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Abstract

Should a well-intentioned advisor always tell the whole truth? In standard eco-
nomics, the answer is yes (Blackwell (1953)), but in the world of psychological pref-
erences (Geanakoplos, Pearce, and Stacchetti (1989))—where a listener’s state of mind
has a direct impact on his well-being—things are not so simple. In this paper, we study
how a benevolent principal should disclose information to a psychological agent. Af-
ter characterizing attitudes toward information, we study optimal information disclo-
sure. Psychological aversion to information is of particular interest. We show that, for
information-averse agents, the principal may simply provide information in the form of a
recommended action. Next, we study how the optimal policy changes with information-
aversion. We also offer general tools of optimal disclosure. We apply our results to
choices under prior-bias and cognitive dissonance; consumption-saving decisions with
temptation and self-control problems (Gul and Pesendorfer (2001)); and doctor-patient
relationships.
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1 Introduction

Choices of information disclosure—what is revealed and what is concealed—affect what
people know and, in turn, the decisions that they make. In many contexts, information
disclosure is intended to improve people’s welfare. In public policy, for instance, regulators
impose legal rules of disclosure, such as required transparency by a seller of a good to a
buyer, to this effect. But should a well-intentioned advisor always tell the whole truth?
In standard economics, the answer is yes, because a better informed person makes better
decisions (Blackwell (1953)). However, parents do not always tell the whole truth to their
children; people conceal embarrassing details about their personal lives from their family
elders; doctors do not always reveal to their patients all the details of their health, when
dealing with hypochondriac patients for instance; future parents do not always want to know
the sex of their unborn child, even if it is pragmatic to know in advance; and many of us
would not always like to know the caloric content of the food that we eat.

In this paper, we study how an informed principal should disclose information to an
agent with psychological traits. It is hard to argue that our beliefs and our information affect
our lives only through the actions that we take. The mere fact of knowing or not knowing
something can be a source of comfort or discomfort. Bearing this in mind, how should we
disclose information to a person whose state of mind has a direct impact on his well-being?
This question is relevant when the principal is a trusted advisor to the agent, but also when
the principal is an entity that, by law, can enforce what the informed party must disclose.
Laws and regulations about public disclosure of information are widespread, ranging from
administrative regulations, loans, credit cards, and sales, to insurance contracts, restaurants,
doctor-patient relationships and more (see Ben-shahar and Schneider (2014)).

In their paper, “Disclosure: Psychology Changes Everything,” Loewenstein, Sunstein,
and Goldman (2014) argue that psychology may lead one to rethink public disclosure poli-
cies. For example, it may be counter-productive to offer detailed information to a person with
limited attention, as she may ignore critical information due to cognitive limitations. Like-
wise, if people are nonstandard in how they process information, i.e., if they are not always
Bayesian, then the regulator should take into account their biased probability judgments in
the choice of disclosure policies.

At a more personal level, a well-intentioned speaker may directly take into account the
psychological well-being of her interlocutor when deciding what to say. For instance, one
sometimes experiences cognitive dissonance, an innate discomfort at having one’s beliefs
shift from an existing position: how should information disclosure best anticipate this? Other
examples come to mind, in which one would like to be fully informed when the news is good,
but would rather not know how bad it is otherwise. The first communication scheme that
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comes to mind—reveal the news when it is good and say nothing otherwise—accomplishes
little in this situation, as no news reveals bad news.

In our model, an informed principal will learn the realization of a state of nature, and she
must choose what to tell the agent in each contingency. After receiving his information from
the principal, the agent updates his prior beliefs and then takes an action. The principal wants
to maximize the agent’s ex-ante expected utility by choosing the right disclosure policy.

To study the impact of psychology on information disclosure, we must decide how to
model psychology and communication. We model the former by assuming that the agent’s
satisfaction depends not only on the physical outcome of the situation, but also directly on
his updated beliefs. In doing so, we employ the framework of psychological preferences
(Geanakoplos, Pearce, and Stacchetti (1989)). This framework captures a wide range of
emotions and, in our model, allows us to represent various psychological phenomena, such as
purely psychological preferences, prior-bias and cognitive dissonance, temptation and self-
control problems (Gul and Pesendorfer (2001)), multiplier preferences (Hansen and Sargent
(2001)), and more.

We model communication by assuming that the principal can commit ex-ante, before the
state is realized, to an information policy. This means that to every possible state of nature
corresponds a (possibly random) message by the principal, leading the agent to update his
beliefs. Since the state is distributed ex-ante according to some prior distribution, an infor-
mation policy induces a distribution over updated (or posterior) beliefs and (given how the
agent responds to said information) over actions. This is the methodology of random posteri-
ors employed by Kamenica and Gentzkow (2011) (KG hereafter). Alternative methodologies
are available, most notably the ‘cheap talk’ model of Crawford and Sobel (1982), wherein
the principal cannot commit ex-ante. Here, given our focus on the impact of psychology
on disclosure, we give the principal full commitment power, abstracting from strategic in-
teractions between different (interim) principal types. Depending on the application, we see
at least two reasons that such commitment power is a reasonable approximation. First, in
many applications, a benevolent principal is some third-party who regulates information dis-
closure between a sender (e.g., a seller) and the agent, with the agent’s interests in mind.
Such a principal sets the disclosure policy in ignorance of the realized state, and thus faces
no interim opportunity to lie. Second, in situations in which the relationship is subject to
full-transparency regulations (e.g., patients have the right to access their lab test results), this
legislative restriction creates commitment power. The principal makes an ex-ante decision
of which information to seek and is bound by law to reveal whatever she finds.

Psychological preferences entail a number of new considerations and ask for new tools
of information disclosure. First, it is important to understand the landscape of psychologi-
cal preferences, for agents’ relationship to information will guide disclosure. A first-order
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question is: “Does the agent like information?” A classical agent is intrinsically indifferent
to information. Holding his choices fixed, he derives no value from knowing more or less
about the world. But if he can respond to information, then he can make better decisions
and, thus, information is always a good thing (Blackwell (1953)). This observation leads us
to distinguish between two general standards of information preference. On one hand, an
agent may be psychologically information-loving [or averse] if he likes [dislikes] informa-
tion for its own sake. On the other, he may be behaviorally information-loving [or averse] if
he likes [dislikes] information, taking its instrumental value into account. To see the distinc-
tion, imagine a person will give a seminar, and consider the possibility of him finding out
whether his presentation has any embarrassing typos right before he presents. If his laptop is
elsewhere, he may prefer not to know about any typos, as knowing will distract him during
the presentation. He is psychologically information-averse. But if he has a computer avail-
able to change the slides, he would like to know; any typos can then be changed, which is
materially helpful. He is behaviorally information-loving.

We characterize these four classes of preferences in Theorem 1; and optimal information
disclosure follows readily for three of them. Almost by definition, if the agent is behaviorally
information-loving [-averse], it is best to tell him everything [nothing]. If an agent is psycho-
logically information-loving, then the potential to make good use of any information only
intensifies his preference for it; he is then behaviorally information-loving, so that giving full
information is again optimal. More interesting is the case in which information causes some
psychological distress, i.e., a psychologically information-averse agent. This case presents
an intriguing dilemma, due to the tradeoff between the agent’s need for information and
his dislike for it. For such an agent, information is a liability that is only worth bearing
if it brings enough instrumental value. A large part of the paper is devoted to information
disclosure under information-aversion.

Under psychological information-aversion, and in psychological environments in gen-
eral, the Revelation Principle no longer holds. In the presence of many potential disclosure
policies, some of them being unreasonably cumbersome, this observation is disappointing.
However, although the Revelation Principle fails in this environment, its most useful de-
sign implication remains: Theorem 2 says that (when preferences display psychological
information-aversion) it is sufficient to confine attention to recommendation policies; that
is, the principal can simply tell the agent what to do in an incentive-compatible fashion.1

Recommendation policies are especially interesting because they are rather natural. In the
doctor-patient example, the doctor need not tell the patient what the test statistically reveals
about his illness; she may simply tell him which medical action to take.

1To be sure, this result is nontrivial. Its proof is different from typical proofs of the Revelation Principle—a
point on which we elaborate in the main text—and the result is false for general psychological preferences.
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Many recommendation policies can a priori be optimal for a given agent with psycho-
logical information-aversion. Can we say anything more for agents who are ranked by their
information-aversion? We propose an (apparently very weak) order on information-aversion,
and yet obtain a strong conclusion. When two agents are ranked according to information-
aversion, their indirect utilities differ by the addition of a concave function. In this model,
concavity is tantamount to disliking information everywhere, and hence one would think
that a designer should respond by providing unambiguously less information to a more
information-averse agent. Interestingly, this is only true in a two-state world; it fails in
general due to psychological substitution effects.

We also provide general tools of optimal information disclosure to respond to the variety
of psychological preferences, especially those that fall outside our classification. The con-
cave envelope result of KG holds in our model (Theorem 3), so that we can characterize the
agent’s optimal welfare. But the benevolence of our design environment allows us to develop
the method of “posterior covers,” so that we can explicitly derive an optimal policy. An agent
may not be information-loving as a whole, but he can be locally information-loving at some
beliefs. Accordingly, the principal knows to be as informative as possible in those regions. A
posterior cover is a collection of convex sets of posterior beliefs over each of which the agent
is information-loving. By Theorem 4, the search for an optimal policy can be limited to the
extreme points of a posterior cover of the indirect utility. By Proposition 3—which hinges
on the assumption of aligned preferences—this problem can be reduced to that of finding
posterior covers of primitives of the model. By Proposition 4, in a broad class of economic
problems, all these objects can be computed explicitly.

How should we talk to someone facing a prior-bias or cognitive dissonance? To someone
who has temptation and self-control problems? Or to someone who likes to hear news only
when it is good? We apply our results to answer these questions. In the case of cognitive
dissonance,2 the main message is that we should communicate with such an individual by an
all-or-nothing policy. Either the person can bear information, in which case we should tell
him the whole truth to enable good decision-making, or he cannot, in which case we should
say nothing.

In the case of temptation and self-control, the optimal policy depends on the nature of
information. We study a standard consumption-saving problem where an individual has
impulsive desires to consume rather than invest in some asset. When information is about the
asset’s return, it only appeals to the agent’s rational side. Hence, full information is optimal.
But when information is about (say) the weather in a vacation destination, it only appeals
to the agent’s impulsive side. Yet, it does not follow that no information is optimal. By

2In our model of cognitive dissonance, the agent pays a psychological penalty given by the (Euclidean)
distance between his posterior belief and their prior position.
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(sometimes) revealing good weather, an advisor induces the agent to consume and avoid all
temptation, or to invest and face reduced temptation; partial revelation may then be optimal.
We further show that the method of posterior covers can be brought to bear quite generally
in the setting of temptation and self-control.

Finally, we analyze a doctor-patient relationship in which the patient, who can be either
healthy or ill, has equivocal information preferences. He likes to be informed about his
health when the news is good, but when it is bad enough that no useful course of action
exists, he prefers not to know. He is neither information-averse nor -loving. Of course, it is
suboptimal to only deliver good news, for the patient would infer that the news is bad when
she hears nothing. It turns out that the doctor should recommend ‘no treatment’ only when
the patient is healthy; but the doctor should at times deliver false positives, recommending
the aggressive course of action (e.g., never smoke again) even in good health. In doing so,
the doctor provides some information even when the patient does not like it locally, as the
potential to provide very good news with some probability outweighs the damage of bad
news.

This paper is part of a recently active literature on information design (KG; Ely, Frankel,
and Kamenica (2014); Kolotilin et al. (2015); etc). The most related work, methodologically
speaking, is KG. We adopt the same overall method as they do, but study a different problem
and give new tools (which would be inapplicable to their setting of conflicting interests) to
solve it.3

Our work does not belong to the cheap talk literature spanned by Crawford and Sobel
(1982), because our principal can commit to a communication protocol. A notable contribu-
tion to that literature is Caplin and Leahy (2004) who study a detailed interaction between
a doctor and a patient with quadratic psychological preferences. Unlike us, they allow for
private information on the part of the agent. Our analysis concerns a strategically simpler
interaction, but encompasses a great range of applications.

There is a conceptual connection between psychological preferences and nonstandard
preferences over temporal resolution of uncertainty (e.g., Kreps and Porteus (1978)), which
can be reinterpreted as a psychological effect. As such, the mathematical arguments behind
our classification of preferences are similar to Grant, Kajii, and Polak (1998). However,
we make a conceptual distinction between psychological and behavioral information prefer-
ences that is critical for information disclosure. Moreover, information disclosure imposes
additional constraints that are absent in that literature—specifically Bayes-consistency—on
the domain of the agent’s preferences. Indeed, the beliefs of a Bayesian agent cannot be ma-
nipulated at will. This limits the scope of analysis for such preferences, for example when

3At the intersection of both works is but one trivial configuration: a non-psychological agent with the same
preferences as the principal. In this case, full disclosure is trivially optimal.
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comparing information-aversion (Section 6).
The paper is organized as follows. Section 2 introduces psychological preferences and

the methodology of random posteriors. Section 3 presents the psychological agent, and
studies and characterizes various attitudes towards information, namely psychological and
behavioral information preferences. Section 4 concentrates on psychological information-
aversion, highlighting information disclosure and proposing an order to compare information-
aversion. Section 5 supplies the general tools of optimal information design. Section 6 ap-
plies these tools to various situations, including forms of prior-bias and cognitive dissonance,
temptation and self-control, and equivocal information preferences.

2 The Environment

Consider an agent who must make a decision when the state of nature θ ∈ Θ is uncertain.4

Suppose that the agent has (full-support) prior µ ∈ ∆Θ and that he has access to additional
information about the state. After receiving that information, the agent forms a posterior
belief by updating his prior, and then he makes a decision.

2.1 Psychological Preferences

An outcome is an element (a, ν) of A × ∆Θ where a is the action taken by the agent and
ν ∈ ∆Θ denotes the agent’s posterior belief at the moment when he makes his decision. We
assume that the agent has a continuous utility function u : A × ∆Θ → R over outcomes.
The true state is excluded from the utility function, without loss of generality: given any true
underlying preferences ũ : A × Θ × ∆Θ → R, we can define the reduced preferences u via
u(a, ν) =

∫
Θ

ũ(a, θ, ν) dν(θ). The reduced preferences are the only relevant information, both
behaviorally and from a welfare perspective.5 Given posterior beliefs ν, the agent chooses
an action a ∈ A so as to maximize u(a, ν).

In the classical case, ũ does not depend on beliefs and so u(a, ·) is affine for every a.
We do not make this assumption here. In our environment, the agent’s satisfaction depends
not only on the physical outcome of the situation, but also on his posterior beliefs. In the

4In this paper, all spaces are assumed nonempty compact metrizable spaces, while all maps are assumed
Borel-measurable. For any space Y, we let ∆Y = ∆(Y) denote the space of Borel probability measures on Y ,
endowed with the weak* topology, and so itself compact metrizable. Given π ∈ ∆Y, let supp(π) denote the
support of π, i.e., the smallest closed subset of Y of full π-measure.

5Later, when we consider questions of information design by a benevolent principal, we will also work with
u rather than ũ. This remains without loss, but only because the designer is assumed to have full commitment
power. This is in contrast to the setting of Caplin and Leahy (2004).
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literature, this is known as psychological preferences (Gilboa and Schmeidler (1988) and
Geanakoplos, Pearce, and Stacchetti (1989)).6

This formulation covers a wide range of phenomena in our environment. Consider the
following examples where Θ = {0, 1} and A = [0, 1], and note that we can write any posterior
belief as ν = Prob({θ = 1}):

(a) (Purely psychological agent) Let

u(a, ν) = −V(ν)

represent an agent whose only satisfaction comes from his degree of certainty, as quantified
by the variance V(ν) = ν(1 − ν).

(b) (Psychological and material tensions) For k ∈ R, let

u(a, ν) = kV(ν) − Eθ∼ν
[
(θ − a)2

]
This agent wants to guess the state but he has a psychological component based on the
variance of his beliefs. When k > 0, the agent faces a tension between information, which
he dislikes per se, and his need for it to guess the state accurately.

(c) (Prior-bias and cognitive dissonance) Let

u(a, ν) = −|ν − µ| − Eθ∼ν
[
(θ − a)2

]
represent an agent who wants to guess the state but experiences discomfort when information
conflicts in any way with his prior beliefs. This functional form is reminiscent of Gabaix
(2014)’s sparse-maximizer, though the economic interpretation is quite different: a distaste
for dissonance, rather than a cost for considering information.

(d) (Temptation and self-control) Given two classical utility functions u1 and u2, and action
set A, let

u(a, ν) = Eθ∼ν

{
u1(a, θ) −max

b∈A
Eθ̂∼ν

[
u2(b, θ̂) − u2(a, θ̂)

]}
,

be the form proposed by Gul and Pesendorfer (2001). After choosing a menu A, the agent
receives some information and then chooses an action. His non-tempted self experiences
utility u1 from action a, while maxb∈A Eθ∼ν[u2(b, θ) − u2(a, θ)] is interpreted as the cost of
self-control.

6In a game-theoretic context, a player’s utility function could depend on the beliefs of the other players;
preferences concerning fashion and gossip are examples of this phenomenon. In a dynamic context, a player’s
utility at some time could depend on the relationship between his current beliefs and any of his past beliefs;
surprise and suspense are examples (Ely, Frankel, and Kamenica (2014)).
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(e) (Ambiguity-aversion: multiplier preferences) For k > 0, let

u(a, ν) = min
ν′

∫
uc(a, θ)dν′(θ) + kR(ν′||ν)

where R(ν′||ν) is the relative entropy of ν′ with respect to ν.7 These are the multiplier prefer-
ences proposed by Hansen and Sargent (2001). The agent has some best guess ν of the true
distribution, but he does not fully trust it. Thus, he considers other probabilities ν′ whose
plausibility decreases as the distance to ν increases.

2.2 Signals and Random Posteriors

Before making his decision, the agent has access to additional information, which is given
by a signal.

Definition 1. A signal (S , σ) is a space S equipped with a map σ : Θ→ ∆S .

A signal is a technology that sends a random message to the agent in each state: if the
state is θ, the realized message s ∈ S is distributed according to σ(·|θ) ∈ ∆S . The signal is
the only information that the agent receives about the state.

Given the signal (S , σ) and the realized message s, the agent forms posterior beliefs about
the state, denoted βS ,σ : S → ∆Θ.8 Given that a signal sends a message in every state, each
time leading to a posterior belief, a signal induces a distribution over posterior beliefs when
seen from an ex-ante perspective. We call this distribution, which is an element of ∆∆Θ, a
random posterior. The random posterior correspondence,

R : ∆Θ ⇒ ∆∆Θ

µ 7−→ {p ∈ ∆∆Θ : Eν∼pν = µ}

=

{
p ∈ ∆∆Θ :

∫
∆Θ

ν(Θ̂) dp(ν) = µ(Θ̂) for every Borel Θ̂ ⊆ Θ

}
,

maps every prior into the set of random posteriors whose mean equals the prior. As shown in
Kamenica and Gentzkow (2011) and stated for completeness in the lemma below, Bayesian
updating must yield random posteriors in R(µ), and conversely, all such random posteriors
can be generated by some signal. While there is room for manipulation, the posterior beliefs
of a Bayesian agent must on average equal his prior.

7For any ν, ν′ ∈ ∆Θ, recall that R(ν′||ν) =
∑
θ ln (ν′(θ)/ν(θ)) ν′(θ).

8In the finite case, the posterior beliefs are given by βS ,σ(θ|s) = σ(s|θ)µ(θ)/
∑
θ̂ σ(s|θ̂)µ(θ̂) for all θ ∈ Θ and

s ∈ S . In general, for any Borel Θ̂ ⊆ Θ, the map βS ,σ(Θ̂|·) : S → [0, 1] is the conditional (on s) expectation of
1Θ̂.
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Lemma 1. A signal (S , σ) induces a unique random posterior pS ,σ ∈ R(µ). Conversely,
given p ∈ R(µ), there is a signal on (Θ, µ) inducing p.

One could imagine many different signals that induce a given random posterior, but it is
useful to consider the direct signal (S p, σp) associated with p. The direct signal is one for
which (i) every message is a posterior in ∆Θ and (ii) when the agent hears message ‘s’, his
update yields a posterior belief equal to s. That is, the signal tells the agent what his posterior
belief should be, and his beliefs abide. The space of messages is S p := supp(p) ⊆ ∆Θ and,
in the finite case, the signal follows law

σp(s|θ) =
s(θ)p(s)
µ(θ)

for all messages s ∈ S p and states θ.9

3 The Psychological Agent

3.1 Information as Risk

Prospective information is a form of risk. Indeed, getting no information entails a determin-
istic posterior belief: the posterior equals the prior for sure. But getting some information
about the state entails random posterior beliefs, because the posterior is then correlated with
the realized state, which is initially uncertain. In general, when the signal is not very infor-
mative, posterior beliefs will be concentrated around the prior, while when it is informative,
posterior beliefs will be more dispersed. In this context where beliefs are payoff relevant, it
is appropriate to think of information preferences as a particular instance of risk preferences.

Definition 2. Given two random posteriors, p, q ∈ R(µ), p is more (Blackwell-) informative
than q, denoted p �µB q, if (S q, σq) is a garbling of (S p, σp), i.e., if there is a map g : S p →

∆(S q) such that

σq(Ŝ |θ) =

∫
S p

g(Ŝ |·)dσp(·|θ) (1)

for every θ ∈ Θ and Borel Ŝ ⊆ S q.

9In the general case,

σp(Ŝ |θ) =

∫
Ŝ

ds
dµ

(θ) dp(s) for every θ ∈ Θ and Borel Ŝ ⊆ S p.
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This definition based on posteriors is equivalent to the traditional definition of informa-
tiveness based on signals. Usually, we say that a signal is more informative than another if
the latter is a garbling of the former (see Blackwell (1953)). But if signal (S , σ) generates
random posterior p, then it is easy to verify that (S , σ) and (S p, σp) are Blackwell-equivalent
in the usual sense. Therefore, a signal is more informative than another in the traditional
sense if and only if it induces a more informative random posterior.

The next proposition formalizes the connection between informativeness and risk.10

Proposition 1. Given two random posteriors p, q ∈ R(µ), the ranking p �µB q holds if and
only if there is a map r : S q → ∆(S p) ⊆ ∆∆Θ such that

1. For every Borel S ⊆ ∆Θ, p(S ) =
∫

S q
r(S |·) dq and

2. For every t ∈ S q, r(·|t) ∈ R(t).

The proposition may be somewhat counterintuitive. The random posterior p represents
better information than q about θ if and only if it is a mean-preserving spread of q. That
is, greater certainty about the state ex-post entails greater risk concerning one’s own beliefs
ex-ante.

3.2 Love and Aversion for Information

The agent’s welfare depends on his attitude toward information. In particular, we make a
distinction between psychological and behavioral attitudes toward information.

Definition 3. The agent is psychologically information-loving [resp. -averse, -neutral] if
given any action a ∈ A and any random posteriors p, q ∈ R(µ) with p �µB q,∫

∆Θ

u(a, ·) dp ≥ [resp. ≤,=]
∫

∆Θ

u(a, ·) dq.

An agent is psychologically information-loving [-averse] if he likes [dislikes] informa-
tiveness for its own sake, in the hypothetical event that he cannot adapt his decisions to it.
That is, information is intrinsically valuable [damaging], abstracting from its instrumental
value.11

10For finite-support random posteriors, the result follows from Grant, Kajii, and Polak (1998, Lemma A.1).
Ganuza and Penalva (2010, Theorem 2) prove a related result in the special case of Θ ⊆ R.

11Grant, Kajii, and Polak (1998) define what it means to be single-action information-loving for an agent
who makes no decision. In their model, there is no distinction to be made between psychological and behavioral
information preferences.
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For every posterior belief ν ∈ ∆Θ, define the indirect utility associated with ν as

U(ν) = max
a∈A

u(a, ν). (2)

In the next definition, the agent is assumed to respond optimally to information, which de-
fines his behavioral attitude towards it.

Definition 4. The agent is behaviorally information-loving [resp. -averse, -neutral] if given
any random posteriors p, q ∈ R(µ) with p �µB q,∫

∆Θ

U dp ≥ [resp. ≤,=]
∫

∆Θ

U dq (3)

Consider the following story to see the distinction between psychological and behavioral
attitudes toward information. A job market candidate has a job talk, and he may or may
not find out five minutes before the presentation whether his slides have embarrassing typos.
Knowing that his slides are fine makes the candidate comfortable, and learning that they are
not makes him unhappy. Consider now the ex-ante difference between having his laptop and
not having it when he finds out the information. If he will not have it, the person might
prefer to remain ignorant: the risk of hearing bad news (and being self-conscious during the
presentation) outweighs the minor benefit of potentially hearing good news. If he will have
his laptop, however, he will have an opportunity to respond to the situation: there is time to
fix the typos. Hence, the same person may like information when he can respond to it, and
yet prefer to remain ignorant about that same information if he cannot respond to it. If so, this
person intrinsically dislikes information (psychologically information-averse), but it is more
than compensated by the benefit of being able to use it (behaviorally information-loving). A
formal example will be presented after the theorem.

Theorem 1. Psychological and behavioral information preferences are closely linked.

1. The agent is psychologically information-loving [resp. -averse, -neutral] if and only if
u(a, ·) is convex [resp. concave, affine] for every a ∈ A.

2. The agent is behaviorally information-loving [resp. -averse, -neutral] if and only if U
is convex [resp. concave, affine].

3. If the agent is psychologically information-loving, then he is behaviorally information-
loving as well.

4. If u is concave (and A ⊆ Rk is convex), then the agent is behaviorally information-
averse.
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An immediate consequence of the first two points is that a classical agent is psychologi-
cally information-neutral and, in an expression of the easy direction of Blackwell’s theorem,
behaviorally information-loving, because the linearity of u in ν implies that U is convex.

Let us use the theorem to show that for k ∈ (0, 1) the agent described in Example (b)
in Section 2.1 is psychologically information-averse but behaviorally information-loving.
Given that V(ν) = ν(1 − ν) and the expectation is linear, we have ∂2u/∂ν2 = −2k. Therefore,
the agent is psychologically information-loving if k < 0, and psychologically information-
averse if k > 0. Clearly, the agent’s optimal action is a∗(ν) = Eν[θ] = ν, and so

U(ν) = (k − 1)V(ν).

The agent is thus behaviorally information-loving if k < 1, and behaviorally information-
averse if k > 1. In particular, for k ∈ (0, 1), the agent is psychologically information-
averse, but behaviorally information-loving. He intrinsically dislikes information, but he
unequivocally prefers to have it.

4 Designing Information

Imagine there is a principal who chooses what type of signal the agent will see. We assume
throughout that the principal’s and the agent’s preferences are perfectly aligned, that is, the
designer wants to maximize the agent’s ex-ante expected welfare.

Definition 5. A random posterior p ∈ R(µ) is an optimal policy if
∫

∆Θ
U dp ≥

∫
∆Θ

U dq for
all q ∈ R(µ). A signal (S , σ) is optimal if it induces an optimal policy.

For purposes of characterizing optimal direct signals, the designer need only consider the
design environment 〈Θ, µ,U〉. As we shall see later, the extra data A and u can be relevant
for constructing reasonable indirect signals.

An optimal policy is immediate for certain classes of agents. If the agent is behaviorally
information-loving, then the most informative policy is optimal: one should tell him every-
thing. Conversely, if the agent is behaviorally information-averse, then one should tell him
nothing. Finally, part 3 of Theorem 1 tells us that fully revealing the state is optimal for
psychologically information-loving agents.

Things are not so simple for agents who exhibit psychological information-aversion, be-
cause they face a conflict between their innate dislike for information and their instrumental
need for it. This realistic and intriguing tradeoff is the subject of the next section.
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5 Psychological Information-Aversion

Under psychological information-aversion, disclosure by the principal must balance the in-
trinsic and the instrumental value of information. This can be accomplished by posterior
policies, called direct signals in Section 2.2, by virtue of Lemma 1. Here, we consider an-
other class of information policies, namely recommendation policies, in which each message
is simply a recommended action, and ask about their ability to implement this balance. In
contrast to the classical world, incentive-compatible recommendation policies are a coarse
instrument in a psychological world. They enable a smaller class of (distributions over)
outcomes than do posterior policies, due to the failure of the Revelation Principle in psycho-
logical settings. Still, recommendation policies are intuitive and may be considerably more
practical than posterior policies, and so we would like to know what can be achieved with
them. As it turns out, they will remain optimal.

Any information policy admits a corresponding recommendation policy in which the
agent is simply told how he would have optimally responded to his posterior. But there is
no guarantee a priori that the agent will want to follow this recommendation. The Reve-
lation Principle (as in Myerson (1979), Aumann (1987), and KG) is the result that usually
guarantees it.

The Revelation Principle says that, for any signal, the corresponding recommendation
policy is incentive-compatible. Under psychological information-aversion, and a fortiori in
general psychological environments, it is no longer true. For example, take Θ = A = {0, 1}
and u(a, ν) = a

[
V(ν) − 1

9

]
, so that the agent is psychologically information-averse. Let µ = .6

and consider a signal that generates random posterior p = 3
8δ.1 + 5

8δ.9. As shown in Figure
1, whether the posterior is .1 or .9, the agent plays action 0. If, instead, the designer told
the agent what he would have played, i.e., always sent the message “play a = 0,” the agent
would receive no information and his posterior would be µ = .6. The agent would then play
action 1 and the recommended action, a = 0, would not be incentive-compatible.12

Given the above, recommendation policies cannot generate all the distributions over ac-
tions than do posterior policies. De facto, they represent a “smaller” or more rudimentary
class of policies. Even so, they are always optimal for psychologically information-averse
agents, our next theorem says. This finding is also interesting because recommendation poli-
cies are practical and allow the principal to avoid posterior policies. The latter suppose that
the designer sends entire posterior distributions to the agent. In a world with binary states,

12The Revelation Principle fails here because the set of posterior beliefs for which a given action is optimal
may not be convex. In classical environments, if an action is optimal for certain messages, then it is without loss
to replace each of the messages with a recommendation of said action. By doing so, we “pool” these messages
into one and instead send that pooled message to the agent, thereby also pooling the posteriors attached to these
messages. In a psychological world, the action may not remain optimal under the averaged out posteriors.

14



ν

0 1

u

u(0, ν)

u(1, ν)

0.1 0.90.6

Figure 1: The set {ν : a = 0 is optimal at ν} is not convex.

this can be plausible. For example, a doctor who uses a blood test to check for some disease
may give a probability that the patient has the illness rather than not. When the state space is
larger and more complicated, posterior policies are cumbersome and unrealistic. As it turns
out, instead of telling the patient what he should believe, the doctor can simply recommend
an action, such as dieting.

Theorem 2. If the agent is psychologically information-averse, then some incentive compat-
ible recommendation policy is optimal.

It may be surprising at first that a recommendation policy can serve the needs of all psy-
chologically information-averse agents—even the behaviorally information-loving ones, as
in Example (b) from Section 2.1 with k ∈ (0, 1)—because passing from a policy to its asso-
ciated recommendations can only “lose” information. When full revelation is optimal and
the agent is psychologically information-averse, this too can be implemented by a recom-
mendation policy; then, the optimal action necessarily reveals the state. In Example (b), the
principal recommends action a = θ with probability one.

The theorem shows that for any optimal signal (S , σ), the corresponding recommenda-
tion policy is incentive-compatible. Intuitively, if a policy maximizes the agent’s utility, then
playing what is recommended should be incentive-compatible. We emphasize that this argu-
ment is specific to the benevolent design setting: the result may not hold under psychological
preferences if the principal and the agent also have conflicting interests.

In general, this result breaks down for information-loving agents. Consider A = {ā},
θ ∈ {0, 1}, and u(ā, ν) = −V(ν). The only recommendation is ā in all states, which gives the
agent no information to update his prior, and so V(ν) = V(µ). Clearly, it would be preferable
to tell the agent which state has occurred, so that V(ν) = 0.

In the case of severe psychological aversion to information, modeled by a concave u,
Theorem 2 can be made precise. By part 4 of Theorem 1, a constant recommendation policy,
i.e., giving no information, is optimal.
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6 Comparative Information-Aversion

The value of information is a leitmotif in information economics. Does an agent benefit
from more information? Blackwell (1953) answered the question unambiguously in classical
environments. In psychological environments, the universe of possible preferences is so
rich that there is no clear answer: different agents have a different affinity for information.
Accordingly, the question is a subtler one in a psychological world. Can we compare how
informative the optimal policies should be between agents who are ranked in terms of their
information-aversion?

This question can have real prescriptive implications, if we find that a well-intentioned
expert should provide a less informative policy to a more information-averse agent. In that
case, the more information-loving agent is equipped to provide information to the other. For
instance, if a doctor considers whether to tell parents the sex of their child, and the father is
more information-averse than the mother, the doctor can simply provide optimal information
to the mother, who will then be equipped to optimally inform the father. Likewise, if a child
experiences only psychological consequences of discovery of some illness, while the parents
care about the former and about making informed medical decisions, then a pediatrician
may simply choose an optimal information policy for the parents, and leave the parents to
tell their child (however much they see fit) about the diagnosis.

We compare two individuals via the following behavioral definitions. Let U1 and U2 be
their indirect utilities, as defined in (2).

Definition 6. Agent 2 is more (behaviorally) information-averse than agent 1 if for any p
and q such that p �µB q,∫

U1 dq ≥ [resp. >]
∫

U1 dp =⇒

∫
U2 dq ≥ [resp. >]

∫
U2 dp.

An agent is more information-averse than another if any time the latter would prefer a
less informative policy over a more informative one (with the same mean), so would the
former agent.

This definition is qualitative rather than quantitative; it compares when two decision-
makers prefer more/less information rather than the degree of such preference. This is quite
different from the standard literature on comparative risk-aversion (started by Pratt (1964)
and Arrow (1971), including Kihlstrom and Mirman (1974), etc.), in which risk-aversion is
measured by comparison to risk-free (i.e., degenerate) lotteries, called certainty equivalents.
Usually, an agent is said to be more risk-averse than another if all risky lotteries are worth no
more to him than to the other individual, in risk-free terms. As such, certainty equivalents
provide an objective “yardstick” to quantify risk-aversion.
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In the context of information disclosure, where random posteriors can be seen as lotteries
over beliefs, the only available risk-free lottery is the no-information policy. Indeed, all our
lotteries must have the same mean (the prior, by Lemma 1), and hence the only risk-free
lottery puts probability one on the prior. Without the tool of certainty equivalents, we have
no objective yardstick. Of course, we could ask each agent which prior belief would hypo-
thetically make him indifferent to any given policy, but this seems an unrealistic exercise.

An interesting application of the definition is to the mixture between classical and psy-
chological preferences,

uλ(a, ν) = λup(ν) + (1 − λ)
∫

Θ

uc(a, θ) dν(θ), (4)

where up is any purely psychological motive; uc is any classical motive; and λ ∈ [0, 1]
measures the departure from the classical case. The more psychological (4) becomes (i.e.,
the larger λ), the more information-averse the agent becomes.13 This is true regardless of the
shape of the psychological component: the agent need not be psychologically information-
averse.

Our definition of comparative information-aversion only speaks to how two agents rank
Blackwell-comparable policies, but Blackwell incomparability is generic. Indeed, by Propo-
sition 5 in the Appendix, almost all information policies are pairwise incomparable with
respect to (Blackwell) informativeness. Despite being so weak, Definition 6 has strong im-
plications for utility representation and, in two-state environments, this is enough to obtain
comparative statics of optimal policies.

Proposition 2.

1. Suppose agent 2 is more information-averse than agent 1, but 1 is not behaviorally
information-loving. Then U2 = γU1 + C for some γ ≥ 0 and concave C : ∆Θ→ R.

2. In a two-state environment, if agent 2 is more information-averse than agent 1, then
there exist optimal policies p∗1 and p∗2 such that p∗1 �

µ
B p∗2.

The first part of the proposition delivers a strong message: when two agents are ranked
according to information-aversion, their indirect utilities differ by the addition of a concave
function, which amounts to adding a motive for disliking information everywhere. From the
perspective of information disclosure, one would think that a principal should respond to this
by providing unambiguously less information to a more information-averse agent. But this is

13To see why, let Uλ be the indirect utility associated with uλ. For any λ′′ > λ′ and letting γ = λ′′/λ′, we
have Uλ′′ = γUλ′ + (1 − γ)U0. Note that (1 − γ)U0 is concave—because U0 is convex by Theorem 1. Notice
that adding a concave function to any U yields a more information-averse agent, by Jensen’s inequality.
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not true in general. In Section 9.5.2 in the Appendix, we give a counterexample in which two
agents are ranked by information-aversion, but due to psychological substitution effects, their
optimal policies are not Blackwell-comparable. In a world of binary uncertainty, however,
the principal should provide a less informative policy to a more information-averse agent. In
particular, if p∗i is uniquely optimal for i = 1, 2, then p∗1 �

µ
B p∗2.

7 Optimal Policies: The General Case

So far, we have focused on optimal policies for special classes of psychological prefer-
ences. For information-loving agents, Theorem 1 tells us that full information is optimal.
For information-averse agents, Proposition ?? tells us that it is best to say nothing when
aversion is severe and, more broadly, Theorem 2 delineates a family of optimal policies for
this class, a large step toward characterizing optimal policies, but not a full solution.

In general, there is a large variety of psychological preferences, many of which es-
cape our classification. In this respect, the equivocal case—in which the agent is neither
information-averse nor loving—seems especially relevant. For such cases, we need to de-
velop general tools.

7.1 Optimal Welfare

Since any random posterior p ∈ R(µ) can be induced by some signal, designing an optimal
signal is equivalent to choosing the best random posterior in R(µ). A key result in Kamenica
and Gentzkow (2011) is the full characterization of the maximal ex-ante expected utility.
This characterization is in terms of the concave envelope of U, defined as

Ū(ν) = min{φ(ν) : φ : ∆Θ→ R affine continuous, φ ≥ U}.

This result carries over to our environment for all psychological preferences:

Theorem 3. For any prior µ ∈ ∆Θ, there is a signal that induces indirect utility Ū(µ) for the
agent, and no signal induces a strictly higher value.

7.2 Optimal Policies

The concave envelope of U describes the optimal value and implicitly encodes optimal poli-
cies. Unfortunately, it is a difficult task to characterize the concave envelope of a function
in general, even more so to compute it. The main issue is that the concave envelope is a
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global construct: evaluating it at one point amounts to solving a global optimization prob-
lem (Tardella (2008)).

We approach the problem by reducing the support of the optimal policy based on local ar-
guments, a method which will be successful in a class of problems which includes economic
applications of interest.

Oftentimes, the designer can deduce from the primitives of the problem that the indirect
utility U must be locally convex on various regions of ∆Θ. In every one of those regions,
the agent likes (mean-preserving) spreads in beliefs, which correspond to more informative
policies. As a consequence, an optimal policy need not employ beliefs in the inside of those
regions, regardless of its general shape.

The central concept of our approach is that of the posterior cover.

Definition 7. Given a function f : ∆Θ → R, an f -(posterior) cover is a family C of closed
convex subsets of ∆Θ such that

⋃
C is Borel and f |C is convex for every C ∈ C.

A posterior cover is a collection of sets of posterior beliefs over each of which some
function is convex. Given a posterior cover C, let

out(C) = {ν ∈ ∆Θ : ∀C ∈ C, if ν ∈ C then ν ∈ ext(C)}

be its set of outer points, or extreme points.14 The next result explains why posterior covers
and their outer points play an important role in finding an optimal policy.

Theorem 4. If C is a countable U-cover, then there exists an optimal policy p such that
p(out(C)) = 1.

The search for an optimal policy can be limited to the outer points of a U-cover. For this
reason, we focus on posterior covers of the indirect utility.

Theorem 4 is only useful if three conditions are met. First, given that the indirect util-
ity is a derived object, it is important to tie the U-cover to primitives of the model. Next,
computing its outer points ought to be relatively easy, to make the reduction useful in prac-
tice. Lastly, the set of outer points must be small, so that (with them in hand) solving for an
optimal policy is tractable; in particular, if there are finitely many outer points, finding an
optimal policy will be a linear programming problem.

First, we reduce the problem of finding a U-cover to that of finding posterior covers of
primitives of the model.

14A point ν ∈ ext(C) if there is no nontrivial (of positive length) segment for which ν is an interior point.
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Proposition 3. 1. If Ca is a u(a, ·)-cover for every a ∈ A, then

C :=
∨
a∈A

Ca =

⋂
a∈A

Ca : Ca ∈ Ca for all a ∈ A


is a U-cover.

2. If u takes the form

u(a, ν) = up(ν) +

∫
Θ

uc(a, ·) dν (5)

and C is a up-cover, then C is a U-cover.

The benevolent feature of our design problem enables us to derive a U-cover from prim-
itives of the model. By the first part of the proposition, if we can determine the posterior
cover of u(a, ·) for each a, then it is easy to name the U-cover. The second part of the propo-
sition presents a class of problems for which the determination of every u(a, ·)-cover comes
down to deriving the posterior cover of a single primitive function. This class of problems
consists of all additive preferences between a psychological and a classical component. This
includes all preferences in Section 2.1 from (a) to (d). For these problems, optimal design
relies on finding the posterior cover of the psychological component alone.

After connecting the problem to posterior covers of primitives, it remains to elicit these
posterior covers and find their outer points. Doing so in complete generality is not practical,
but we can point to a class of functions for which it can be done.

Proposition 4. If the state space is finite and f is the pointwise minimum of a finite family
of affine functions { fi : ∆Θ→ R}i∈I , then C := {Ci : i ∈ I} with

Ci := {ν ∈ ∆Θ : f (ν) = fi(ν)}

is an f -cover.

The class of preferences described here, namely the minimum of affine functions, in-
cludes many economic situations of interest. For these problems, we can explicitly compute
the U-cover. In the additive case alone (5), it is common that up(ν) := −max{ fi(ν)} =

min{− fi(ν)} with affine fi’s; this is the case for prior-bias and cognitive dissonance, and for
temptation and self-control (Section 8). Then, up is piecewise linear; the pieces form a U-
cover; and the outer points are easy to find. In Section 9.8 of the Appendix, we supplement
this proposition with a hands-on characterization of the outer points.
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An auxiliary benefit of the method of posterior covers is that the principal need not solve
the agent’s optimization problem at every conceivable posterior belief. Indeed, Proposition
3 enables us to compute a posterior cover (and its outer points) without solving the agent
problem, and then Theorem 4 lets us derive an optimal policy while computing the indirect
utility only on those outer points. This simplification—the possibility of which stems from
our restriction to aligned interests—makes our lives a lot easier. For instance, we shall see
in the prior-bias application that we need only solve the agent’s problem at three different
posterior beliefs in order to derive an optimal policy.

8 Applications

8.1 Ambiguity-Aversion: Multiplier Preferences

Since Ellsberg’s paradox, there has been much evidence for ambiguity aversion, the strict
preference for known risks over unknown risks. Maxmin expected utility (Gilboa and Schmei-
dler (1989)) and multiplier preferences (Hansen and Sargent (2001)) are two of many exam-
ples of such preferences.

How should the principal disclose information to an ambiguity-averse agent? In general,
the answer does not seem to be obvious: such agents may at times prefer to reject freely
available information, as shown by Siniscalchi (2011). For the special case of multiplier
preferences, Theorem 1 gives an answer.

Consider an agent with multiplier preferences (case (e) in Section 2.1), who entertains
beliefs ν′ different from his inherited posterior belief ν; this doubt and the adversarial char-
acter of Nature amount to ambiguity aversion. Because relative entropy R(ν′||ν) is jointly
convex, one can verify that u(a, ν) is convex in ν for every a. Theorem 1 then applies: the
agent is psychologically information-loving and, therefore, behaviorally information-loving.
This implies that the designer should give the agent full information. With no residual un-
certainty, the agent faces no negative consequences from ambiguity.

8.2 Prior-Bias and Cognitive Dissonance

The preferences given in Example (c) of Section 2.1 can represent various sources of prior-
bias, including cognitive dissonance, stubbornness, reputational concerns, and others. Our
methods deliver clear prescriptions for such an agent.

Consider a ruling politician who must make a decision on behalf of her country—e.g.,
deciding whether or not to go to war—in the face of an uncertain state θ ∈ {0, 1}. She will
first seek whatever information she decides and then announce publicly the country’s action
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Figure 2: The Psychological Component: Concern for Reputation.

a ∈ A and (updated) belief ν that justifies it. The decision must serve the country’s interests
given whatever information is found.

On one hand, the politician wishes to make decisions that serve the country’s motive
uc(a, θ). On the other, she campaigned on her deeply held beliefs µ ∈ (0, 1) and her political
career will suffer if she is viewed as a ‘flip-flopper’.15 Publicly expressing a new belief ν
entails a reputational cost, up(ν) = −ρ|ν − µ| for ρ > 0. When the politician decides which
expertise to seek, she behaves as if she has psychological preferences

u(a, ν) = up(ν) + Eθ∼ν[uc(θ, a)].

Even without any information about uc, we can infer that the optimal information policy
takes a very special form: the politician should either seek full information or no information
at all! She finds no tradeoff worth balancing.

The psychological component up is affine on each member of C := {[0, µ], [µ, 1]}, hence
C is a up-cover. Appealing to Proposition 3, it is also a U-cover. By Theorem 4, some
optimal policy p∗ is supported on out(C) = {0, µ, 1}. By Bayesian updating, it must be that
p∗ = (1−λ)δµ+λ[(1−µ)δ0 +µδ1] for some λ ∈ [0, 1]. That is, the politician is simply tossing
a λ-coin, and either seeking full information or seeking none. But in this case, she must be
indifferent between the two: either full information or no information must be optimal.

More can be said from our comparative static result. If we consider increasing ρ, then the
politician becomes more information-averse—because it corresponds to adding a concave
function. Then, by Proposition 2, there is some cutoff ρ∗ ∈ R+ such that, fixing µ, full
information is optimal when ρ < ρ∗ and no information is optimal when ρ > ρ∗.

15For example, John Kerry’s perceived equivocation on the Iraq war damaged his 2004 presidential campaign
(for more details, see the September 19, 2004 and the June 23, 2008 issues of the New York Times).
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8.3 Temptation and Self-Control

Individuals often face temptations. Empirical work by psychologists suggests the influence
of temptation on consumer decision-making (e.g., Baumeister (2002)). This seems particu-
larly true for consumption-saving decisions, as documented by Huang, Liu, and Zhu (2013).
A recent literature in macroeconomics (e.g., Krusell, Kuruscu, and Smith (2010)) has asked
how tax policy might be deliberately designed to alleviate the effects of temptation. In this
section, we ask how information disclosure policy could do the same.

Consider a consumer who decides whether to invest in a risky asset or to consume (later,
the consumer will decide whether to buy an asset, sell an asset, or to consume). The state
of the world, θ ∈ Θ, which we will interpret below in several ways, is unknown to him, dis-
tributed according to prior µ ∈ ∆Θ. Before making his decision, the agent learns additional
information from an advisor. Investing draws its value from a higher consumption tomor-
row but prevents today’s consumption. When the agent deprives himself of consumption, it
creates mental suffering.

Our consumer is a standard Gul and Pesendorfer (2001) agent. Given two classical utility
functions ur and ut, and action set A, the consumer faces a welfare of

u(a, ν) = Eθ∼ν {ur(a, θ)} −max
b∈A
Eθ̂∼ν

{
ut(b, θ̂) − ut(a, θ̂)

}
, (6)

when he chooses a ∈ A at posterior belief ν. Our consumer has two “sides”: a rational side ur

and a tempted side ut. Given action a, the rational side faces expected value of Eθ∼ν{ur(a, θ)},
while exerting self-control entails a personal cost of maxb∈A {Eθ∼ν[ut(b, θ)] − Eθ∼ν[ut(a, θ)]};
the psychological penalty is the value forgone by the tempted side in choosing a. The con-
sumer makes decisions to balance these two motives.

How should a financial advisor (whose interests align with the consumer’s sum welfare
u) inform the consumer about θ? Giving more information is useful for rational decision
making, but it might induce more temptation. We first analyze two extreme cases that bring
out the main trade-offs.

If ut is state-independent, say if θ is the rate of return of the asset, the agent is psycholog-
ically information-loving. By Theorem 1, the consumer is behaviorally information-loving
too, and so the advisor optimally fully reveals the state.

If ur is state-independent, say if θ is the weather in a vacation destination, the consumer’s
welfare is given by u(a, ν) = ur(a)+Eθ∼ν[ut(a, θ)]−Ut(ν). As the consumer is psychologically
information-averse (by Theorem 1), knowing more can only harm him if his vacation choices
are fixed. Yet, the financial advisor may still want to convey some information! We give
the intuition in an example but, for the sake of brevity, omit the technical analysis. Say
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A = Θ = {0, 1}, ut(a, θ) = −(a − θ)2 and ur(a) = ka for some k ≥ 0. If the weather in Hawaii
is perfect (θ = 0), the consumer is tempted to splurge on a vacation (a = 0); otherwise he
faces no temptation. To the financially concerned side, weather is irrelevant and investing is
rational regardless. It turns out that it is optimal to give information when µ < .5. To see why,
suppose µ = .4, so that there is 40% chance of rainy weather. If the advisor said nothing, the
agent would invest and face a large cost of self-control, with a 60% chance that he is missing
out on perfect weather. Now, the advisor could do better: if the weather is perfect, then with
probability 1

3 she tells her client to take a vacation. With complementary probability, or when
the weather in Hawaii is bad, she tells him to invest. This recommendation policy effectively
harnesses temptation. When the consumer is told to take a vacation, he goes (and so faces
no temptation); and when told to invest, he faces a reduced cost of self-control, since now it
is raining in Hawaii with 50% probability.

What about the general case? In general, preferences (6) can be written as

u(a, ν) = up(ν) + Eθ∼ν[ur(a, θ) + ut(a, θ)],

where
up(ν) = −Ut(ν) = min {−Eθ∼ν[ut(b, θ)] : b ∈ A} .

By linearity of expectation, up is a minimum of affine functions and, thus, the method of
posterior covers developed in Section 7.2 is especially useful. Given a up-cover C, Theorem
4 and Proposition 3 together tell us that some optimal policy is supported on the outer points
of C. Finding such a cover with a small set of outer points is a straightforward exercise. Let
us take a concrete example.

Let θ ∈ {`, h} be the exchange rate of $1 in euros tomorrow, where h (`) stands for
‘higher’ (‘lower’) than today. Let a ∈ {a1, a2, a3} where ai means “invest in firm i” for
i = 1, 2, and a3 means “buy a trip to Europe.” Firm 1 uses domestic raw material to produce
and mostly sells to European customers. Firm 2 imports foreign raw material from Europe
and mostly sells domestically.

The consumer’s rational and impulsive utilities are given in the following matrices:

a1 a2 a3

α

−γ

−β

δ

0

0

`

h

Function ur

a1 a2 a3

0

-1

-1

0

T

1

`

h

Function ut
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The rational side gets no value from consuming, but likes to invest in the firm that benefits
from the exchange rate. The impulsive side gets no value from investing in the right firm, but
has a disutility from investing in the wrong one. Moreover, it experiences great temptation
when the exchange rate is high, and temptation is governed by T when the rate is low.

From Proposition 4 and Corollary 2 (in the Appendix), we know that C = {C1,C2,C3} is
a posterior cover with Ci = {ν : Eθ∼ν[ut(ai, θ)] ≤ Eθ∼ν[ut(a j, θ)] ∀ j} and that the outer points
are contained in16

S = {0, 1} ∪ {ν : Eθ∼ν[ut(ai, θ)] = Eθ∼ν[ut(ai, θ)] for some i, j}

=
{
0, 1, 1

2 ,
1+T

T , T
T−2

}
∩ [0, 1].

From here, an optimal policy comes from solving the straightforward linear program: maxp∈RS∑
ν∈S pνU(ν) subject to p ≥ 0,

∑
ν∈S pν = 1 and

∑
ν∈S pνν = µ.

8.4 Equivocal Information Preferences

Consider a patient who is either healthy or ill: Θ = {0, 1}, with 0 corresponding to good
health (µ and ν are probabilities of illness). The patient is psychologically information-
averse, but a medical choice can be made to best match the patient’s state, as in Example (b)
in Sections 2.1 and 3.2,17

u(a, ν) = kV(ν) − Eθ∼ν
[
(θ − a)2

]
for some k ∈ (0, 1). If A = [0, 1], we know the patient is behaviorally information-loving.
But what if it is impossible to respond perfectly to posterior beliefs? Suppose that if the
patient is likely enough to be ill, the disease is such that there is no appropriate action to
take. Then, the inability to respond to information when the news is bad enough makes the
agent equivocal: she likes to be informed when the news is good, but when it is bad, she
prefers not to know.

We can model this by supposing A = [0, ā] for some ā ∈ (0, 1). Our intuition might tell
us that (i) when µ < ā, the doctor should give some information, since it can be useful (and
such use outweighs the psychological discomfort when k < 1), and (ii) when µ > ā, the
doctor should say nothing, since there is no instrumental benefit to learning anything. The
first intuition is correct, but the second leads us astray.

To solve for the optimal policy, our first tool is Theorem 2: some recommendation

16If one of the fractions has zero denominator, just omit it from S .
17The given u(ν, a) is not decreasing in beliefs, which does not match the ‘illness’ story. Of course, we could

always subtract a constant multiple of ν to make it decreasing; this would have no design implications.
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a ν ν

Figure 3: Equivocal Agent’s Indirect Utility U when k = 1/2 and ā = 3/5.

policy is optimal, because the agent is psychologically information-averse. If she could,
the agent would choose action Eν[θ] = ν, but given the constraint, the optimal action is
a∗(ν) = min{ν, ā}. That is, the agent wants her action to match her belief as well as possi-
ble. For the recommendation to be incentive-compatible, the patient’s posterior belief upon
hearing recommendation a ∈ [0, ā] must beν = a if a < ā

ν ∈ [ā, 1] if a = ā.

Moreover, the doctor would never use a policy that recommends actions a ∈ (0, ā), be-
cause it would always be better to give a little more information—run an additional test that
will either give slightly good news or slightly bad news. This is because U is strictly convex
at a ∈ (0, ā).18 The doctor optimally recommends the patient to ‘do nothing’ (a = 0) or to
take an aggressive course of action (a = 1; e.g., never smoke again).

For the ‘nothing’ option to be incentive-compatible, she must only recommend it when
the patient is healthy. Said differently, when the patient is ill, the doctor must always rec-
ommend the aggressive action. This leaves one remaining parameter: the probability λ of
making the aggressive recommendation when the patient is healthy. The value of such a
policy would be (assuming ā is incentive-compatible)

(1 − µ)(1 − λ)u(0, 0) + [µ + (1 − µ)λ]u
(
ā,

µ

µ + (1 − µ)λ

)
= 0 +

µ

ν
u(ā, ν),

18We could describe the patient as locally behaviorally information-loving at belief a ∈ (0, ā).
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where ν =
µ

µ+(1−µ)λ ∈ [µ, 1]. Some algebra shows

∂

∂ν

[
µ

ν
u(ā, ν)

]
=
µ

ν2 (ā2 − kν2),

so that the patient’s expected value of µ

ν
u(ā, ν) is maximized at ν∗ = min

{
1, ā
√

k

}
. Thus, λ

must be chosen so that ν = ν∗. Since ν∗ > ā, the described recommendation policy is indeed
incentive-compatible.

The above work shows that the following policy is optimal:

• If the patient is healthy, the doctor suggests no treatment with probability ν∗−µ

ν∗(1−µ) . With
the complementary probability, she recommends the aggressive action.

• If he is ill, she recommends the aggressive action.

Notice that, even for some beliefs ν > ā, at which the patient is (locally) behaviorally-
information-averse, the doctor optimally provides some information. This is because the po-
tential to provide very good news with some probability—a clean bill of health, to which the
patient responds with a = 0—outweighs the damage of news to which she cannot respond.
Looking at ν∗, this is particularly striking when k ≤ ā2, because in this case, the doctor
optimally provides full information, even though the patient is not behaviorally information-
loving. That is, full information is optimal, but poorly chosen partial information could be
worse than saying nothing at all.
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9 Appendix

9.1 Proof of Proposition 1

In both directions, the idea of the proof it to choose g (given r) or r (given g) to ensure

dg(t|s) dσp(s|θ) = dr(s|t) dσq(t|θ).

Everything else is just bookkeeping.

Proof. First suppose such r exists, and define g : S p → ∆(S q) via

g(T |s) :=
∫

T

dr(·|t)
dp

(s) dq(t),

for any s ∈ S p and Borel T ⊆ S q. Then for θ ∈ Θ and Borel T ⊆ S q, it is straightforward to
verify that

∫
S p

g(T |s) dσp(s|θ) = σ(T |θ), so that g witnesses p �µB q.
Conversely, suppose p �µB with the map g : S p → ∆(S q) as in the definition of �µB. Let

r(S |t) :=
∫

S

dg(·|s)
dq

(t) dp(s)

for t ∈ S q and Borel S ⊆ S p. Then for Borel S ⊆ S p, it is again straightforward to verify that∫
S q

r(S |·) dq = p(S ), which verifies the first condition.
Now, given Borel T ⊆ S q and θ ∈ Θ, one can check that∫

T

dt
dµ

(θ) dq(t) =

∫
T

∫
∆Θ

ds
dµ

(θ) dr(s|t) dq(t),

so that dt
dµ (θ) =

∫
∆Θ

ds
dµ (θ) dr(s|t) for a.e.-µ(θ)q(t). From this we may show that, for any Borel

Θ̂ ⊆ Θ, ∫
∆Θ

s(Θ̂) dr(s|t) = t(Θ̂),

which verifies the second condition. �

9.2 Proof of Theorem 1

Lemma 2. The set M := {γ ∈ ∆Θ : ∃ε > 0 s.t. εγ ≤ µ} is dense19 in ∆Θ.

19Under the w∗-topology.
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Proof. First, notice that M =

{
γ ∈ ∆Θ : γ << µ and

dγ
dµ

is (essentially) bounded
}

is con-

vex and extreme (i.e. a face of ∆Θ). Thus its w∗-closure M̄ is closed (and so compact, by
Banach-Alaoglu), convex, and extreme. Now, let E be the set of extreme points of M̄. Be-
cause M̄ is extreme, E is a subset of ext(∆Θ) = {δθ}θ∈Θ. So E = {δθ}θ∈Θ̂ for some Θ̂ ⊆ Θ. By
Krein-Milman, M̄ = coE = ∆(Θ′), where Θ′ is the closure of Θ̂. Finally, notice that µ ∈ M
implies Θ′ ⊇ supp(µ) = Θ. Thus M̄ = ∆Θ as desired. �

Lemma 3. Fix a continuous function f : ∆Θ→ R. Then the following are equivalent (given
µ is of full support):

1. For all ν ∈ ∆Θ and p ∈ R(ν), we have
∫

∆Θ
f dp ≥ f (ν)

2. For all µ′ ∈ ∆Θ and p, q ∈ R(µ′) with p �µ
′

B q, we have
∫

∆Θ
f dp ≥

∫
∆Θ

f dq.

3. For all p, q ∈ R(µ) with p �µB q, we have
∫

∆Θ
f dp ≥

∫
∆Θ

f dq.

4. f is convex.

Proof. Suppose (1) holds, and consider any µ′ ∈ ∆Θ and q ∈ R(µ′). If r : S q → ∆∆Θ satisfies
r(·|ν) ∈ R(ν) for every ν ∈ S q, (1) implies

∫
S q

∫
∆Θ

f dr(·|ν) dq(ν) ≥
∫

S q
f dq. Equivalently (by

Proposition 1), any p more informative than q has
∫

f dp ≥
∫

f dq, which yields (2).

That (2) implies (3) is immediate.

Now, suppose (4) fails. That is, there exist γ, ζ, η ∈ ∆Θ and λ ∈ (0, 1) such that

(1 − λ)ζ + λη = (1 − λ)ζ + λη.

f ((1 − λ)ζ + λη) < (1 − λ) f (ζ) + λ f (η).

Now, we want to exploit the above to construct two information-ranked random posteri-
ors such that f has higher expectation on the less informative of the two.

To start, let us show how to do it if εγ ≤ µ for some ε ∈ (0, 1). In this case, let

ν :=
1

1 − ε
(µ−εγ) ∈ ∆Θ, p := (1−ε)δν+ε(1−λ)δζ+ελδη ∈ R(µ), and q := (1−ε)δν+εδγ ∈ R(µ).

Then p �µB q, but∫
∆Θ

f dp −
∫

∆Θ

f dq = ε
[
(1 − λ) f (ζ) + λ f (η) − f (γ)

]
< 0,

as desired.
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Now, notice that we need not assume that εγ ≤ µ for some ε ∈ (0, 1). Indeed, in light
of Lemma 2 and continuity of f , we can always pick γ, ζ, η ∈ ∆Θ to ensure it. So given
continuous nonconvex f , we can ensure existence of p �µB q with

∫
∆Θ

f dp <
∫

∆Θ
f dq. That

is, (3) fails too.

Finally, notice that (4) implies (1) by Jensen’s inequality. �

Proof of Theorem 1.

1. This follows immediately from applying Lemma 3 to u(a, ·) and −u(a, ·) for each a ∈ A.

2. This follows immediately from applying Lemma 3 to U and −U.

3. This follows from the first two parts, and from the easy fact that a pointwise maximum
of convex functions is convex.

4. This follows from part 2. and the fact that U is concave by the (convex) maximum
theorem.

�

9.3 Proof of Theorem 2

Proof. Suppose the agent is psychologically information-averse.
Fix some measurable selection20 a∗ : ∆Θ → A of the best-response correspondence ν 7→
arg maxa∈A u(a, ν). In particular, given any q ∈ R(µ), a∗|S q is an optimal strategy for an agent
with direct signal (S q, σq).

Toward a proof of the theorem, we first verify the following claim.
Claim: Given any random posterior p ∈ R(µ), we can construct a signal (A, αp) such that:

1. The random posterior qp induced by (A, αp) is less informative than p.

2. An agent who follows the recommendations of αp performs at least as well as an agent
who receives signal (S p, σp) and responds optimally, i.e.∫

Θ

∫
A

u
(
a, βA,αp(·|a)

)
dαp(a|θ) dµ(θ) ≥

∫
∆Θ

U dp.

20One exists, by Aliprantis and Border (1999, Theorem 8.13).
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To verify the claim, fix any p ∈ R(µ), and define the map

αp : Θ → ∆(A)

θ 7−→ αp(·|θ) = σp(·|θ) ◦ a∗−1.

Then (A, αp) is a signal with

αp(Â|θ) = σp

({
s ∈ S p : a∗(s) ∈ Â

} ∣∣∣θ)
for every θ ∈ Θ and Borel Â ⊆ A. The signal (A, αp) is familiar: replace each message in
(S p, σp) with a recommendation of the action that would have been taken.

Let qp ∈ R(µ) denote the random posterior induced by signal (A, αp). Now, let us show
that qp delivers at least as high an expected value as p.

By construction,21 p �µB q . Therefore, by Proposition 1, there is a map r : S q → ∆(S p)
such that for every Borel S ⊆ ∆Θ, p(S ) =

∫
S q

r(S |·) dq, and for every t ∈ S q, r(·|t) ∈ R(t).
Then, appealing to the definition of psychological information-aversion,

∫
A

u
(
a, βA,αp(·|a)

)
dαp(a|θ) =

∫
S p

u
(
a∗(s), βA,αp(·|a∗(s))

)
dσp(s|θ)

≥

∫
S p

∫
S p

u (a∗(s), ν)) dr
(
ν

∣∣∣∣∣βA,αp(·|a∗(s))
)

dσp(s|θ)

=

∫
S p

∫
S p

U(ν) dr
(
ν

∣∣∣∣∣βA,αp(·|a∗(s))
)

dσp(s|θ)

=

∫
A

∫
S p

U(ν) dr
(
ν

∣∣∣∣∣βA,αp(·|a)
)

dαp(a|θ).

Therefore,∫
Θ

∫
A

u
(
a, βA,αp(·|a)

)
dαp(a|θ) dµ(θ) ≥

∫
Θ

∫
A

∫
S p

U(ν) dr
(
ν

∣∣∣∣∣βA,αp(·|a)
)

dαp(a|θ) dµ(θ)

=

∫
S q

U(ν) dr(ν|t) dq(t)

=

∫
S p

U dp,

21Indeed we can define g in (1) via: g(a|s) = 1 if a∗(s) = a and 0 otherwise.
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which verifies the claim.

Now, fix some optimal policy p∗ ∈ R(µ), and let α = αp∗ and q = qp∗ be as delivered by
the above claim. Let the measure Q ∈ ∆(A × ∆Θ) over recommended actions and posterior
beliefs be that induced by αp. So

Q(Â × Ŝ ) =

∫
Θ

∫
Â

1βA,α(·|a)∈S dα(a|θ) dµ(θ)

for Borel Â ⊆ A, Ŝ ⊆ ∆Θ.

Then,22 ∫
∆Θ

U dp ≤
∫

A×∆Θ

u dQ ≤
∫

∆Θ

U dq ≤
∫

∆Θ

U dp,

so that: ∫
∆Θ

U dq =

∫
∆Θ

U dp, i.e. q is optimal; and∫
A×∆Θ

u(a, ν) dQ(a, ν) =

∫
∆Θ

U dq =

∫
A×∆Θ

max
ã∈A

u(ã, ν) dQ(a, ν).

The latter point implies that a ∈ argmaxã∈Au(ã, ν) a.s.-Q(a, ν). In other words, the recom-
mendation (A, α) is incentive-compatible as well. This completes the proof. �

We note that the claim in the above proof delivers something more than the result of The-
orem 2. Indeed, given any finite-support random posterior p, the claim produces a construc-
tive procedure to design an incentive-compatible recommendation policy which outperforms
p. The reason is that (in the notation of the claim):

1. If a∗|S p is injective, then qp = p, so that (A, αp) is an incentive-compatible recommen-
dation policy inducing random posterior p itself.

2. Otherwise, |S qp | < |S p|.

In the latter case, we can simply apply the claim to qp. Iterating in this way—yielding a new,
better policy at each stage—eventually (in fewer than |S p| stages) leads to a recommendation
policy which is incentive-compatible and outperforms p.

22Indeed, the inequalities follow from the above claim, the definition of U along with the property
marg∆ΘQ = q, and optimality of p, respectively.
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9.4 Proof of Theorem 3

Below, we will prove the slightly stronger result. Fix any p̄ ∈ R(µ), and let S := co(S p̄) and
Φ := {φ : S → R : φ is affine continuous and φ ≥ U |S }. We will show that

max
p∈∆(S )∩R(µ)

∫
U dp = cav p̄U(µ),

where cavp̄U(ν) := infφ∈Φ φ(ν).

Proof. Let β : ∆(S ) → S be the unique map such that Eν∼pν = β(ν). Such β is well-defined,
continuous, affine, and surjective, as shown in Phelps (2001).

For every p ∈ ∆(S ), define EU(p) =
∫

U dp. The map EU is then affine and continuous.
For every ν ∈ S , define U∗(ν) = maxp∈∆(S ),β(p)=ν EU(p), which (by Berge’s theorem) is well-
defined and upper-semicontinuous.

For any ν ∈ S :

• U∗(ν) ≥ EU(δν) = U(ν). That is, an optimal policy for prior ν does at least as well as
giving no information.

• For all p ∈ ∆(S ) and all affine continuous φ : S → R with φ ≥ U |S

EU(p) =

∫
U dp ≤

∫
φ(s) dp(s) = φ

(∫
∆Θ

s dp(s)
)

= φ(β(p)).

So, U∗(ν) can be no higher than cavp̄U(ν).

Moreover, if ν, ν′ ∈ S and λ ∈ [0, 1], then for all p, q ∈ ∆(S ) with β(p) = ν and β(q) = ν′, we
know β((1 − λ)p + λq) = (1 − λ)ν + λν′, so that

U∗((1 − λ)ν + λν′) ≥ EU((1 − λ)p + λq) = (1 − λ)EU(p) + λEU(q).

Optimizing over the right-hand side yields

U∗((1 − λ)ν + λν′) ≥ (1 − λ)U∗(ν) + λU∗(ν′).

That is, an optimal policy for prior (1 − λ)ν + λν′ does at least as well as a signal inducing
(interim) posteriors from {ν, ν′} followed by an optimal signal for the induced interim belief.

So far, we have established that U∗ is upper-semicontinuous and concave, and U |S ≤
U∗ ≤ cavp̄U. Since cavp̄U is the pointwise-lowest u.s.c. concave function above U |S , it must
be that cav p̄U ≤ U∗, and thus U∗ = cav p̄U.

�
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9.5 Comparative Statics: Proof of Proposition 2 and Example

9.5.1 Proof

Lemma 4. Given p, q ∈ ∆∆Θ, the following are equivalent:

1. There is some ν ∈ ∆Θ such that p, q ∈ R(ν) and p �νB q.

2. For every convex continuous f : ∆Θ→ R, we have
∫

∆Θ
f dp ≥

∫
∆Θ

f dq.

Proof. That (1) implies (2) follows from Lemma 3. Now, suppose (2) holds. The Theorem of
Hardy-Littlewood-Polya-Blackwell-Stein-Sherman-Cartier reported in Phelps (2001, main
Theorem, Section 15) then says that p is a mean-preserving spread of q. Then, Proposition
1 implies (1). �

Notation 1. Given any F ∪ G ∪ {h} ⊆ C(∆Θ):

• Let %F be the (reflexive, transitive, continuous) binary relation on ∆∆Θ given by

p %F q ⇐⇒
∫

∆Θ

f dp ≥
∫

∆Θ

f dq ∀ f ∈ F .

• Let 〈F 〉 ⊆ C(∆Θ) be the smallest closed convex cone in C(∆Θ) which contains F and
all constant functions.

• Let F +G denote the Minkowski sum { f + g : f ∈ F , g ∈ G}, which is a convex cone
if F ,G are.

• Let R+h denote the ray {αh : α ∈ R, α ≥ 0}.

We now import the following representation uniqueness theorem to our setting.

Lemma 5 (Dubra, Maccheroni, and Ok (2004), Uniqueness Theorem, p. 124). Given any
F ,G ⊆ C(∆Θ),

%F = %G ⇐⇒ 〈F 〉 = 〈G〉.

As a consequence, we get the following:

Corollary 1. Suppose F ∪ {g} ⊆ C(∆Θ). Then

%F ⊆ %{g} if and only if g ∈ 〈F 〉.

Proof. If g ∈ 〈F 〉, then %{g} ⊇ %〈F 〉, which is equal to %F by the uniqueness theorem.
If %F ⊆ %{g}, then %F ⊆ %F ∩ %{g} = %F∪{g} ⊆ %F . Therefore, %F∪{g} = %F . By the
uniqueness theorem, 〈F ∪ {g}〉 = 〈F 〉, so that g ∈ 〈F 〉. �
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Lemma 6. Suppose F ⊆ C(∆Θ) is a closed convex cone that contains the constants and
g ∈ C(∆Θ). Then either g ∈ −F or 〈F ∪ {g}〉 = F + R+g.

Proof. Suppose F is as described and −g < F .
Since a closed convex cone must be closed under sums and nonnegative scaling, it must

be that 〈F ∪ {g}〉 ⊇ F + R+g. Therefore, 〈F ∪ {g}〉 = 〈F + R+g〉, which leaves us to show
〈F + R+g〉 = F + R+g. As F + R+g is a convex cone which contains the constants, we need
only show it is closed.

To show it, consider sequences {αn}
∞
n=1 ⊆ R+ and { fn}

∞
n=1 ⊆ F such that ( fn + αng)∞n=1

converges to some h ∈ C(∆Θ). We wish to show that h ∈ F + R+g. By dropping to a
subsequence, we may assume (αn)n converges to some α ∈ R+ ∪ {∞}.

If α were equal to ∞, then the sequence
(

fn
αn

)
n

from F would converge to −g, implying
(since F is closed) −g ∈ F . Thus α is finite, so that ( fn)n converges to f = h − αg. Then,
since F is closed, h = f + αg ∈ F + R+g. �

Proof of Proposition 2, Part (1)23

Proof. In light of Lemma 4, that 2 is more information-averse than 1 is equivalent to the pair
of conditions:

%C∪{U2} ⊆ %{U1}

%(−C)∪{U1} ⊆ %{U2},

where C is the set of convex continuous functions on ∆Θ; notice that C is a closed convex
cone which contains the constants.

Then, applying Corollary 1 and Lemma 6 twice tells us:

• Either U2 is concave or U1 ∈ C + R+U2.

• Either U1 is convex or U2 ∈ −C + R+U1.

By hypothesis,24 1 is not behaviorally information-loving, i.e. U1 is not convex. Then U2 ∈

−C + R+U1, proving the proposition. �

Notice: We cannot strengthen the above theorem to ensure γ > 0. Indeed, consider the
Θ = {0, 1} world with U1 = H (entropy) and U2 = V (variance). Both are strictly concave,
so that in particular U2 is more information-averse than U1. However, any sum of a concave
function and a strictly positive multiple of U1 is non-Lipschitz (as H′(0) = ∞), and so is not
a multiple of U2.

23Part (2) is proven in Subsection 9.7.
24Note: this is the first place we’ve used this hypothesis
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9.5.2 Example

Suppose that θ = (θ1, θ2) ∈ {0, 1}2 is distributed uniformly. Let x1(ν) and x2(ν) ∈ [−1, 1]
be some well-behaved measures of information about θ1, θ2 respectively (the smaller xi, the
more dispersed the ith dimension of distribution ν).25 Then define U1,U2 via

U1(ν) := −
1
2

(
x1(ν)2 + x2(ν)2 + x1(ν)x2(ν)

)
;

U2(ν) := U1(ν) −
1
5

x1(ν).

Agent 2 receives extra utility from being less informed and so he is more information-averse
than 1. Meanwhile, we can easily verify (via first-order conditions to optimize (x1, x2)) that
any optimal policy for 1 will give more information concerning θ1, but less information
concerning θ2, than will any optimal policy for 2. Therefore, the optimal policies for 1 and
2 are Blackwell incomparable, although 2 is more information-averse than 1. Intuitively, the
penalty for information about θ1 induces a substitution effect toward information about θ2.
Technically, the issue is a lack of supermodularity.

9.6 Proposition 5: Most policies are not comparable

Proposition 5. Blackwell-incomparability is generic, i.e. the set Nµ = {(p, q) ∈ R(µ)2 :
p �µB q and p �µB q} is open and dense in R(µ)2.

Proof. To show that Nµ is open and dense, it suffices to show that �µB is. Indeed, it would then
be immediate that �µB is open and dense (as switching coordinates is a homeomorphism), so
that their intersection Nµ is dense too.
Given Lemma 1, it is straightforward26 to express �µB⊆ (∆Θ)2 as the image of a continuous
map with domain ∆∆∆Θ. Therefore �µB is compact, making its complement an open set.
Take any p, q ∈ R(µ). We will show existence of {pε , qε}ε∈(0,1) such that pε �

µ
B qε and

(pε , qε)→ (p, q) as ε → 0. For each fixed ε ∈ (0, 1), define

gε : ∆Θ → ∆Θ

ν 7−→ (1 − ε)ν + εµ.

25For instance, let xi(ν) := 1 − 8V(margiν), i = 1, 2. What we need is that x1(ν), x2(ν) be convex [−1, 1]-
valued functions of marg1ν,marg2ν respectively, taking the priors to −1 and atomistic beliefs to 1.

26Indeed, let β1 : ∆∆Θ → ∆Θ and β2 : ∆∆∆Θ → ∆∆Θ be the maps taking each measure to its barycenter.
Then define B : ∆∆∆Θ→ (∆∆Θ)2 via B(Q) = (Q ◦ β−1

1 , β2(Q)). Then �µB= B((β1 ◦ β2)−1(µ)).
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Because gε is continuous and affine, its range Gε is compact and convex. Define

pε := p ◦ g−1
ε and qε := (1 − ε)q + ε f ,

where f ∈ R(µ) is the random posterior associated with full information.27 It is immediate,
say by direct computation with the Prokhorov metric and boundedness of Θ, that (pε , qε) →
(p, q) as ε → 0. Moreover,

co(S pε ) ⊆ co(Gε) = Gε ( ∆Θ = co(S qε ).

In particular, co(S pε ) + co(S pε ). Then, appealing to Lemma 1, pε �
µ
B qε as desired. �

9.7 Proof of Proposition 2, Part (2)

Proof. First, notice that we are done if either U1 is information-loving (in which case p∗1
can just be full information) or U2 is information-averse (in which case p∗2 can just be no
information). Thus focus on the complementary case, where Proposition 2 guarantees γU1−

U2 for some γ > 0.
Next, we apply the first part of the proposition: positively scaling if necessary, it is

without loss to assume f := U1 − U2 is convex.
For i = 1, 2, fix an optimal policy p∗i ∈ extR(µ). Notice that a random posterior (in

the present binary-state setting) is extreme if and only if it has support of size ≤ 2. Say
S p∗i = {νL

i , ν
H
i }, where 0 ≤ νL

i ≤ µ ≤ νH
i ≤ 1. Because U1 is continuous, we may further

assume p∗1 is Blackwell-maximally optimal.
For each z ∈ {H, L}, we can construct some pz ∈ R(νz

1) such that
∫

U1 dpz ≥ U1(νz
1) and

pz((νL
2 , ν

H
2 )) = 0.

• Indeed, if νz
1 < (νL

2 , ν
H
2 ), just let pz be the point mass on νz. Otherwise, let pz put weight

on S p∗2
. We know that

∫
U2 dpz ≥ U2(νz

1) by optimality of p∗2, and it then follows that∫
U1 dpz ≥ U1(νz

1) by convexity of f .

Replacing each νz
1 with pz, gives a more informative optimal policy for U1. By our

assumption that p∗1 is Blackwell-maximal, it must be that we in fact haven’t changed p∗1 at
all; that is, νL

1 , ν
H
1 < (νL

2 , ν
H
2 ). So

νL
1 ≤ ν

L
2 ≤ ν

H
2 ≤ ν

H
1 .

It follows readily that p∗1 is more informative than p∗2. �

27i.e. f
(
{δθ : θ ∈ Θ̂}

)
= µ(Θ̂) for every Borel Θ̂ ⊆ Θ.
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9.8 On Optimal Policies: Proofs and Additional Results

Proof of Theorem 4

Proof. By continuity of Blackwell’s order, there is a �µB-maximal optimal policy p ∈ R(µ).
For any C ∈ C, it must be that p(C \ extC) = 0. Indeed, Phelps (2001, Theorem 11.4)

provides a measurable map r : C → ∆(extC) with r(·|ν) ∈ R(ν) for every ν ∈ C. Then
we can define p′ ∈ R(µ) via p′(S ) = p(S \ C) +

∫
C

r(S |·) dp for each Borel S ⊆ ∆Θ.

Then U-covering and Jensen’s inequality imply
∫

U dp′ ≥
∫

U dp, so that p′ is optimal
too. By construction, p′ �µB p, so that (given maximality of p) the two are equal. Therefore
p(C \ extC) = p′(C \ extC) = 0. Then, since C is countable,

p(out(C)) = 1 − p

⋃
C∈C

[C \ extC]

 = 1.

�

Given the above, it is useful to have results about how to find posterior covers. Below,
we prove two useful propositions for doing just that.

Proof of Proposition 3

Proof. As an intersection of closed convex sets is closed convex, and a sum or supremum of
convex functions is convex, the following are immediate.

1. Suppose f is the pointwise supremum of a family of functions, f = supi∈I fi. If Ci is
an fi-cover for every i ∈ I, then

C :=
∨
i∈I

Ci =

⋂
i∈I

Ci : Ci ∈ Ci ∀i ∈ I


is an f -cover.

2. Suppose f is the pointwise supremum of a family of functions, f = supi∈I fi. If C is an
fi-cover for every i ∈ I, then C is an f -cover.

3. If C is a g-cover and h is convex, then C is a (g + h)-cover.

The first part of Proposition 3 follows from (1), letting I = A and fa = u(a, ·). The second
part of Proposition 3 follows from (2) and (3), since U = up + Uc for convex Uc. �

38



We note in passing that the proof of Propostion generates a comparative statics result for
posterior covers. Given Proposition 2, if U2 is more information-averse than U1, then any
U2-cover is a U1-cover.
Proof of Proposition 4

Proof. By finiteness of I, the collection C covers ∆Θ. For each i ∈ I, note that Ci =
⋂

j∈I{ν ∈

∆Θ : fi(ν) ≥ f j(ν)}, an intersection of closed convex sets (since { f j} j∈I are affine continuous),
and so is itself closed convex. Restricted to Ci, f agrees with fi and so is affine, and therefore
convex. �

Now, under the hypotheses of Proposition 4, we prove a claim that fully characterizes the
set of outer points of the f -cover, reducing their computation to linear algebra.

Claim 1. The f -cover C = {Ci : i ∈ I} given by Proposition 4 satisfies out(C) = {ν∗ ∈ ∆Θ :
{ν∗} = S (ν∗)} where

S (ν∗) := {ν ∈ ∆Θ : supp(ν) ⊆ supp(ν∗)

and ∃J ⊆ I such that fi(ν) = f j(ν) = f (ν) ∀i, j ∈ J}. (7)

Proof. Fix some ν∗ ∈ ∆Θ, for which we will show {ν∗} , S (ν∗) if and only if ν∗ < out(C).
Let us begin by supposing {ν∗} , S (ν∗); we have to show ν∗ < out(C). Since ν∗ ∈ S (ν∗)

no matter what, there must then be some ν ∈ S (ν∗) with ν , ν∗. We will show that S (ν∗) must
then contain some line segment co{ν, ν′} belonging to some Ci, in the interior of which lies
ν∗; this will then imply ν∗ < outC. Let Θ̂ be the support of ν∗, and let J := {i ∈ I : ν∗ ∈ Ci}.

Given that ν ∈ S (ν∗), we have ν ∈ ∆Θ̂ with fi(ν) = f j(ν) = f (ν) ∀i, j ∈ J. Now, for
sufficiently small ε > 0, we have ε(ν − ν∗) ≤ ν∗.28 Define ν′ := ν∗ − ε(ν − ν∗) ∈ ∆Θ̂. Then
fi(ν′) = f j(ν′) = f (ν′) ∀i, j ∈ J too and, by definition of ν′, we have ν∗ ∈ co{ν, ν′}. If i < J,
then it implies fi(ν∗) > f (ν) because ν∗ < Ci. Therefore, by moving ν, ν′ closer to ν∗ if
necessary, we can assume f (ν) = f j(ν) < fi(ν) and f (ν′) = f j(ν′) < fi(ν′) for any j ∈ J and
i < J. In particular, fixing some j ∈ J yields ν, ν′ ∈ C j, so that ν∗ is not in out(C).

To complete the proof, let us suppose that ν∗ < out(C), or equivalently, ν∗ ∈ Ci but
ν∗ < ext(Ci) for some i ∈ I. By definition of Ci, we have that fi(ν∗) = f (ν∗). The fact that
ν∗ < ext(Ci) implies that there is a non-trivial segment L ⊆ Ci for which ν∗ is an interior
point. It must then be that supp(ν) ⊆ supp(ν∗) and fi(ν) = f (ν) for all ν ∈ L. As a result,
L ⊆ S (ν∗) so that {ν∗} , S (ν∗), completing the proof. �

28Here, ≤ is the usual component-wise order on RΘ̂.
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Corollary 2. Suppose Θ = {0, 1}; A is finite; and for each a ∈ A, u(a, ·) = mini∈Ia fa,i, where
{ fa,i}i∈Ia is a finite family of distinct affine functions for each a. Then, there exists an optimal
policy that puts full probability on

S := {0, 1} ∪
⋃
a∈A

{ν ∈ [0, 1] : fa,i(ν) = fa, j(ν) for some distinct i, j ∈ Ia}.
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