental operations as only some redistributions AV :‘ ““““““““ K

can be transposed. Further, knowledge of computation 0 |

functions is needed to identify which inputs can be trans- BQL MM =0 M | LGNENT“’“ —LC'
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to this, so the optimization is encoded in DxTer in a versatile Figure 6: Optimization to transpose

way. Knowledge is encoded on which redistributions and communication.

computation inputs can be transposed. DxTer queries this

information to explore transposition. Optimizations like Figure [5] (a) expose many opportunities for
transpositions by exposing redistributions that can be transposed.

4 Limiting the Search Space

Every domain has a structure that experts intuitively understand and exploit. Expert insights, known as
tactics or heuristics, direct the search process. It is too early for us to identify tactics that can be shared
by different domains. We have, however, discovered tactics for the DLA domain that enable DxTer to
find solutions. We now review those that we now use and have invented—Cost Prioritization, Merged
Transformations, and Simplifiers—to address two—sided Trmm (though they are general purpose).

DxTer is a code generator that takes as input three forms of knowledge: 1) a set of transformations, 2)
cost estimates for primitives, and 3) a DAG of the algorithm to be implemented. Section 4.1l describes
a way we changed how DxTer applies a subset of the transformations. The heuristics described in
Sections [4.2] and B3] change the transformations input to DxTer. We are studying how to apply such a
heuristic automatically and more generally for other refinements, limiting DxTer’s search time to the
most promising options.

4.1 Cost Prioritization

DxTer previously used brute force to generate the space of implementations. It applied all refinements
and optimizations it could to the input graph, analyzed the cost of each generated implementation, and
selected the “best.” While all generated graphs implemented the input algorithm, few were efficient. To
apply DxTer to two-sided Trmm, we mentioned earlier that we added seven new refinements to the
knowledge base. Axpy now has nine refinements instead of two, so there are % = 4.5-times as many
implementation options. Note that the Trmm algorithm of Figure[I| has two Axpy boxes; this means that
there will be roughly 4.5 x 4.5 ~ 20-times as many options to explore. The actual number of additional
implementations depends on what optimizations are enabled by the new refinements, but it would take
about 20-times as long to generate and analyze all possibilities.

10



We knew DxTer took 20 minutes to generate about 200,000 implementations for two-sided Trmm
with two Axpy refinements. With nine refinements, we expected 20 *« 20 = 400 minutes or 6.7 hours
of runtime. DxTer abruptly stopped after several hours (producing more than four million implemen-
tations) once it ran out of free memory. While brute force had been sufficient previously, it is now
necessary to limit the refinements to consider in an intelligent way to make DxTer computations finish
in a reasonable time.

An expert recognizes that Axpy is a O(n?) cost operation, so he/she does not worry about perfect
parallelization as much as minimizing the communication to enable it, which is more expensive. As
such, we can limit refinement choices to those that require little additional redistribution (as this is
the dominant cost). For Axpy, we use a heuristic to explore only refinements that re-use input or
output distributions that are already available from refinements in surrounding code. That is, DxTer
only explores refinements of Axpy that are best in the operation’s local context. This makes the search
space tractable and only removes implementation options that are almost always suboptimal since they
generally require more communication. Further, if a removed option is best, the performance penalty is
relatively small because Axpy is only a O(n?) cost operation found in algorithms that are O(n?) cost.
We expect this heuristic to work in any algorithm for which Axpy is a relatively small cost. In a library
of level-3 BLAS operations, this is commonly the case.

Inherent in using such a heuristic is a need to order transformations. All non-Axpy operations must
be refined first, and only then is Axpy refined so DxTer can “consider” the surrounding implementation
details. We already use two phases in DxTer, one to refine and the next to optimize, and DxTer removes
graphs between the first and second phase that contain non-primitive boxes, which significantly speeds
up the search without removing any viable implementations [[11]. This ordering comes naturally: par-
allelize (refine) first and then optimize [14]. In future work, as we add more heuristics, we will study
transformation orderings, but for now it is much simpler than that found in compilers [, [9].

4.2 Merged Transformations

Some optimizations that explore alternate redistributions are only useful when combined with other
optimizations. Only applying the first optimization results in a worse implementation until the second
optimization is applied.

@7 : e '
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A MM [ Vil (1B = AT‘[MC,MR]—'[*,MR]H[*,MR]—'[VR,*]H»B

——————————= T bl
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Figure 7: (a) always hinders performance unless (b) is applied (with ¢ = [M¢, Mg] and ¥ = [, Mg)).
(c) merges the two optimizations to remove from the search space implementations that are always bad.

The optimizations in Figure [/| (a)-(b) are examples of transformations that should only be applied
together. The transformation of Figure [/| (a) always hinders performance unless the input “A” is ad-
ditionally redistributed to [, Mg] in the surrounding graph and the transformation of Figure[7|(b) can
remove the extraneous [M¢o, M) — [x, M ] redistribution. The result of both transformations together
generally improves performance and they are necessary to get the best implementation of two-sided
Trmm. Allowing DxTer to explore the first transformation without the second is wasteful since all imple-
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mentations that result will be suboptimal. Other optimizations to explore redistribution implementations
are of this type. They are only worth applying to find combinations of intermediate redistributions that
can be optimized away by a second transformation.

In listing transformation rules, it is beneficial to keep both optimizations separate. Each is an under-
standable piece of domain knowledge. When an expert applies transformations, an expert recognizes
that the first transformation is only useful when the second is also applied. Therefore, we encode such
combinations in a single merged transformation. By using one transformation instead of two, the search
space is significantly reduced because suboptimal implementations are pruned. Figure[/|(c) shows the
merged form of the other two transformations, which is used for two-sided Trmm. The optimization
of Figure[7] (b) is still included in DxTer by itself (with ¢ and X being any Elemental distribution) since
it improves performance even when not combined with Figure[/|(a) or similar transformations.

The utility of merged transformations is not a function of the specific algorithm (e.g. two-sided
Trmm). We only merge transformations in this way when it is always worth doing. Here, for example, it
is never beneficial to have the optimization of Figure[7l(a) in isolation, no matter the algorithm, because
it increases cost in all contexts.

Figure[5](a)-(b) is not an example of transformations that can be merged because the first optimiza-
tion enables many other transformations. We could create a merged transformation for each pair, but this
would require more effort to study all transformations. It is future work to determine how to pre-process
automatically a set of transformations to optimize them for search.

4.3 Simplifiers

Finally, some optimizations are always worth applying. For example, optimizations that remove re-
dundant (Figure [7) (b)) or inverse (Figure[5] (b)) redistributions always reduce implementation cost. An
expert recognizes, for example, that there is never a benefit to having duplicate communication (i.e. it
hinders performance and never enables a useful follow-up transformation). Therefore, (s)he always re-
moves redundant communication. We call such optimizations simplifiers because DxTer always applies
them [[11] and they reduce the search space as they prune implementations that are always suboptimal.
Similar to merged transformations, simplifiers are always beneficial, no matter the algorithm.

5 Experimental Results

5.1 DxTer Search Space and Search Time

We tested DxTer on a quad-core Intel Core i7 processor with hyper-threading running 8 threads. For
two-sided Trmm, DxTer generated a total of 302,010 implementations. DxTer took one second to find
64 ways to parallelize the algorithm and then it took 45 minutes to explore different ways to optimize
redistributions. It took 20 seconds to estimate and compare each implementation’s cost and choose a
“best.” Without the heuristics described in Section[d DxTer would have run out of memory after hours
of graph generation.

To illustrate how much more complex two-sided Trmm is, consider that for two-sided Trsm
DxTer generated 90,090 implementations (including the new inventions and Axpy refinements described
above). DxTer took one second to find 72 parallelized implementations and 8 minutes to optimize
redistributions. Cost analysis and comparison took 6 seconds.

The loop-body generated for each operation is roughly 20 lines of code. This code specifies how
to parallelize the computation and how to redistribute data. DXT is successful mainly because the pro-
grams are small and it is useful because those few lines are hard to write. Using “core” or “fundamental”
interfaces enables a developer to be productive, focusing on the important issues and not on implemen-
tation minutia. They also limit the size of graphs that are being generated and, therefore, the size of the
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search space. Elemental satisfies this interface requirement using sequential BLAS or LAPACK-level

computation operations and redistribution operations (via the C++ “="" operator).
Az L(;e.rm Az
Az [Me, M= [Mc,*] Ve, 1= Mo ;) A’

[* Vel = [ Mc]

Figure 8: Final implementation graph for two-sided Trmm.

5.2 Generated Implementation

The implementation DxTer generated for each operation was slightly better than the version in Elemen-
tal, developed by an expert (Jack Poulson). DxTer refined all operations just as the expert had, but DxTer
improved the communication slightly using transposition optimizations the expert missed. These im-
provements have since been incorporated into Elemental. In Figure[8] we show the final implementation
graph for two-sided Trmm. The grayed boxes are those that were affected by the transposed optimiza-
tions that the expert missed. Even with the additional refinements of Axpy and some new optimizations
that were added to DxT since the results of [13]], the same “best” code was chosen for two-sided
Trsm as before, but DxTer explored the additional options. We believe it is an important success for
the DxT approach that it can generate better implementations of two complicated algorithms than the
expert developer of Elemental.

In Figure Pl we compare the performance of
DxTer-generated code to that of ScaLAPACK code. Two-Sided Trmm on Intrepid
The unoptimized DxTer code is the result of only ap-  DxTer Two-sided Trmm Opimized |
plying refinements (i.e. the loop body operations are 15000 e Soal APAGHK Te-sided T |
parallelized). The optimized DxTer code is the re-
sult of DxTer applying refinements and optimizations,
demonstrating the need to both implement and opti-
mize algorithms.

We tested on the BlueGene/P cluster Intrepid at Ar-
gonne National Lab. We ran on 8192 cores (2 racks),
which have a combined theoretical peak of over 27
TFLOPS. The top of the graphs is two-thirds of peak
performance. Double precision arithmetic was used in
all computations. For each problem, we tested a range
of algorithmic block sizes and a set of process grid
configurations and show the best results. The DxTer-
generated optimized code performs much better than
the ScaLAPACK code and somewhat better than the Elemental code developed by hand For the
largest problem size, DxTer-generated code is about 45% better than ScaLAPACK code.

GFLOPS

~ 10000

5000

Performance

Problem size (x1 0% x 10*
Figure 9: Performance of DxTer-generated

and ScaLAPACK implementations. The top of
the graph is two-thirds of peak performance.

7DxTer performance is slightly better than Elemental, but the difference is not noticeable on our graph.
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6 Related Work

As said earlier, DxT is a general approach to software generationﬁ Here, we describe the work most
closely related to DxT applied to DLA. For work related to software engineering, see [19].

Autotuning is an important way to improve performance of code automatically [26]. DxT is different
and complementary in that it generates a space of semantically equivalent implementations from a high-
level understanding of how algorithms can be derived. Also, we use cost estimates that guide DxTer
to the best implementation(s) instead of performance testing. We envision a comprehensive process
that includes a DxTer-like tool to generate code followed by an autotuning step to then choose the best
parameters like, for example, the algorithmic block size and process grid configuration.

DxT is similar to SPIRAL [17]]. SPIRAL largely focuses on generating high-performance Digital
Signal Processing (DSP) kernels for target architectures. It starts with a mathematical description of the
algorithm in a DSL and performs transformations similar to refinements and optimizations to recursively
replace abstract operations with specific implementation code and to improve that code. It uses machine
learning via online code compilation and performance testing to explore the space of implementations.
DxT targets higher-level operations, built on lower-level primitives like the BLAS, so we can utilize
relatively accurate cost models instead of empirically-based search. We envision in the future relying
on SPIRAL-generated primitives instead of the hand-developed and hand-tuned implementations we
use today.

The Tensor Contraction Engine (TCE) [3]] aims to generate code for a tensor contraction expressed
in a high-level DSL. It applies (mostly loop) transformations to reduce computational complexity, space
complexity, communication cost, and then data access cost. These transformations and cost models are
similar to those of DxT. TCE specifically targets tensor contractions; DxT is more general-purpose.

The Broadway compiler [8] had a similar goal as ours to encode expert knowledge to generate
optimized code. Library functions were annotated, so Broadway could choose the best implementation
of an interface at a call site. It was not able to optimize as DXT does, though, which prevented it from
generating the “best” code. Further, it did not use a search space of implementations, which is necessary
to avoid local minima.

The FLAME project is closely related to DxT. In [7], “The Big Picture” expressed the idea of
encoding algorithms and expert knowledge to mechanically generate code. There, optimized parallel
code was also the goal, but the PLAPACK library [23]] was the targeted DSL instead of Elemental. Many
implementations were generated and performance estimates were created from cost function annotations
in the algorithms. Our current work benefits from extra years of insights and experience, which enable a
more sophisticated approach based on graph transformations (which is more general-purpose than that
DLA-specific work).

7 Conclusion

Domain knowledge of DLA implementations on clusters can be encoded as transformations. We demon-
strated how transformations from previous work were reapplied automatically to generate code for a new
operation, two-sided Trmm. Further, we detailed additional transformations (units of DLA knowl-
edge) that were needed to optimize memory accesses by transposing data redistribution, encoding deep
domain knowledge. The result of this study was automatically-generated code that is better than an
expert-developed implementation because the expert missed opportunities for optimization.

The key to DxT is exposing the structure of the domain. We define fundamental semantic identities
that are used in DLA as refinement rewrites (how interfaces are implemented) and as optimizations
(how compositions of operations are equivalent to other compositions). We are currently studying these

8 This section is a slight modification of a similar comparison of DxT for DLA to other works given in [13].
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details for other layers of the DLA software stack, including the internal structure of sequential BLAS
and LAPACK-level operations. Optimizing code through many layers of the stack will result in even
better implementations at a cost of much larger search spaces.

Applying DXT to two-sided Trmm and two-sided Trsm allowed us to study how well transfor-
mations are re-used (highlighting how rote an expert’s job is), which is important when studying other
operations across layers of the stack. In this work, we added variations of the Axpy operation simply
by instantiating its template over new parameters, but this greatly enlarged the search space. We devel-
oped a heuristic to limit exploration to the likely best implementations. This is an early study in how
to deal with large search spaces. The axpy heuristic, merged transformations, and simplifiers reduced
the search space from being impossibly large to tractable. We continue to study ways to battle the
combinatorial space in DxTer while still generating high-performance code.
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