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ABSTRACT

SOLUTIONS OF DYNAMIC EQUATIONS ON TIME SCALES WITH JUMPS

Kayode Daniel Olumoyin

To obtain the solution of first order dynamic equations on time scales with jumps, a good
question to ask is, how many initial conditions will be needed? We shall show that you only
need the initial condition that gives you either the initial position or the initial velocity. The
solution at each left scattered point in the time scale can be obtained analytically. With this
approach we shall write the general form of the solution of a first order dynamic equations
on time scales with jumps. To do this we shall use the Hilger derivative, anti-derivatives,
the Hilger Complex plane, the exponential function and the cylinder transformation. We
shall also use the Marshall Differential Analyzer to obtain the solution of the first order
initial value problem as well as calculate the numerical solution to visualize our analytical

solution.

vi



Chapter 1

Introduction

1.1 Historical Development of the Differential Analyzer

In the early 19th century when “Calculating Machines” started to influence the way
calculations were done, one branch of Mathematics that was developed by these machines
was Differential Equations (DEs). During those years there were many physical systems
modelled by DEs that fascinated scientists, in mathematics, physics, engineering, chemistry,
biology, economics, etc. Established analytical methods were employed to solve several of
these equations, but, as more complicated equations were considered, analytical solution
methods were in some cases non-existent at that time. For these equations, they used
tedious numerical methods because the use of computers to solve DEs had limitations.
These numerical solution methods gave approximate solutions to the DE, hence the search
for better solution methods led to the breakthrough “Differential Analyzer.” The idea was
first conceived by Lord Kelvin in 1876 when he gave a description of how the integrators,
constructed by his brother James Thomson, could be connected together to solve certain
types of ordinary differential equation.

In 1931, 55 years after the work of Lord Kelvin, Dr Vannevar Bush at the Massachusetts
Institute of Technology (MIT) constructed a machine and called it a “Differential Analyzer.”
It was the first machine designed to solve differential equations. In 1934 at Manchester
University, Dr. Douglas Hartree and his student Arthur Porter were seeking for ways to

solve the differential equations they were working on. On seeing the work Dr Vannevar Bush



Figure 1.1: Dr. Douglas Hartree and Dr. Arthur Porter working on their differential
analyzer.

was doing, Dr. Hartree and Arthur Porter built a machine similar to Bush”s Figure 1.1.
They used Mecanno components; only for the integrator disc did they use glass. Several
differential analyzers were built afterwards at University of Cambridge by J.E. Lennard-
Jones in 1935 and at University of Toronto in the early 1950s.

Lord Kelvin used the Planimeter (a machine that shares similarity with the differential
analyzer) built by his brother to predict sea tides. Several years later, Dr. Vannevar
Bush used the “differential analyzer” in his work on differential equations related to electric
power networks. Dr. Douglas Hartree, a physicist and an expert in numerical methods
of computation, used the differential analyzer to solve differential equations occurring in
Atomic Theory. Perhaps the most prominent application of the differential analyzer was
during the Second World War to calculate “war related equations” in USA, UK, Britian
and Germany. For instance, the British used it to calculate the ballistic trajectory of the
German V2 rockets. It, however, declined in popularity after the war.

Dr. Bonita A. Lawrence, after seeing a model of the differential analyzer in a London
museum with Dr. Clayton Brooks, conceived the idea of building one herself for the purpose

of using it to teach differential equations to her students at Marshall University. Together



Figure 1.2: Dr. Bonita Lawrence posing with “Art” at the Grand Opening.

with her team, comprised of Richard Merritt and Saeed Keshavarzian and advice from
Tim Robinson, they started working on building a Differential Analyzer. First they built
a two-integrator machine they called “Lizzie.” Following the success of Lizzie, they started
working on a four-integrator differential analyzer in May 2007 and by March 13, 2008,
Marshall University had a working four-integrator machine Figure 1.2. At present in her
D.A lab, there are three Differential Analyzers. The third is a two - integrator differential
analyzer, a re-design of Lizzie for classroom use, which some of her students named “D.A.
Vinci.” Dr. Lawrence has taken “Lizzie” and “D.A. Vinci” to several conferences in the US
and in Europe.

It is to be noted that the differential analyzer can only evaluate differential equations

for which initial conditions are known.

1.2 Construction of the Machine

A differential analyzer consists of several shafts and gears interconnected to solve a particular
differential equation. On a chosen scale, the rotation of each shaft represent the change
of some quantity in the given equation. I will give a description of the four-integrator

differential analyzer at Marshall University. This machine, called “Art” in honour of Dr.
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Figure 1.3: Principle of integration

Arthur Porter, has four integrator units arranged parallel to one-another, one input/output
table and one output table. On Art, torque amplification of the shaft from the integrating
wheel is achieved with two polarized circular disc arranged in such a way that their rotations
control the amount of light from a light emitting diode (LED). This signal is sent to the
Motorvator (a microprocessor) and determines how much voltage is sent to an electric
motor. Because this is connected to the shaft from the integrator wheel, the torque on this
shaft is amplified and it can then turn the cross shafts. This process of torque amplification
also make use of an H-bridge to allow for bidirectional motion.

A continuously variable gear can act as an integrating mechanism. So, if a shaft B is
driven by a shaft A at a gear ratio n : 1 (that is B makes n turns for one turn of A), and if
the rotation of the driving shaft A is represented by dx, the corresponding rotation of the
driven shaft B is ndz. Because the shafts are arranged so that the gear ratio n is changing
while the driving shaft rotates, the total rotation of B is the sum of the contributions ndx

which is {n dz [4].



1.3 Principle of Integration on “Art”

On Art, the integrator unit is comprised of a vertical wheel that can rotate on an horizontal
axis and a horizontal disc which can rotate about a vertical axis through its centre supported
in a movable carriage Figure 1.3. The wheel rests on the disc and the distance of the point
of contact of the wheel on the disc from the centre of the disc can be varied. Suppose the
point of contact of the wheel and disc is a distance y’ from the centre of the disc, measured
in inches. If the disc rotates through a small fraction of a turn dz’, the wheel will rotate
through %, where a is the radius of the wheel, provided there is no slippage in the plane
of the wheel. Now suppose we fix 4/ = 2a and allow the rod that turns the disc to make

2ax1
a

1 turn then the integrator wheel makes = 2 turns. When we allow ¢y’ to constantly

vary the total rotation of the integrator wheel is

/d /
Jy 2 turns. (1.3.1)
a

On each integrator unit there are three shafts:

e The motion of the first shaft causes the disc to rotate. These rotations represent the

changes in the variable of integration.

e The motion of the second shaft turns the displacement lead screw and these rotations

represent the integrand.

e The third shaft is driven by the integrator wheel, through the torque amplifier, and

its rotation represent the integral.

Our interest is to rewrite the expression for the rotation of the integrator wheel (1.3.1) in
terms of the rotations of the three integrator shafts. To do this let y be the number of turns
of the integrand shaft required to produce a linear displacement 4’ of the wheel from the

centre of the disc; ¥/ changes as the displacement lead screw turns and moves the carriage



that holds the disk, so the mathematical relation between y and 3’ is given by

<

(1.3.2)

where P is the pitch of the displacement screw, the axial distance between the threads.
To achieve a displacement of 1 inch, the displacement of our Whitworth type screw makes
32 turns so that P = é inches/turns. For instance, 1 inch displacement from the position
of the wheel on the disc is acheived by 32 turns of the displacement lead screw.

On Art there is a reduction gear between the shaft representing the variable of integra-
tion and the disc axle. We call this reduction constant K, which is % on Art. So if we let

z be the number of turns of the shaft required to produce 2’ turns of the disc, then the

mathematical relation between x and z’ is given by

(1.3.3)

=I5

Making substitution for 2’ and ¢’ in (1.3.1) and using (1.3.2) and (1.3.3), we obtain the

rotation of the output shaft from an integrator unit as
KP
— fydar- (1.3.4)
a

The term 5 is called the ”integrator constant.”

15 -

Tainches
= (lﬁf. ) =175, (1.3.5)
KP  (Zturns)(gginches/turns)

so that the rotations of the output shaft is

1
= | dx. (1.3.6)

Our goal is to describe the solutions of certain types of dynamic equations on a closed
connected set called a time scale. We will also describe the solutions of these dynamic equa-

tions on a union(s) of connected sets (time scales with jumps). The Marshall Differential



Analyzer “Art” will be used to solve these equations on a given connected set and on a
union(s) of connected sets. In the case when our equations are on union(s) of connected
sets, we only need the initial condition that gives us the starting point of our solution.
The starting point after each jump will be given by Art and the use of “The Simple Useful

Formula.” First, we start by reviewing basic results about time scales calculus.



Chapter 2

Time Scales Calculus

2.1 Basic Definitions

Time scales calculus was initiated in 1988 by Stefan Hilger. It bridges the gap between
continuous and discrete analysis and expands on both theories [2]. Differential equations
are defined on an interval of the set of real numbers whereas difference equations are defined
on discrete sets. However, some physical systems are modelled by what is called dynamic
equations because they are either differential equations, difference equations or a combi-
nation of both. This means that dynamic equations are defined on connected, discrete or
combination of both types of sets. Hence, time scales calculus provides a generalization of
differential and difference analysis. The following introductory material can be found in [2]

where complete proofs are provided.

Definition 1. A time scale is an arbitrary non - empty closed subset of the real numbers.
Example 1. Examples of time scales include:

e The real numbers R

e The integers Z

e The natural numbers N

e The non - negative integers Ny



Other examples of time scales are
e [0,1]
e [0,1] U [2,3]
e the Cantor set.

Non examples of time scales include the set of rational numbers Q, complex numbers
C, and the open interval from 0 to 1 (0,1). We denote a general time scales as T. We
are concerned with classifying points in a time scales. To do this, we need operators that
moves us forward or backward, enabling us to jump over the gaps (if there are any) in our
time scale T. Specifically, we are often concerned with moving to the next point or previous

point in the time scale T. Hence we have the definition below.

Definition 2. Let T be a time scale. For t € T, we define the forward jump operator
o:T—-T by

o(t):= inflseT:s>t},

while the backward jump operator p: T — T by

p(t) == sup{seT:s <t}

The forward jump operator gives you the “next” point in your time scale. In some cases,
o(t) = t; this occurs when ¢ is in an interval or when ¢ = sup T. On the other hand, the
backward jump operator gives you the “previous” point in your time scale. In some cases,
p(t) = t; this happens when ¢ is in an interval or when ¢t = inf T.

We use jump operators to classify points in the time scale. The points are either dense
in the set or have measurable gaps (jumps) between them. If a point ¢ has a jump after
it, that is o(t) > t, we define the point t as right-scattered. Similarly, if that point ¢ has
a jump before it, that is p(t) < t, we define the point ¢ as left-scattered. Points that are
both left and right scattered are called isolated. In contrast, if there is no discernable jump

between a point ¢ and the next point to ¢ in T, then o(t) = ¢, and we call ¢ right-dense.



Likewise, if there is no discernable jump between a point ¢ and the previous point to ¢ in
T then p(t) = t, and we call t left-dense. Points that are right-dense and left-dense at the
same time are called dense.

For a discrete set of points, we define the change in position between consecutive points
as u(t) := o(t) —t and we call u(t) the graininess function. Note that the value of u(t)
will always be in the interval [0, 00). The graininess function in a connected interval is also
defined as u(t) := o(t) — ¢ but always equal 0.

In order to proceed to the concept of differentiation and integration on a time scale, we
shall define the set T*, derived from the time scale T as follows: If T has a left-scattered

maximum m, then T = T — {m}. Else, T¥ = T. In general,

. T\(p(supT), supT] supT < oo
T :=

T supT = oo.

Lastly, if f: T — R is a function, then we define the function f7: T — R by

fo@t) = f(o(t)) Vt eT.

Example 2. If we consider the time scales T = R and T = Z and classify their points using
the jump operators, we have the following.

(i) If T = R, then we have for any t € R

o(t) =inf{s e R: s>t} =inf(t,00) = ¢

Similarly p(t) = t. Hence every point ¢ € R is dense. The graininess function p turns out
to be

w(t)=o(t)—t=t—t=0 forall teT.

(ii) If T = Z, then we have for any ¢ € Z

o(t)=inf{seZ:s>t} =inf(t+1,t +2,t+3,...)=t+1

10



and similarly p(t) =t — 1. Hence every point ¢ € Z is isolated. The graininess function y in
this case is

u(t)y=0o(t)—t=t+1—t=1 forall teT.

2.2 Differentiation

For f: T — R be a function, we define the delta or Hilger derivative of f at a point t € T*

as follows:

Definition 3. (Bohner and Peterson [2]) Assume f: T — R is a function and let t € T*.
Then we define f2(t) to be the number (provided it exists) with the property that given any

e > 0, there is a neighborhood U of t (i.e., U = (t —06,t +0) n'T for some 6 > 0) such that

[f (o) = f(s)] = fAW®)[o(t) — s]| < €lo(t) —s| for all se€ U

We call f2(t) the delta or Hilger derivative of f at t.

The following theorem provides some useful characterizations of delta differentiable func-

tions.

Theorem 3. (Bohner and Peterson [2]) Assume f : T — R be a function andt € T*. Then

we have the following:
1. If f is differentiable at t, then fis continuous at t.

2. If f is continuous at t and t is right-scattered, then f is differentiable at t with

11



exists as a finite number. In this case

30 i L0 1),

s—t t—s

4. If f is differentiable at t, then

F(o(t)) = () + (&) f2 ().

Which is usually called the “Simple Useful Formula.”

The following theorem establishes the linearity of the delta derivative, as well as the

product and quotient rules for delta differentiation.

Theorem 4. (Bohner and Peterson 2]) Assume f,g: T — R is differentiable at t € T*.

Then:

1. The sum f +g: T — R is differentiable at t with
(f +9)2() = f2(1) + g2
2. For any constant o, of : T — R is differentiable at t with
(af)2(t) = af2(1).
3. The product fg: T — R is differentiable at t with
(f9)2 () = FA(1)9(t) + f(a(8)g> () = F()g™ (1) + F2()g(o(t))-

4. If f(t)f(o(t)) # 0, then % is differentiable at t with

I i )
<f> O = = ooy

12



5. If g(t)g(o(t)) # 0, then g is differentiable at t and

A A _ A
(f) ) f@)g(t) fit)g (t)

If we consider functions of the form, f(t) = (t — a)™, and g(t) = @_ﬁ for example,

we define their delta derivatives as follows.
Theorem 5. (Bohner and Peterson [2]) Let o be constant and m € N.

1. For f defined by f(t) = (t — a)™ we have

m—1
A =D (et —a)(t—a)y™ "
v=0
2. For g defined by g(t) = G L)m we have
A m—1 1
70 = " L G ey e

provided (t — a)(o(t) — a) # 0.
Having described what it means for a function to be differentiable at a point ¢ in T, we

are ready to describe the concept of integration.

2.3 Integration

In this section, we will describe classes of functions that are “integrable.” We begin with

the following definitions.

Definition 4. (Bohner and Peterson [2]) A function f : T — R is called regulated provided
its right-sided limits exist (finite) at all right-dense points in T and its left-sided limits exist

(finite) at all left-dense points in T.

Definition 5. (Bohner and Peterson [2]) A function f : T — R is called rd-continuous

provided it is continuous at each right-dense point in T and its left-sided limits exist (finite)

13



at all left-dense points in T. The set of rd-continuous functions f : T — R is denoted by

Crqg = Crd(']r) = Crd(TaR)'

Now we have the following theorem that describes the relationship between continuous,

rd-continuous and regulated functions, f, defined on a time scale, T.

Theorem 6. (Bohner and Peterson 2]) Assume f: T — R.

~

. If f is continuous, then f is rd-continuous.

2. If f is rd-continuous, then f is regulated.

3. The jump operator o is rd-continuous.

4. If f is regulated or rd-continuous, then so is f€.

5. Assume f is continuous. If g : T — R is regulated or rd-continuous, then f o g has

that property too.
Next we will define pre-differentiable functions with regions of differentiation D.

Definition 6. (Bohner and Peterson [2]) A continuous function f : T — R is called pre-
differentiable with (region of differentiation) D, provided D < T®, T*\D is countable and

contains no right-scattered elements of T, and f is differentiable at each t € D.

Now if we have a pre-differentiable function, the next theorem states that it is the

pre-antiderivatives of some regulated function f.

Theorem 7. (Bohner and Peterson [2]) Let f be requlated. Then there exists a function F

which is pre-differentiable with region of differentiation D such that

FA(t) = f(t) holds for all te D.

Utilizing the pre-antiderivative of a regulated function f we define the anti-dervative of

14



Definition 7. (Bohner and Peterson [2]) Assume f : T — R is a requlated function. Any
function F as in Theorem 7 is called a pre-antiderivative of f. We define the indefinite

integral of a regulated function f by

J F(OAL = F(t) + C,

where C' is an arbitrary constant and F' is a pre-antiderivative of f. We define the Cauchy
integral by
f f(t)At = F(s) — F(r) for all r,seT.

A function F : T — R is called an antiderivative of f : T — R provided
FA(t) = f(t) holds for all t e T

Next we have a theorem that offers a condition that insures the existence of an an-

tiderivative for a function f.

Theorem 8. (Bohner and Peterson 2]) Every rd-continuous function has an antiderivative.

In partcular if to € T, then F defined by
¢
Fit)y=| f(r)Ar forteT
to

is an antiderivative of f.

Theorem 9. (Bohner and Peterson |2]) if f€ Crq and t € T", then

o(t)
L F(D)AT = u(t) £(2).

The following theorem offers us properties of the antiderivative.

Theorem 10. (Bohner and Peterson 2]) If a,b,c€ T, a € R, and f,g € Cyq, then
LG L) +g(®)] Ot = §, FOAE+ 5, gD A

2. P (af(t) Ot = af f(H)At;

15



3. L r)At == ()AL

B

S FOAt =[O+ 5 FRAL
5. 52 Fo(®)g® ()t = (f9)(b) — (fg)(a) — §p FA(R)g(t) At
6. §2 F(t)gA(£) At = (fg)(b) — (fg)(a) — § fA()g(a(t) At

7. §2 ) At =0;

&9

PP I g(t) on [a,b), then | T, F(AE < §, g(H)AL;

9. If f(t) 2 0 for alla <t <b, then §* f(t)At =0

The following theorem that gives us the antiderivative on some particular time scales.
Theorem 11. (Bohner and Peterson 2]) Let a,be T and f € Cpq

1. If T =R, then
b b
ffwm=fﬂma

where the integral on the right is the usual Riemann integral from calculus.

2. If [a,b] :={t € T :a <t < b} consists of only isolated points, then

-

Ditefapy MO () ifa<b
b
jf(t)ﬂt:<0 ifa=b

[ Zte[b,a) w(t)f(t) ifa>b

3. If T = hZ = {hk : k € Z}, where h > 0, then

-

Sios fkmh ifa<b
b
Jf(t)ﬁt:<0 ifa=b
X S b

16



4. If T =7, then
o) ifa<b
be(t)At=<0 ifa="b
— STV () ifa>b

The improper integral is defined as follows:

Definition 8. (Bohner and Peterson [2]) If a € T, supT = o, and f is rd-continuous on

[a,0), then we define the improper integral by

o0 b
f fat = Jim [ far

provided this limit exists, and we say that the improper integral converges in this case. If

this limit does not exist, then we say that the improper integral diverges.

The chain rule has two forms in time scales calculus. Both are stated in the following

theorems. The second is due to Christian Potzsche, who derived it in 1998.

Theorem 12. (Bohner and Peterson 2]) Assume g : R — R is continuous, g : T — R is
delta differentiable on T%, and f : R — R is continuously differentiable. Then there exists

¢ in the real interval [t,o(t)] with

(fo9)2(t) = ['(g9(c))g™ (¢)- (2.3.1)

Where f' is the usual derivative of f.

Theorem 13. (Bohner and Peterson 2]) Let f : R — R be continuously differentiable and
suppose g : T — R is delta differentiable. Then fog: T — R is delta differentiable and the

formula

1
(f o 9)2(t) = { [ 7 (60 + bty ) dh} A

0

holds.

17



2.4 First Order Linear Equation

We intend to describe the solutions of first order dynamic equations on some selected time
scales. However, to do this we need to have a general form for a first order dynamic equation.

We offer this in the next definition.

Definition 9. (Bohner and Peterson 2]) Suppose f : T x R? — R. Then the equation

y® = f(t.y,y°) (2.4.1)

is called a first order dynamic equation, sometimes also a differential equation. If

fty,97) = )y + f2(t) or f(t,y,y7) = fL(t)y” + f2(t)

for functions fi and fo, then (2.4.1) is called a linear equation. A function y : T — R is

called a solution of 2.4.1 on T" if

yA(t) = f(t,y(t),y(o(t))) is satisfied for all t € T*.

The general solution of (2.4.1) is defined to be the set of all solutions of (2.4.1). Given

to € T and yo € R, the problem

y= = f(ty. ), y(to) =yo

is called an initial value problem (IVP) and a solution y of (2.4.1) with y(to) = yo is called
a solution of this IVP.

In the next section, we will describe the solution of the first order dynamic equation

y® =pt)y(t) with  y(to) = yo.

We shall call this solution the ezponential function. First, we will define the components of

the Hilger Complex Plane.
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Iy

Figure 2.1: Hilger”s Complex Plane

Definition 10. (Bohner and Peterson [2]) For h > 0 we define Hilger complex numbers,

the Hilger real axis, the Hilger alternating axis, and the Hilger imaginary circle as

1

Cy = C: ——
h {ZG z # h},

1
ha{zeCh:zeRandz>—h},

1
Ah:{zeCh:zeRandz<—h},

z—l—l—l
hl R’

respectively. For h =0, let Co = C, Ry = R, [ = iR, and Ay = I

HhZ{ZE(ChZ

The cylinder transformation is used to describe the exponential function. It maps the
Hilger complex numbers to the strip Zj, defined for h > 0 by

th{ze(c:—%<lm(z)<

|

SIS

and for h =0, Zyg =C

Definition 11. (Bohner and Peterson 2]) For h > 0, we define the cylinder transformation

19
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Figure 2.2: Hilger”s Complex Numbers

&h: Cp — Zy, by

En(z) = %Log(l + zh), (2.4.2)

where Log is the principal logarithm function. We also define the inverse transformation by

61(z) = (e 1) (243)

and for h =0, we define &y(z) = z for all z in C .

We shall define the generalized exponential function for functions classified as regressive.

Next, we present what it means for a function to be regressive.

Definition 12. (Bohner and Peterson [2]) We say that a function p : T — R is regressive
provided

1+ pu(t)p(t) #0 forallteT" (2.4.4)

holds. The set of all regressive and rd-continuous function f : T — R will be denoted by

20



R = R(T) = R(T,R).

Definition 13. (Bohner and Peterson [2]) If p € R, then we define the exponential function

by
ey(t,s) = exp Ut Eui (p(T))AT> forsteT (2.4.5)

Lemma 14. (Bohner and Peterson [2]) If p € R, then the semigroup property
ep(t,r)ep(r,s) = ep(t,s) forall r;s,teT (2.4.6)

18 satisfied.

Definition 14. (Bohner and Peterson [2]) If p € R, then the first order linear dynamic
equation
y® =p(t)y (2.4.7)

1s called regressive.

We are now ready for the theorem that describes the solution of the first order linear
dynamic equation (2.4.7) on a time scale T. The proof, found in [2], is presented with more

details to offer the reader a general structure of a proof on a time scale T.

Theorem 15. (Bohner and Peterson [2]) Suppose y*™ = p(t)y is regressive and fix to in T.

Then ep(.,to) is a solution of the initial value problem

y> =p(t)y, y(te) =1onT. (2.4.8)

Proof. Fix ty and assume y® = p(t)y is regressive. First note that
ep(to,t(]) = 1. (2.4.9)

It remains to show that e,(t,ty) satisfies the dynamic equation y® = p(t)y. Fix t e T".
There are two cases:

Case 1. Assume o(t) > t, (¢ is right scattered).
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For s = tg, ep(t, s) is defined as e, (t,ty) = exp (X;O ) (p(T))AT) for to,t € T. Now using

Lemma 14 and the inverse transformation (2.4.3), we obtain

ep (57 €y () AT) = eap (5, €uir) (0(7) A7)
p(t)
ewp (5, €uir) (P(DAT + 57 €40y (p(r)AT) = eap (1), €uir) (0(7) A7)
p(t)
ep (31, €un P)AT ) exp (5 &) () A7) = eap (5, &ury (7)) AT)
pu(t)

e (t,tg) =

exp (7@ TYAT) —
:< p(St g“/if(f;( )A) 1> ep(t; to)

B (exp((a(t) — )ut)(p(t))) — 1)
- h(0) ol

 (emp(p(t)€un (p(1) — 1)
) 0 ot
= 5;(%5) (gu(t) (p(t))) - ep(t, to)

= p(t) - ep(t; to)-

Case 2. Next we assume o(t) =t (¢ is right dense). If y(t) = e,(t, o), we want to show that
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From Lemma 14 and for s € T we have that

| y(t) = y(s) = p(O)y()(t = 5) | = lep(t; to) — ep(s,to) = p(t)ep(t; to) (t — 5)]
=l ep(t,to) [ -[1 = ep(s, 1) = p(t)(t — s)]

=|ep(t,to) |- |1 —j §H(T)(p(7))AT —ep(s,t)

jsu AT~ p(t)(t — 5) |
<| e,(t, to) ‘1-[5# AT—ep(st)‘
-%wAumH~fsmﬂ@v»Af—mw@—$
< ep(t, to) ‘1—[5# AT—ep(St)‘
+!%mmﬂ-£[@m@h»—@@wﬂAf-

Let € > 0 be given. We now show that there is a neighborhood U of ¢ so that for s € U
the right hand side of the last inequality is less than € | t—s | and the proof will be complete.

Since o(t) =t and p € Cpq, it follows that

lim &, (p(7)) = Eolp(1)). (2.4.10)

T—1

This implies that there is a neighborhood U; of t such that

|§u 7)) — &o(p(t ))| < forall T € Uy.

¢
3 | ep(t,to) |

Let s € Uy. Then

| ep(t,to) | -

J [£r) (P(T)) — &o(p(t)]AT| < § It —s]. (2.4.11)
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Next, by L”Hopital”s rule,

Lo l—z—€e%
lim —— = 0.
z—0 z

So there is a neighborhood Us of t so that if s € Uy, then

1-— Sz 5“(7) —ep(s,t)
5t €uin (p(7)) AT

<é (2.4.12)

i

where

€
e =min{l, )
{ 1+ 3| p(t)ep(t,to) |}

Let se U = Uy n Us. Then

f £ (P(7)) AT

epltto) |- \1 - [ Guntrimar - ep<s,t>] <l eyt to) | -¢*

t
f [y (P(T)) = So(p(t)]AT| + | p(2) | [t — Sl}

S

<l enltto) |« {

t
<l ep(t;to) | - J [€ur) ((T)) = Eo(p(@)IAT| + | ep(t, t0) [ € [ p(t) [ £ =5 |
€ *
< Slt—sl+ et o) | 1p(0) 1~
<E|t—s\+i\t—s\
3 3
— & ‘ t |
— 3 — 8
so that
2e €
[ 5(8) () — POt ) | = o0 [t s 45 |t s
=e|t—s].
And so if y(t) = ep(t, to) then y>(t) = p(t)y(t), where y(to) = 1 on T. O

The above theorem confirms the existence of a solution. We will show that this solution

is the only solution of the initial value problem (2.4.8)
Theorem 16. (Bohner and Peterson [2]) If ( 2.4.7) is regressive, then the only solution of
(2.4.8) is given by ep(-,1t,).
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Proof. Assume y is a solution of (2.4.8) and consider the quotient ﬁ.

By Theorem 4(5) we have

t,t())

y o \" 0 y)Pen(t o) — y()ep (
<ep<.,t0>> ) = e o) eplo D), 10)
_ p(y(t)ep(t,to) — y(t

ep(t.to)ep(o(t

)p(t)ep(t to)
)7 tO)

=0

We know that if f is a pre-differentiable function and f2(t) = 0 then f is a constant
y(t)

ep (t,t0)

Yy = ep('at())' ]

v — _wlo) 1 .04 therefore

is a constant function. Hence =
ep(t;to) ep(to,to) 1

function. So

2.5 Initial Value Problem

Consider the homogeneous equation,

y= = p(t)y(t) (2.5.1)

on a time scale T. Our previous discussion gives us the following theorem.

Theorem 17. (Bohner and Peterson [2]) Suppose (2.5.1) is regressive. Let to € T and

1Yo € R. The unique solution of the initial value problem

y™ =pt)y(t), y(to) = yo, (2.5.2)

s given by

y(t) = ep(t7 tO)yO-

If we consider time scales, R, Z, hZ and ¢"° and we solve initial value problem (2.5.2)

for these time scales using the exponential function we obtain the following solutions [1]:

Example 18. Let T = R, then pu(t) = 0. If (2.5.1) is regressive, then the solution of the
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IVP 32 = p(t)y(t), where y(to) = 1 by Theorem 17 is

t t
y(t) = ep(t, t) = b PWNAT) _ Jig p(MA7

)

and

0 p(r) (AT
y(to) = 6p(t0,t0) = €St0 P(T)(AT) _ 1.

Now if p(t) = a (a constant)

and, if to = 0,

Thus, if a = 1,

y(t) = eq(t,0) = €.

The above result for T = R is consistent with solving the IVP ¢/ = p(t)y where y(0) = 1

and p(t) = a.

Example 19. If T = Z, then p(t) = 1. And Suppose (2.5.1) is regressive, then the solution
of the IVP Ay(t) = p(t)y(t), where y(t9) = 1 and Ay(t) = y(t + 1) — y(t) [5] by Theorem
17 and Theorem 11(4) is

y(t) — €p(t,t0) — er—_:ltO 51(?(7')).

If to <t, . .
> &p(r) = Y Log(l+p(r)),
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by the definition of cylinder transformation, and

So,

If ty =t then

If tg > ¢t then

Hence,

Now if p(t)

t—1 t—1
> Log(1+p(r)) = Log [ [ (1 + p(r)).

ep(t,t ) LOgH-r t0(1+p(7'))

1:[ (1+p(r

ep(t,to) = ep(t,t) = e = 1.

1
ep(t(),t)
1
e e (p(r))
1
e Log(1+p(7))
1
cLOgI T2, (1+p(1))
1

TS+ ()

€p(t, to) =

12 to(l +p(7)) when ty) <t
ep(t,to) = {1 when tg =1t

1
1.2, (1+p(r))

when tg > t.

= a (a constant) and a # —1

ealt to) = (1 +a)' .

27



If ty = 0, then

ea(t,0) = (1 + a)’.

If a = 1, then

61(t, 0) = 2t.

The above result for T = Z is consistent with solving the difference equation Ay(t) =

y(t +1) —y(t) = p()y(t + 1).

Example 20. If T = hZ, where hZ = {hk|k € Z} for some h > 0 then u(t) = h. And
Suppose (2.5.1) is regressive, then the solution of the IVP M = p(t)y(t), where

y(to) = 1 by Theorem 17 is

y(t) = ep(t, to) = eth:ltO &n(p(1))

If tg <t,
t—1 t—1 1
2 Enlp(7) = 3, S Log(l+p(7)h),
T=to T=to

by the definition of cylinder transformation, and

t—1 t—1
1 1
2. pLog(l+p(r)h) =+ 3 Log(1+p(7)h)
T=to T=to
1 t—1
= 2 Log [ [ (1+p(r)h)
T=to

t—1 G
= Log [ H (1 +p(7’)h)] .

T=tg

So,

=

t—1
ep(t7 tO) = eLOg[HT:to(ler(T)h)]

_ [1_[(1 +p(7)h)] .

T=10
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If ty = t, then

ep(t,to) = ep(t,t) = e = 1.

If s > t, then

€p(t,t0) = e (tO t)
p\l0;

1
o207 en(p(1))
1
6230;1 LLog(1+p(r)h)
1
JLog[ [T (ep(rm)|
1

112+ ()|

=

>

Hence,

==

[Hi;io(l + p(T)h)] when o < t
ep(t to) =<1 when ¢y =t

1
[T ()|

when tg > t.

Bl

Now, if p(t) = a (a constant) and h = 1 for some natural number n € N and a # —1

n(t—to)
ealt, to) = (1 + 9) ”
n
If to = 0, then
a\ nt
ea(t,0) = (1 + ﬁ)

asn — o

(1 + g>n —e

n

and so

ea(t,0) — e
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Example 21. If T = ¢"o, where ¢ > 1 and ¢"° = {¢*|k € N} U {0} then u(t) = (¢ — 1)t.

And Suppose (2.5.1) is regressive, then the solution of the IVP % = p(t)y(t), where

y(1) =1 by Theorem 17 is

y(t) = ep(d", 1) = [ [ [1 + (¢ = 1)g"p(¢")]
v=0
If we define p: T — R,
1-—t
t) = t T
then
k—1 1— g
k v B
ep(q,1) = [1 +(q—1)q ]
p( ) 1 ( ) (q _ 1)(]2”
k—1
1—¢q" ]
= 1+
=0 |: (q - 1)q
- k—1 1
v=0 q’/
B 1
D)2
K2 k
= q_T . q§
/{72
=gk exp{—2lnq}
k1n q)?
I (kIng
Fem|~Cone )
so that
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To verify,

(g—1)t

{588} vien {-522)

(g—1)t
g3 /i eap { —RIHERERAH AT, — it eap { -G
(¢—1)t

e {882} 0~ e -22)
o (g - 1)151 2
2.t L.g72 — 1 nt

=1 (q—({l)t \/%exp{_(ﬂn)q }

11 ¢ (Int)?
- -Vtexp{ —
(g—1t t 2Ingqg

:1_t2.\/gexp{_(lnt)2}

(q—1)t

= p(t) - y(t).
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Chapter 3

Solutions of First Order Dynamic Equations on Time Scales

with Jumps on “Art”

The solution of the initial value problem (2.5.2) on a time scale T with jumps was first solved
using the Marshall Differential Analyzer “Art” before describing the analytical solution.
However, we did remark in the introduction that the differential analyzer can only solve
differential equations with known initial conditions. Hence, our task is to solve the modified
dynamic equation

yR(t) = Zy®), ¥ (0) =2 (3.0.1)

on T =[0,1].

3.1 Bush Schematic Diagram

Dr Vannevar Bush developed a way to represent the connections between integrators on
a differential analyzer, which he called the “Bush Schematic Diagram.” In Bush”s
schematic, the rectangular boxes represent the integrators, the circles represents the disc
while the line across the circles represent the wheel. The shaded region attached to each
circle, as seen in Bush”s schematics, represents the carriage on which the disc sits and the
horizontal lines represents the connecting rods. We labeled the first rod the independent
variable and we scaled it to (250t). This means it takes the independent variable rod 250
rotations for a unit of our independent variable t. The motion of this rod rotates the disc.

The second rod, we labeled y*, which is the integrand; this we scaled as (75y2). The
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a 3 |

Figure 3.1: Bush Schematic Diagram for y(t) = 2y(t)

motion on this rod turns the lead screw and it drives the carriage. The motion on the third
rod is as a result of the motion transfered from the disc by friction to the wheel which is
then amplified by our system of torque amplification.

In the Introduction, I discussed how we obtained the “integrator constant” (1.3.5). On
“Art” it takes the independent variable rod 75 rotations for a unit of our independent vari-
able. The counters on each integrator gears the motion up by 13—0. Therefore 75 rotations
of the independent variable rod is equivalent to 250 rotations of the counter. Hence, the
rotations of the output rod, the third rod as seen in our Bush”s schematic is

1 A
— d(250t) = t).
550 75y ( 50 ) 75y( )

The 3 to 1 gearing in our Bush Schematic represents the gearing down of the motion of
T5y(t) by a fraction of } and so we obtain 25y(t). We complete this connection to the

output rod 25y(t) by joining the integrand rod 75y2, or Thy> = 25.

33



3.2 A sequence of Time Scales with Jumps

To solve (3.0.1) on “Art”, we first chose our time scale T = [0, 1]. The jumps in the time

scale are created using the sequence below [6];

Ti = kL:JO [(2111) (2K), <2¢1+1> (2k + 1)]

where ¢ = 1,2, 3, ... is the number of jumps.

When there is no jump, we have

= U [(stren) @ (aegrer) @)

one jump
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two jumps

and three jumps

” <2x3 > <2><:13)+1>((2X1)+1):
SRR Y S P
- <2><3 )2X3 ((2><3 +1> (2>x3)+1)]

S MEDRCHR

3.3 Plotting the Solution on “Art”

Here, we shall give a description of how the solution to y=(¢) = $y(t), with initial condition

y2(0) = % were obtained using “Art.” The Bush schematics (Figure 3.1) was used to set up

the conections of rods to one integrator on “Art.” We used only one integrator because the

equation is of first order. The initial conditions were set using the counters on “Art.” To

initialize the problem, we set the y* rod to % and the y rod to 1. However, on the counters

on “Art”, 1 unit is set to 250 rotations and so % is denoted by one-third of 250 rotations

3

which is 83.3 rotations.
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(c) (d)

Figure 3.2: Solution of y» = %y, y2(0) = % on (a )Ty. (b) Ty. (¢) Ty. (d) T3 obtained on
“Art”

To obtain the solution of our problem on “Art” over Ty = [0,1], we set the initial
conditions as described above and we plotted the solution from the minimum point in our
time scale 0 to the maximum point 1 Figure 3.2(a).

Next, we want to obtain the solution of our problem when there is one jump in T. By
the sequence of our time scales {T;}, when i = 1, Ty = [0, 1] U [2, 1] and there is one jump
in T. First, we set the counter on the y* rod to 83.3 and the counter on the y rod to 250
and then plot the solution up to % in T. We record the reading on the counters for 4 rod
and y rod.

We will call y (%) the counter value on the y rod when ¢t = % and y® (%) the counter
value on the y® rod when t = %

Now, using the simple useful formula, we calculated what the reading should be on the
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counter for the y rod at t = % after the jump.

2\ (1Y (1)L
Y\3)7Y\3) " H"\5)Y 5
1 2 1 Afl
-i(5)+(G-3) 7 (3)
1 1 Al
-1(3)+ () ()
Then we moved the pen horizontally to the point % and set the position for the y rod to
the value obtained by the simple useful formula using the counter. This moves the pen up
1

vertically. Using the equation 32 (t) = 3y(t) and plugging in the new y rod counter value

for y(t), we find the new y* rod counter value,

2 1 2
~(5) =3 (5)
We then positioned the y2 rod to this value using the counter and then resumed our solution
plot from % up to 1. Figure 3.2(b)

We moved the pen from % to % because in our time scale, % is a left dense and right
scattered point and we need the jump operator to move to %

Now, to obtain the solution of our problem when there are two jumps in T. By the
sequence of our time scale {T;}, when i = 2, Ty = [0,+] U [2,2] U [£,1], there are two
jumps in T. Just like we did previously, we set the counter on the y® rod to 83.3 and the
counter on the y rod to 250 and then plotted the solution up to é in T. We recorded the
reading on the counters for y® rod and y rod.

Here we will also call y (%) the counter value on the y rod when t = % and y® (%) the
counter value on the y® rod when ¢t = L.

5

Now, using the simple useful formula, we calculate what the reading should be on the

37



counter for the y rod at t = % after the first jump.

o2)-1()() ()
()G )2 ()
)+ ()

Then we moved the pen horizontally to the point % and set the position for the y rod to
the value obtained by the simple useful formula using the counter. This moves the pen up
vertically. Using the equation 32 (t) = %y(t) and plugging in the new y rod counter value

for y(t), we find the new y* rod counter value,

#()-3(2)

We then positioned the y2 rod to this value and then resumed our solution plot from % up
to % We record again the reading on the counters for y® rod and y rod and we call y (%)
the counter value on the y rod when ¢t = % and y2 (%) the counter value on the y® rod

_ 3
when t = £

Now, using the simple useful formula, we calculated what the reading should be on the

counter for the y rod at t = % after the second jump,

4 3 3 Af3
o)(3)++(5))
S)+(1-2) )
o)) )
We also moved the pen horizontally to the point % and set the position for the y rod to

the value obtained by the simple useful formula using the counter. This moves the pen up

vertically. Using the equation 32 (t) = %y(t) and plugging in the new y rod counter value

38



for y(t), we find the new y* rod counter value,

-5

We then positioned on the y® rod to this value and then resume our solution plot from %
up to 1 Figure 3.2(c).

We repeat this process to obtain the solution plot on T3 = [0,4] U [2,2] U [3,2] U [81]
Figure 8.2(d) when i = 3 in our sequence of time scales {T;}. There are three jumps in Ts.

We note that we only need one initial condition, “Art” and the simple useful formula gives

us the starting point at each left scattered point in {T;}
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Chapter 4

Analytical Solutions of Dynamic Equations on a Time Scale

with Jumps

4.1 First Order Dynamic Equations with Jumps

We will describe the solution of the first order homogenenous dynamic equation (2.5.1),
y(to) = yo, on a time scale T with jumps. First, we state a theorem that describes the
solution when there is one jump in our time scale T. Next, we will extend our result to
when there are two jumps in T and hence, generalize our result to when there are jumps in

T.

Theorem 22. Assume y> = p(t)y is regressive and fix to in T. With initial condition

y(to) = yo on T, where T = [tg,t1] U [ta, t3]

to 1 to t3

Then the unique solution of the initial value problem

y® =p(t)y, y(to) =yoonT (4.1.1)

s given by

t
yOQStO p(T)dT, tO < t < tl

t t
(1 + p(tr)pu(ty)) yoedo POIT e PO ) 4 < 4.
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Proof. We will construct the solution using two approaches:
Approach 1:

Consider ¢ € [tg,t1]. Then the first order dynamic equation

y> = p(t)y, y(to) = yo on [to,t1]

reduces to a differential equation

/

y =p)y, y(to) =yoon [to,t1]
whose solution is given by
13
y(t) = yoeo " for t € [to, ]

Now, for t € [ta, t3], the first order dynamic equation

y> = p(t)y, y(to) = yo on [ta,t3]

reduces to a differential equation
y' =p(t)y, y(to) =yo on [t2, 3]
and the solution is given by
§;, p(T)dr
y(t) = y(ta)e't= for te [ta, t3]. (4.1.2)

There is a jump between t; and t9 and by the definition of the forward jump operator,
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y(t2) = y(o(t1)) and using Theorem 3 part (4), we have

y(t2) = y(o(tr)) = y(t1) + p(t)y' (t)
= yoeko PO p(t)p(ty)y(t)
— yoegté p(7)dr + M(h)p(h)yo@&é p(r)dr

= (1 +p(tr)u(tr)) yoelo P,
So that (4.1.2) becomes

y(t) = (1 + p(t1)p(tr)) yoeo POAT POAT g0t e [y 1]

t
yO€StO p(’?’)dT’ tO < t < tl

y(t) =
(1 + p(t1)pu(t)) yoelo PO Ju POy g

Approach 2
For t € [tg,t1], we use the definition of the exponential function, e,(.,p) (2.4.5), and the

cylinder transformation (2.4.2) to obtain

SEO g,u,(T) (p(T))AT

ep(t, tg) = ce for some arbitrary constant c

[t €olp(r)Ar

= ce since u(t) =0 for 7 € [to, t1]

i, p(r)dr

= ce since §o(p(7)) = p(7)

and
t
ep(to, to) = celio P — 000 — Yo-

Hence

en(tst0) = yoeo P for t e [to, ¢
p(tto) = yoe'to forte[to, t1].
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Now, for ¢ € [tg,t3], we also use the definition of the exponential function, ey (t,to) (2.4.5),
and the cylinder transformation (2.4.2).

Starting at t = to, we obtain

ep(ta to) = 2 Euin (M) AT
— b Eun M)AT 5,2 &) (p(7) AT
_ o ©0(m)AT 5,2 Euiey) (p(r) A
— yoeki PAT 11} Gy log(Lep(ru(m) AT

— yoet (p(r))dr , Py} loa(1+p(t)u(t1))

t
= (1+ p(t)p(t)) y0€St(1) (p(7))dr
So for t € [ta,t3], the exponential function has the form,

t
ep(t,to) = eltg Snir (PT)AT fort € [to,t3]

— 26 (M)A S, Euiry (p() AT

= (1 p(t)p(t)) goelis P elia P

Adding one more jump to T in Theorem 22 we have the following corollary

Corollary 23. Assume y> = p(t)y is regressive and fix ty in T. With initial condition

y(to) = Yo on T, where T = [to,tl] U [tg,tg] U [t4,t5]

to 11 to l3 Ly ls

Then pu(t1) = ta — t1 and u(ts) = tg — ts and the solution of the initial value problem

y® =p(t)y, y(to) =yoonT (4.1.3)
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s given by

Yo oo P(T)dT

U(t) = 3 (1+ p(ta)ultr)) yo el P elia P07 bh<t<ts

t1 T)aT t3 T)dT t T)aT
(1 + p(t1)u(tr)) (1 + p(ts)p(ts)) yo eho POl PO du pOIAT -y

Proof. We can construct a similar proof as was presented in Theorem 22 above. O
Now if we extend the above result to n jumps in T, then we have the following theorem.

Theorem 24. Assume y> = p(t)y is regressive and fir to in T, with initial condition
y(to) = yo on T, where T = [to,t1] U [ta, t3] U [ta,t5] U ... U [tan, ton+1] and toni1 = 1 is the

maxer{t} (n jumps).

to ] 1) t3 T4 ts  lon  topst
Then
pt) =ta—t1,  p(ts) =ta—ts, pu(ts) =ts—ts, ... plton—1) = ton —ton—1,

and the solution, y(t), of the initial value problem

y*> = p(t)y, y(to) =yoonT (4.1.4)
s given by
( t
yo Vo P, to<t<t
t t
(1 + p(t1)pa(tr)) yo eo P4 el PO, ty <t <t

y(t) = 3 (1+ p(t)u(tr)) (1 + plts)ults)) o elo PO g Pdr iy pmdr gy g

_ 1241 d t d
<H?—o1 (1 + p(t2ir1)m(t2i11)) Yo o 70 T) elia, 77 " ton <t < topi1.
\§
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Proof. We will prove by induction. The case of one jump has been verified in Theorem 22.

Now let us assume that for k& jumps,
t
Yo elio P

(1 + p(ta)u(tr)) o ebio P (lia POV

I

y(8) = { (1 + p(ta)u(tr)) (1 + plts)pu(ts)) o ebio PO lig PO)7 i oDV

to; "
<Hf:ol (1 + p(t2ir1)p(t2ir1)) Yo i’ pde) el p(T)dT,

We shall now show for (k + 1) jumps.

tor <1< topy1-

Where t9541 is the end point in our sequence. We shall call this end point 7. Without loss

of generality, we will sub-divide our last interval [tog, tor+1] and define a new sequence

Let fop1, 52(k+1) € (tak, tak+1), and
1 = ty(ks1)+1 = toki1-

Now for t € [fgk, t~2k+1] the solution of the first order dynamic equation is

k-1 . \
(H (L + p(tiv1)p(t2i+1)) vo elil”’ P(T)dT> e

i=0
Now for [52(k+1),f2(k+1)+1] the solution is given by

~ St (r)d

y(t) = y(tags1))e 200 P ot e [Ta(k41)s T2k +1)+1]
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Using Theorem § part 4, we have

Y(tagr1)) = y(o(tars1)) = y(ors1) + 11(Eok1)y™ (Forr)

Sf2z+1

tok+1
d d - - .
2 P(7) T> elan P p(tor+1)p(tok+1)y(tak41)

k—l
( 1+ p(tait1)m(t2is1)) yo €

: t22+1 ok 11
1 +p t21+1)u(t2i+1)) i CSt2z St% p(T)d
0

1=

k

—

Il
o

(1 + p(tois1)pu(taiv1)) yo e

! f2it1 tak+1
f. 7. d
+ p(tok+1)p(tak+1) < : : Yioi T i P

)

e

- - -1 St21+1 St2k+1 (r)dr
= (1 + p(torr1)1(tors1)) (1 + p(tait1)p(toisr)) yo et2i L2k
i=0

k o541 d
(H + pt2ir1) p(tair1)) Yo ez P T) :

So that (4.1.5) becomes

i ~ ~ t:2i+1 T)dT : (T)dr
y(t) - (H (1 + p(t2i+1),u(t2i+1)) Yo est% p(7) ) eStQ(’Hl)p

i=0
for t € [Ta(p41)s La(res1) |- O
4.2 Solution of First Order Dynamic Equation using Heaviside Function

The solution of the IVP (4.1.1) when there are jumps in the time scale is a collection of
piecewise functions on T. However, we can use an Heaviside function to collect all the

component functions.

Definition 15. An Heaviside function is defined as follows,

Where it is understood that multiplying any function f(¢) by U(t — a) means that f(t)

is “turned off” before t = ¢ and “turned on” starting at ¢t = a. We can rewrite the piecewise
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functions that define the solutions in Theorem 22, Corollary 23, and Theorem 24 as a
collection of component functions that are being “turned on” and “turned off” at different

points. Hence, we state the following corollaries.

Corollary 25. Fortyge T, tg = 0, the exponential function in Theorem 22 can be written

as a collection of component functions using the Heaviside function as

t t
ep(t,to) = yo 0 PDTU(E — t0) — yo Mo P DTt — ty)

t t
+ (14 p(t)pa(tr)) yo o POl PO 4 )

where T = [to, t1] U [t2, t3].

In the above corollary, at ¢t = g,

ep(to,to) = Yo Rt PO (b — to) — yo ¥ PO (1 — to)
(1 plt) () go el POI IS POAT (4 )
o e PO g S e
+ (14 pltn) (1)) yo o PP o

= Yo-

At t =tg,

ep(tr,to) = yo X0 DU (1) — tg) — yo Vo PO (1) — ty)
(L plt)u(tr)) yo 40 PO PO () )
= Jdiop@dr 4 n o
+ (14 p(t)u(t)) o i p()dr S p(r)dr

- g p(r)dr

So that we can write

t
ep(t, to) = Yo eStO p(r)dr Vite [to, tl] .
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At t = to,

epltz to) = yo €90 PV (ty — tg) — yo Vo POty — 1)
(L plt)a(tr) o 40 PO PO 4y )
= 0 JiZp(mdr g n JiZp(m)dr
+ (1 p(ta)a(tr) o e POy

= (1 + p(tl),u(tl)) Yo eSfé p(T)dT’

and at t = t3,

t t
6p(t3, to) = Y0 6&8 p(T)dTU(tg — t()) — Yo €St8 p(T)dTU(t3 - tg)

(14 plt) () yo €0 POl P4y g

t t
=10 eStg p(T)dr x 1= Yo eStS p(T)dr %1

(14 plt)(tr)) yo el POl PO oy

= (1+p(t)plt)) yo o p(r)dr 53 p(r)dr
So that we can write
t t
ep(t,to) = (1 +p(tr)u(t1)) yo €50 P POy e [ty 1]

We have similar results for Corollary 23 and Theorem 24.

Corollary 26. Fortye T, tg = 0, the exponential function in Corollary 23 can be written

as a collection of component functions using the Heaviside function as

ep(tt0) = yo 40PV U(E — 1) — yo el PN U( 1)
(1 p(t)p(tn)) yo el POl POy g,
— (1 + p(t1)u(t1)) yo elio POV oLy PV 14 gy

t t t
+ (14 p(t)u(tr)) (1 + plts)ults)) yo el Pl DT ey p(dmyyq gy
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where T = [to, t1] U [t2,t3] U [ta,t5]

Corollary 27. Fortyge T, tg = 0, the exponential function in Theorem 24 can be written

as a collection of component functions using the Heaviside function as

t
enlt,t0) = yo 0 PDTUE — 1) — yo PPt — 1)

T)dT

+ (14 plt)(t)) yo e PO S POy g

t t
_ (1 + p(tl)ﬂ(tl)) Yo eSt(l) p(T)dTeSt2 p(T)dTZ/{(t o t4)

+ (1 + plt)p(ts)) (1 + plts)u(ts)) yo Vo POl PIr iy POy 4y

— t21+1 t d
(H 1 +p 75214—1 (t2i+1)) Yo GStQZ > 682&2"*2 p(7) TU(t — th_g)

n-l to; 1 t
(H (1 + pltais1)u(taisn)) yo eV 2 )eS%p(T)dTU(t—tzn),

=0
where T = [to, t1] U [ta,t3] U [ta,t5] U ... U [tan, tant+1] (0 jumps).
4.3 First Order Dynamic Equation with Uniform Jump(s)

In Section 4.1, we had Theorem 24 which gave us the solution of the first order homoge-
nenous dynamic equation (2.5.1), y(tg) = yo on a time scale T when there are jumps in T.

We state the next theorem for the special case when the jumps in T have the same size.

Theorem 28 (Uniform jump(s)). Assume y> = p(t)y is regressive with initial conditions

y(0) =1 on T, where

U [2ih, (20 + 1)h], i€ Ny and (njumps)

= [0,h] U [2h,3Rh] U [4h,5h] U --- U [2nh, (2n + 1)h] (njumps).

with h > 0.

Then the solution e,(t,0) of the initial value problem

yA =p(t)y, y(0)=1onT (4.3.1)
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s given by

i—1 2j+1)h +
e(t,0) = (H(1+hp((zj+ D)) S "ol AT) (7Yt e ih, (20 + 1)h)
(4.3.2)
for i e Ny

Proof. Let T = |JI_,[2ih, (2i + 1)h] be a time scale with uniform jumps, and ™ = p(t)y
be regressive with initial condition y(0) = 1. By Theorem 17, y(t) = ep(t,0), where y(t) is
the solution of the initial value problem y®(t) = p(t)y(t), y(0) = 1.

If n =0 (no jump in T), T = [0, h] and

y(t) = ep(t,0) = el PMAT ot e [0, h].

Next, if n =1 (one jump in T), T = [0, h] U [2h, 3h]. Note that the magnitude of the jump
is h. Using Theorem 2/

y(t) = ey(t,0) = (1 + hp(h))eko PWAT 8o PAT o 4 € [2h, 3.
Next, if n =2 (two jumps in T), T = [0, ] U [2h,3h] U [4h,5h]. Using Theorem 24 also

y(t) = eyp(t,0) = (1+ hp(h))(1 + hp(3h))efs PIDAT Lo PDAT fiy, p()A

2-1 -~ )
::<IIG—+mx@j+1>>>g””h ‘5)6””HMT0nteMm5m.

Jj=0

Now, proceeding by induction, we assume that for n = k (k jumps in T),

k-1 2j+1 h +
mw=%wm=<ﬂu+mw%+n>ﬂ%” A)&MWMTmtq%m@wHM]
j=0

We will now show for n = k+ 1 (k + 1 jumps in T). The first order dynamic equation

y® = p(t)y, where t € [((2k + 1) + 1)k, ((2k + 1) + 2)h] has solution given by

(1) = y(((2k + 1) + DR)SCrm e POAT 4o 12k £ 1) + DA, (26 + 1) + 2)h]. (4.3.3)
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Using Theorem § part 4, we have

k

I
—

(2k+1)h

(14 hp((27 + DRSS v A) PIAT L )y (2K + 1))

Il
= O

y(((2k + 1)+ 1)h) = y(o(2k + 1)h) = y((2k + 1)h) + hyA((2k: +1)h)
k

(1+ hp((25 + 1)h))e SR p(r AT) SEEDR () Ar

Jj=

(
<

[e=]

i

k—1 (2j+1)h A (2k+1)h A
+ hp(h) (1 + hp((25 + 1)h))elin — PMAT ) T p(r)Ar
0

&,
Il

k-1 2j+1)h 2k+1)h
= 1+ () | [0+ hp((2j + Dmel” 7t A>< " p(mar
j=0
k (25+1)h
= <H<1+hp<<2j 1)h))elzn P4 )
j=0

So that (4.3.3) becomes

k
(H 1 + hp 2] + 1) )) Sé%jl)h T)AT ) egé2k+l)h+1p(7—)A7—.

for t € [(2k+1)h + 1, (2k + 1)h + 2].

Hence, by induction

izl 2j+1)h +
e(t,0) = (H (1 + hp((2) + Dh)) el "o AT) (eBnr57) e [2m, (23 + 1],

Jj=0

4.4 First Order Dynamic Equation on an Isolated Time Scale

Now consider a time scale T of isolated points. In this special case, there is a jump between

every point in T [3]. We state the following theorem.

Theorem 29. Assume y> = p(t)y is regressive with initial condition y(tg) = 1 on

T = {to,t1,t2,...} an isolated time scale. Then the solution ey(t,0) of the initial value prob-
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lem.

i
L

ep(tn, to) (1+ p(ti)p(ti)) (4.4.1)

<.
Il
=}

for n e Ny

Proof. Let T = {tg,t1,t2,---} be an isolated time scale, and y* = p(t)y is regressive with
initial condition y(tg) = 1. By Theorem 17, y(t) = e,(t,to), where y(t) is the solution of
the initial value problem y®(t) = p(t)y(t), y(to) = 1.

Now, since every point in T is right scattered, (u(t) > 0) V t e T. So, using the Simple

Useful Formula Theorem & part 4

Since ep(to,to) = 1 and o(tg) = t1 so

ep(t1,to) = ep(o(to),to)
= y(o(to))
= (1 + p(to)p(to))ep(to, to)

= (1 + u(to)p(to))-

Now, proceeding by induction, we assume that
k—1

ep(te,to) = [ [ (1 + p(ta)p(t:), for k> 1.
=0

52



So for k + 1, we have

ep(thy1,to) = ep(a(ty), to)
= y(o(tx)

= (1 + p(te)p(tr))ep(tr, to)
k-1

= (1 + p(te)p(tr) H(l + u(ti)p(t:))

1=0

I

Il
=

(1 + pu(ts)p(ts)).

)

Hence, by induction e, (ty,ty) = Hz‘z_ol(l + u(ti)p(t;)), forallt, € T.
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Chapter 5

Numerical Solution of a First Order Dynamic Equation with

Jumps

We also solved the IVP y2(t) = %y(t) with y2(0) = % numerically. We started by writing

the Taylor’s series expansion using discrete notation,

k2 K3
Yt =y + kF[y", 1] + ?F/[y",tn] + EF”[y", "+

Then truncating the Taylor’s series from the F'[y", "] term the Euler’s method is obtained.
g =yt RFTY" .

The right hand side of our dynamic equation y*(t) = y(t) in discrete notation is written
as Fly,t] = %y ,with initial condition y° = 1 so that F[y",t"] = %y” Therefore, the Euler’s

method is the iteration

=1
1
yn-i-l _ yn +k <3yn>

we used the step size of k = 0.01 on the grid [0,10].
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5.1 Numerical Solutions of a First Order Dynamic Equation on Time

Scales with Non-Uniform Jumps

In Chapter 4, we gave an analytical description of the solution of the IVP (2.5.2) on a time
scale with non-uniform and uniform jumps. So in this section, we solved numerically the
IVP y2(t) = 2y(t) with y*(0) = % and considered our grid T = [0,10] as a time scale.
To see what the solution will look like if there were arbitrary jumps in our time scale, we

considered Ty = [0, 10]. We obtained a subset T; of Ty by removing the open 'middle third’,

the interval (%, %) from Ty. To is obtained by removing the two open middle thirds of
Ty, the two open intervals (%, %) and (%, %). T3 is obtained by removing the four open

middle thirds of T, the four open intervals (10 20), (70 80), (190 200) d (250 260).

27027 270 27 270 27 270 27

Then we used the Euler’s method to obtain the solution plot ! on Ty, Ty, Ty and Ts. In Ty,
the grid starts from 0 to 1—?? and then continues from 2—?? up to 10. So we used the Euler’s
iteration from 0 to % and from 2—30 to 10. We chose k (the step size) such that the point %

is included in the grid [O, 1—3?] and % is included in the grid [?, 10]. Suppose we wanted

. . . . . . . . 10
500 discrete points in both grids, then k = (final point in grid)/500, so for [0, g]

10

k= -3 —0.0067
500 ’

we used the same step size in the grid [?, 10] since it is identical to [0, %] So Using the
discrete notation, the initial condition ¢ = 1 gives us the solution at 0. Using Theorem 24

.20
we obtain y3 as

'Euler’s method was implemented on the Python language and the code is included in the Appendix.
There is a description of the solution value at each left scattered points in our time scale.
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Therefore, the Euler’s method iteration from % in our grid becomes

0_ 2 (19> &
y =y =€
9
1
yn+1:yn+k<3yn>‘

Similarly in Ts, the grid starts from 0 to 1@0, continues from 29—0 to 1—3? and continues from %

to %0 and then from % to 10. So the Euler’s iteration is used from 0 to %,2@0 to %, 2—?? to

% and from % to 10. We chose k (the step size) such that the point %D is included in the
grid [0, %0], % and % are included in the grid [%0, %], % and % are included in the grid
[2—3?, %] and % is included in the grid [%O, 10]. Suppose we wanted 500 discrete points in

the three grids, then k = (final point in grid)/500, so for [O, %]

10
k=2 =0.0022.
500
We used the same step size in the grid [%0, %], [%, %] and [%, 10] since they are identical

to [0, %0]. Theorem 24 also gives us y% as

Therefore, the Euler’s method iteration from % to % becomes

(37w
“\27)°¢

1
n+1 n n
— 2

Y=y

olg
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where we used step size k = 0.0022.

Also by Theorem24 we obtain y% as

2 14+ 1 10 14 1 10 20
— _—. — . —_. — -e
Y 39 33
37 19 20
= 277 . ? - e27,
Therefore, the Fuler’s method iteration from ? to % becomes

37 19 20
= _— . _— - e27
(=) (5)

1
Y=yt +k <3y”> :

yO

|8

Y

where we used step size k = 0.0022.
And by Theorem 2/, y%o is

8 1+1 10 1+1 10 1+1 10 20
9 — —_ . — . —_ . — . _ . — - e
Y 39 33 39
37\% 19\ a0
= — . — - e27,
27 9
Therefore, the Fuler’s method iteration from % to 10 becomes

37\2 /19\ =0
:E.a.ew

1
Yy =yt +k <3y”> :

=y

<lZ

where we used step size k = 0.0022.
Following the process described above, we implemented the Euler’s method on Ty as well.
The figures that follow are the solution plot of the IVP y2(t) = %y(t), y2(0) = % on

To,T,T2,Ts.
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— numerical 5_olutlon — numerical solution
- - exact solution - - exact solution

T oo
- - exact solution - - exact solution

25 25

20 20
= 15 g
s =19

10 10

/ e
-
5 5
_— —
— — -
2 T . 6 8 10 3 3 6 8 10

30

= 15

=

Figure 5.2: Solution of y*(t) = Fy(1), y2(0) = 3+ on To, Ty, Ty and T
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5.2 Numerical Solution of a First Order Dynamic Equation on a Time

Scale with Uniform Jumps
We will solve the IVP y2(t) = 2y(t) with y(0) = % on a time scale with uniform jumps

numerically. Like we did in the previous section, we will consider our grid T = [0, 10] as a
time scale. To see what the solution will look like if there were uniform jumps in our time

scale, we considered T{, = [0,10]. We obtained a subset T} of T{, by slicing Tj, into three

10 20

intervals, the intervals [0, 13—0], (ﬁ, g) and [%, 10]. where our jump is the interval (10 20).

303

T’ is obtained by slicing Tj, into five intervals, the intervals [0, 2], (2,4), [4,6], (6,8) and

8,10], where our jumps are the intervals (2,4) and (6, 8). Similarly T is obtained by slicing
3

10 20)’ [20 30]7 (30 40)7 [40 50], (50 60),

T into seven intervals, the intervals [O, %], (7, =) 155 (F5) |75 7

[6—70, 10], where our jumps are the intervals (1—70, ?), (?, 4—70) and (%, Q). Then we used
the Euler’s method to obtain the solution plot on Ty, T}, T and Tj. In T}, the grid starts
from 0 to 1—30 and then continues from 2—30 up to 10. So we used the Euler’s iteration from
0 to X and from £ to 10. We chose k (the step size) such that the point % is included
in the grid [0, %] and 23—0 is included in the grid [2—3?, 10]. Suppose we wanted 500 discrete

points in both grids. Then k = (final point in grid)/500, so for [0, %]

10

k= —3 = 0.0067.
=05 = 0-0067

We used the same step size in the grid [%, 10] since it is identical to [0, %] Using the
discrete notation, the initial condition y = 1 gives us the solution at 0. Using Theorem 24

.20
we obtain y3 as
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Therefore, the Euler’s method iteration from % in our grid becomes

0_ 2 (19> &
y =y =€
9
1
yn+1:yn+k<3yn>‘

Similarly in T%, the grid starts from 0 to 2, continues from 4 to 6 and from 8 to 10. So the
Euler’s iteration is used from 0 to 2, 4 to 6 and from 8 to 10. We chose k (the step size)
such that the point 2 is included in the grid [0,2], 4 and 6 are included in the grid [4, 6]
and 8 is included in the grid [8,10]. Suppose we wanted 500 discrete points in the three

grids. Then k = (final point in grid)/500, so for [0, 2]

2
k= — = 0.004.
500

We used the same step size in the grid [4, 6] and [8, 10] since they are identical to [0, 2].

Theorem 24 also gives us y* as
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where we used step size k = 0.004.

Also by Theorem 2/ we obtain y® as

where we used step size k£ = 0.004.
Following the process described above, we implemented the Euler’s method on T4 as well.
The figures that follow are the solution plots of the IVP y2(t) = %y(t), y2(0) = % on

T}, T, T4, T}

1
3
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— numerical solution
- - _exact solution

— numerical solution
- - exact solution
25|
20|

— numerical solution
- - exact solution

— numerical solution
- - exact solution
25)
20|
20|
Spt] .
< 15

10

30

Figure 5.4: Solution of y*(t) =

y(t), y>(0) = % on Tf, T}, T, and T%
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Appendix B

Python code

# Solving DE on a time scale with no jump T = [0, 10]
#y = (1/3)*xy(t)
# y(t) = exp((1/3)*t)

from pylab import *
N1 = 500 # k=0.01

def F(u,t):
return (1.0/3)*u

def exactSolution(t):
return exp((1.0%t)/3)

finalT = 10.0
y1 = zeros((N1,1))

tpl = zeros((N1,1))
y1[0] = 1.0

tpl[0] =0

dtl = finalT/N1

for i in range(O,N1-1):

y1[i+1] = y1[i] + dt1*F(y1[il,tp1[il)
tp1[i+1] = tp1[i] + dt1

exl = exactSolution(tpl)
erl = abs(ex1[-1] - y1[-1])
DT1 = dt1
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print (’Max error’)
print eril

plot(tpl,yl,’b’,tpl,exl,’r--’)

xlabel (’t?)

ylabel (’$y(t)$’)

legend ((’numerical solution’,’exact solution’),loc=’best’)
axis([0,10,0,30])

show()

# Solving DE with 1-jump on a time scale T = [0,10]
#y> = (1/3)*y (%)
# y(t) = exp((1/3)*t)

from pylab import *

yoO = 1.0
N1 = 500 # k=0.01

def F(u,t):
return (1.0/3)*u

def exactSolutionl(t):
return exp((1.0%t)/3)

def exactSolution2(t):
return (19.0/9)*exp(10.0/9)*exp((t-(20.0/3))/3)

finalT1 = 10.0/3

y1l = zeros((N1,1))
y2 = zeros((N1,1))

tpl = zeros((N1,1))
tp2 = zeros((N1,1))

yi[0] = 1.0

y2[0] = (19.0/9)*exp(10.0/9)
tpl[0] =0

tp2[0] = 20.0/3

dtl = finalT1/N1

for i in range(0,N1-1):
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yi[i+1] = y1[i] + dt1*xF(y1[i],tp1[i])
y2[i+1] = y2[i] + dt1*xF(y2[i]l,tp2[il)
tp1[i+1] = tp1[i] + dt1
tp2[i+1] = tp2[i] + dt1

exl = exactSolutionl(tpl)
ex2 = exactSolution2(tp2)
erl = abs(ex1[-1] - y1[-1])
er2 = abs(ex2[-1] - y2[-11)
DT1 = dt1

print(’Max error in First interval’)
print erl
print(’Max error in Second interval’)
print er2

plot(tpl,yl,’b’,tpl,exl,’r--’,tp2,y2,’b’ ,tp2,ex2,’r--7)
xlabel(°t’)

ylabel ("$y(t)$’)

legend ((’numerical solution’,’exact solution’),loc=’best’)
axis([0,10,0,30])

show ()

# Solving the DE with 2 uniform jumps on a time scale T=[0,10]
#y> = (1/3)*y(t)

# y(t) = exp((1/3)*t)

from pylab import *

N1 = 500 # k=0.01

def F(u,t):

return (1.0/3)*u

def exactSolutionl(t):
return exp((1.0%t)/3)

def exactSolution2(t):
return (5.0/3)*exp(2.0/3)*exp((t-4.0)/3)

def exactSolution3(t):
return ((5.0/3)**2)*exp(4.0/3)*exp((t-(8.0))/3)

finalT1l = 2.0
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y1 = zeros((N1,1))
y2 = zeros((N1,1))
y3 = zeros((N1,1))

tpl = zeros((N1,1))
tp2 = zeros((N1,1))

tp3 = zeros((N1,1))

y1[0] = 1.0

y2[0] = (5.0/3)*exp(2.0/3)
y3[0] = ((5.0/3)*x2)*exp(4.0/3)
tpl[0] =0

tp2[0] = 4.0

tp3[0] = 8.0

dtl = finalT1/N1

for i in range(O,N1-1):

y1[i+1] = y1[i] + dt1*F(y1[il,tp1[il)
y2[i+1] = y2[i] + dt1*F(y2[il,tp2[il)
y3[i+1] = y3[i] + dt1*F(y3[il,tp3[il)

tpl[i+1] = tp1[i] + dt1
tp2[i+1] = tp2[i] + dt1
tp3[i+1] = tp3[i] + dt1

exl = exactSolutionl(tpl)
ex2 = exactSolution2(tp2)
ex3 = exactSolution3(tp3)
erl = abs(ex1[-1] - y1[-11)
er2 = abs(ex2[-1] - y2[-1])
er3 = abs(ex3[-1] - y3[-11)
DT1 = dt1

print(’Max error in First interval’)
print erl
print (’Max error in Second interval’)
print er2
print (’Max error in Third interval’)
print er3

plot(tpl,yl,’b’,tpl,exl,’r--’,tp2,y2,’b’ ,tp2,ex2,’r--’,tp3,y3,’b’ ,tp3,ex3,’r--7)

xlabel (’t?)
ylabel (’$y(t)$’)
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legend ((’numerical solution’,’exact solution’),loc=’best’)
axis([0,10,0,30])

show ()

# Solving the DE with 3 uniform jumps on T = [0,10]
#y’ = (1/3)*xy(t)
# y(t) = exp((1/3)*t)

from pylab import *
N1 = 500 # k=0.01

def F(u,t):
return (1.0/3)*u

def exactSolutionl(t):
return exp((1.0%t)/3)

def exactSolution2(t):
return (31.0/21)*exp(10.0/21)*exp((t-(20.0/7))/3)

def exactSolution3(t):
return ((31.0/21)**2)*exp(20.0/21)*exp((t-(40.0/7))/3)

def exactSolution4(t):
return ((31.0/21)**3)*exp(30.0/21)*exp((t-(60.0/7))/3)

finalT1l = 10.0/7

y1 = zeros((N1,1))
y2 = zeros((N1,1))
y3 = zeros((N1,1))
y4 = zeros((N1,1))

tpl = zeros((N1,1))
tp2 = zeros((N1,1))
tp3 = zeros((N1,1))
tpd = zeros((N1,1))

y1[0]l = 1.0

y2[0] = (31.0/21)*exp(10.0/21)
y3[0] = ((31.0/21)*%*2)*exp(20.0/21)
y4[0] = ((31.0/21)*%*3)*exp(30.0/21)
tp1[0] = 0

tp2[0] = 20.0/7
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tp3[0]
tp4[0]

40.0/7
60.0/7

dtl = finalT1/N1

for i in range(0,N1-1):
yili+1] = y1[i] + dti*F(y1i[il,tp1l[il)

y2[i+1] = y2[i] + dt1*F(y2[il,tp2[il)
y3[i+1] = y3[i] + dt1xF(y3[i],tp3[il)
ya[i+1] = y4a[i] + dt1xF(y4[il,tp4l[il)
tp1[i+1] = tpl[i] + dt1
tp2[i+1] = tp2[i] + dt1
tp3[i+1] = tp3[i] + dt1
tp4l[i+1] = tp4[i] + dt1

exl = exactSolutionl(tpl)
ex2 = exactSolution2(tp2)
ex3 = exactSolution3(tp3)
ex4 = exactSolution4(tp4)
erl = abs(ex1[-1] - y1[-11)
er2 = abs(ex2[-1] - y2[-11)
er3 = abs(ex3[-1] - y3[-1]1)
erd = abs(ex4[-1] - y4[-1])
DT1 = dt1

print(’Max error in First interval’)
print eril
print (’Max error in Second interval’)
print er2
print (’Max error in Third interval’)
print er3
print(’Max error in Fourth interval’)
print er4

plot(tpl,yl,’b’,tpl,exl,’r--’,tp2,y2,’b’,tp2,ex2,’r--’,tp3,y3,’b’ ,tp3,ex3,’ r—-7,\~
tpd,y4,’b’ ,tpd,exd, ’ r--7)

xlabel(’t?)

ylabel (" $y(t)$’)

legend((’numerical solution’,’exact solution’),loc=’best’)

axis([0,10,0,30])

show()
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