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Abstract

We present a technique for fast Poisson blending and
gradient domain compositing. Instead of using a sin-
gle piecewise-smooth offset map to perform the blending,
we associate a separate map with each input source im-
age. Each individual offset map is itself smoothly varying
and can therefore be represented using a low-dimensional
spline. The resulting linear system is much smaller than
either the original Poisson system or the quadtree spline
approximation of a single (unified) offset map. We demon-
strate the speed and memory improvements available with
our system and apply it to large panoramas. We also show
how robustly modeling the multiplicative gain rather than
the offset between overlapping images leads to improved
results, and how adding a small amount of Laplacian pyra-
mid blending improves the results in areas of inconsistent
texture.

1. Introduction
While Poisson blending [24] (also known as gradient

domain compositing) was originally developed to support
the seamless insertion of objects from one image into an-
other [24, 17], it has found widespread use in hiding seams
due to exposure differences in image stitching applications
[22, 3, 2, 16]. Poisson blending usually produces good
results for these applications. Unfortunately, the result-
ing two-dimensional optimization problems require large
amounts of memory and time to solve [18].

A number of approaches have been proposed in the past
to speed up the solution of the resulting sparse system of
equations. One approach is to use multigrid [21, 18] or
multi-level preconditioners [27] (which can be implemented
on GPUs [6, 8, 23]) to reduce the number of iterations re-
quired to solve the system. Agarwala [2] proposed using
a quadtree representation of the offset field, which is the
difference between the original unblended images and the
final blended result. Farbman et al. [12] use mean value
coordinates (MVC) defined over an adaptive triangulation
of the cloned region to interpolate the offset field values at
the region boundary. It is also possible to solve the Poisson

blending problem at a lower resolution, and to then upsam-
ple the resolution while taking the location of seams into
account [19]. Finally, Fourier techniques can be used to
solve Poisson problems [4], but these require careful treat-
ment of image boundary conditions and are still log-linear
in the number of pixels.

In this paper, we propose an alternative approach, which
further reduces the number of variables involved in the sys-
tem. Instead of using a single offset field as in [2, 12],
we associate a separate low-resolution offset field with each
source image. We then simultaneously optimize over all of
the (coupled) offset field parameters. Because each of the
offset fields is represented using a low-dimensional spline,
we call the resulting representation a multi-spline.

The basis of our approach is the observation that the off-
set field between the original unblended solution and the
final blended result is piecewise smooth except at the seams
between source regions [24, 2]. In his paper on efficient
gradient-domain compositing, Agarwala [2] exploits this
property to represent the offset field using a quadtree. In
this paper, we observe that if the offset field is partitioned
into separate per-source correction fields, each of these will
be truly smooth rather than just piecewise smooth.

Our method is thus related to previous work in exposure
and vignetting compensation [11, 15, 19], as it computes
a per-image correction that reduces visible seams at region
boundaries. Motivated by this observation, we investigate
the use of multiplicative rather than additive corrections and
show that these generally produce better results for image
stitching applications. We also show how adding a small
amount of Laplacian pyramid blending [9] can help mask
visual artifacts in regions where inhomogeneous textures
are being blended, e.g., water waves that vary from shot to
shot.

The remainder of this paper is structured as follows.
First, we formulate the Poisson blending problem and
show how it can be reformulated as the computation of
a piecewise-smooth offset field (Section 2). Next, we in-
troduce the concept of multiple offset maps (Section 3)
and show how these can be represented using tensor prod-
uct splines (Section 4). In Section 5, we discuss efficient
methods for solving the resulting sparse set of linear equa-
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tions.1 In Section 6, we apply our technique to a variety of
large-scale image stitching problems, demonstrating both
the speed and memory improvements available with our
technique, as well as the quality improvements available
from using multiplicative (gain) compensation. We close
with a discussion of the results and ideas for possible exten-
sions.

2. Problem formulation
The Poisson blending problem can be written in discrete

form as

E1 =
∑
i,j

sxi,j [fi+1,j−fi,j−gxi,j ]
2+syi,j [fi,j+1−fi,j−gyi,j ]

2,

(1)
where fi,j is the desired Poisson blended (result) image, gxi,j
and gyi,j are the target gradient values, and sxi,j and syi,j are
the (potentially per-pixel) gradient constraint (smoothness)
weights. (This notation is adapted from [27].)

In the original formulation [24], the weights are all set
uniformly, and the gradients are computed from the gradi-
ents of the source image being blended in, with additional
hard constraints along the boundary of the cut-out region to
match the enclosing image. In the general multi-image for-
mulation of Poisson blending [3], the gradients are obtained
from the gradients of whichever image is being composited
inside a given region,

gxi,j = u
li,j

i+1,j − u
li,j

i,j , (2)

gyi,j = u
li,j

i,j+1 − u
li,j

i,j , (3)

where {u1 . . . uL} are the original unblended (source) im-
ages and li,j is the label (indicator variable) for each pixel,
which indicates which image is being composited. At the
boundaries between regions, the average of the gradients
from the two adjacent images is used,

gxi,j = (uli,j

i+1,j − u
li,j

i,j + u
li+1,j

i+1,j − u
li+1,j

i,j )/2, (4)

gyi,j = (uli,j

i,j+1 − u
li,j

i,j + u
li,j+1
i,j+1 − u

li,j+1
i,j )/2. (5)

Note how these equations reduce to the previous case (2)
and (3) on the interior, since the indicator variables are
the same. We then substitute (2–5) into (1) and minimize
the resulting cost function. The resulting function f re-
produces the high-frequency variations in the input images
while feathering away low-frequency intensity offsets at the
seam boundaries (Figure 1a).

The per-pixel weights can be tweaked to allow the fi-
nal image to match the original image with less fidelity
around strong edges [3], where the eye is less sensitive to

1 An earlier version of this paper [29] has a more in-depth discussion
of various alternative sparse solvers.

variations, resulting in what is sometimes called the weak
membrane [27]. (This can also be used to perform dynamic
range compression [14], which can be advantageous when
compositing images with widely different exposures.) In
this paper, as in [3, 2, 5], we set the weights to be con-
stant inside each source region, but allow them to be weaker
along boundary pixels where the two source gradients dis-
agree [5]. We first compute the difference between corre-
sponding image gradients

∆gxi,j = (uli,j

i+1,j − u
li,j

i,j )− (uli+1,j

i+1,j − u
li+1,j

i,j ) (6)

and then set the horizontal smoothness weight to

sxi,j =
1

(1 + a|∆gxi,j |)b
, (7)

with corresponding equations for the y gradients. The pa-
rameter a = 16 is used to scale the color values into an
appropriate range, while the b = 9 parameter controls the
strength of the weight.

If only gradient constraints are used (1), the gradient-
domain reconstruction problem is underconstrained. Pérez
et al. [24] use hard constraints along the region boundary,
while Agarwala et al. [3] have the user specify a single pixel
value to match. In our work, we add a weak constraint to-
wards the colors in the original image u

li,j

i,j ,

E0 =
∑
i,j

wi,j [fi,j − u
li,j

i,j ]2, (8)

typically with wi,j = 10−7, which reduces unwanted low-
frequency variations in the result and helps ensure that the
final composite does not get too light or dark.

2.1. Offset formulation

As noted in [24, Eqn.(5)] and [2, Eqn.(3)], we can re-
place the solution {fi,j} with an offset from the original
(unblended) image,

fi,j = u
li,j

i,j + hi,j (9)

and solve for the offset image {hi,j} instead. The new cri-
terion being minimized becomes

E2 =
∑
i,j

sxi,j [hi+1,j − hi,j − g̃xi,j ]
2 + (10)

syi,j [hi,j+1 − hi,j − g̃yi,j ]
2 + wi,j [hi,j ]2,

where the modified gradients g̃xi,j and g̃yi,j are zero away
from the boundaries and

g̃xi,j = (uli,j

i,j − u
li+1,j

i,j + u
li,j

i+1,j − u
li+1,j

i+1,j )/2, (11)

g̃yi,j = (uli,j

i,j − u
li,j+1
i,j + u

li,j

i,j+1 − u
li,j+1
i,j+1 )/2, (12)
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Figure 1. One dimensional examples of Poisson blending and offset maps: (a) the original Poisson blend of two source images u1
i and u2

i

produces the blended function fi; (b) the offset image hi is fitted to zero gradients everywhere except at the source image discontinuity,
where it jumps by an amount equal to the average difference across the region boundary; (c) the multiple offset images h1

i and h2
i , each of

which is smooth, along with the inter-image constraint at the boundary; the offsets are defined by the spline control vertices c1
k and c2

k.

at the boundaries between regions.
This new problem has a natural interpretation: the offset

value should be everywhere smooth, except at the region
boundaries, where it should jump by an amount equal to
the (negative) average difference in intensity between the
overlapping source images. The resulting offset function is
piecewise smooth (Figure 1b), which makes it amenable to
being represented by a quadtree spline, with smaller grid
cells closer to the region boundaries [2] or with mean value
coordinate interpolation [12].

3. Multiple offset maps
In this paper, instead of using a single offset map, as sug-

gested in [24, 2, 12], we use a different offset map for each
source image, i.e.,

fi,j = u
li,j

i,j + h
li,j

i,j , (13)

where the {h1 . . . hl} are now the per-source image offset
maps (see Figure 1c).

The optimization problem (10) now becomes

E3 =
∑
i,j

sxi,j [h
li+1,j

i+1,j − h
li,j

i,j − g̃xi,j ]
2 + (14)

syi,j [h
li,j+1
i,j+1 − h

li,j

i,j − g̃yi,j ]
2 + wi,j [h

li,j

i,j ]2,

Notice that in this problem, whenever two adjacent pixels,
say (i, j) and (i + 1, j) come from the same source and
hence share the same offset map, the gradient g̃xi,j is 0, and
so the function is encouraged to be smooth. When two ad-
jacent pixels come from different regions, the difference be-
tween their offset values is constrained to be the average
difference in source values at the two pixels (11). This is
illustrated schematically in Figure 1c.

What is the advantage of re-formulating the problem us-
ing a larger number of unknowns? There is none if we keep
all of the hli,j as independent variables.

However, under normal circumstances, e.g., when work-
ing with log intensities and multiplicative exposure differ-
ences, each of the individual per-source offset maps will be
smooth, and not just piecewise smooth as in the case of a
single offset map. Therefore, each offset map can be repre-
sented at a much lower resolution, as we describe next.

4. Spline offset maps
To take advantage of the smoothness of each offset im-

age, we represent each map with a tensor-product spline that
covers the visible extent of each region, as shown in Fig-
ure 2. The choice of pixel spacing (subsampling) S is prob-
lem dependent, i.e., it depends on the amount of unmod-
eled variations in the scene and acquisition process, e.g.,
the severity of lens vignetting or the amount of inconsistent
texture along the seam, but is largely independent of the
actual pixel (sensor) resolution. We can either align each
grid with each region’s bounding box (Figure 2a) or use a
globally consistent alignment (Figure 2b). We use the latter,
since it makes the nested dissection algorithm discussed in
Section 5 easier to implement.

Once we have chosen S and the control grid locations,
we can re-write each pixel in an individual offset map as
a linear combination of the per-level spline control vertices
clk,m (Figure 1c),

hli,j =
∑
km

clk,mB(i− kS, j −mS) (15)

where
B(i, j) = b(i)b(j) (16)

is a 2D tensor product spline basis and b(i) is a 1-D B-spline
basis function [13]. For example, when bilinear (first or-
der) interpolation is used, as is the case in our experiments,
the first order 1-D B-spline is the usual tent function, and
each pixel is a linear blend of its 4 adjacent control vertices
(Figure 2c).

The values of hli,j in (15) can be substituted into (14)
to obtain a new energy function (omitted for brevity) that
only depends on the spline control variables clk,m. This new
energy function can be minimized as a sparse least squares
system to compute a smooth spline-based approximation to
the offset fields. Once the sparse least squares system has
been solved, as described in Section 5, the per-pixel offset
values can be computed using regular spline interpolation
(15).

The actual inner loop of the least squares system setup
simply involves iterating over all the pixels, pulling out the



(a) (b) (c)

Figure 2. A spline grid is overlaid on top of each source region:
(a) the grids are aligned with each region’s bounding box; (b) the
grids are aligned with the final composite bounding box (shown in
gray). The grid cell and control variables (nodes at cell corners)
that are inactive are shown in pale colors. (c) Detail inside two
of the spline patches: inside the left square (blue), each pixel de-
pends on four neighboring control vertices; along a seam boundary
(mixed colors), each pixel depends on eight.

(K +1)d non-zero B-spline basis function values (where K
is the order of the interpolant, and d is the dimensionality of
the field), forming each of the linear equations in the control
variables inside each squared term, and then updating the
appropriate entries in the normal equations (stiffness matrix
and right-hand side) [28, 27].

Figure 2c illustrates this process for bilinear splines,
where each offset value hli,j (blue pixel inside the large
blue square) depends on its four neighboring control ver-
tices. Thus, each gradient constraint in (14) depends on ei-
ther four or eight control vertices, the latter occurring only
at seam boundaries where offsets from two different spline
maps are being compared (i.e., the pair of black pixels in-
side the mixed color region). Note that spline vertices that
do not influence any visible pixels can be eliminated from
the variable set and are shown as pale colors in Figures 2a-b.

4.1. Simplifying the constraints

Inside spline patches where all the pixels come from the
same source (the blue patch in Figure 2c) and the smooth-
ness and data weights are homogeneous, sxi,j = syi,j = s
and wi,j = w, we can pre-compute the effect of all the indi-
vidual per-pixel gradient and smoothness constraints ahead
of time. This is similar to the process of analytic integration
performed during finite element analysis to determine the
effects of continuous deformations on the discrete control
variables [30]. Performing this analysis for a bilinear inter-
polant yields a nine-point stencil, i.e., a system of equations
where each variable is coupled not only to its horizontally
and vertically adjacent neighbors but also to vertices that
are diagonally adjacent.

In our current implementation, we instead adopt a sim-
pler approach and assume, for the purpose of computing the
internal smoothness constraints, that the interpolating spline
uses conforming triangular linear elements, as in [30, 27];
for the data constraint, we use a piecewise constant inter-
polant. This results in a simple per-offset field energy func-

tion that is a coarsened version of the original fine-level
Poisson blending energy,

El =
∑
k,m

s[clk+1,m−clk,m]2+s[clk,m+1−clk,m]2+S2w[clk,m]2.

(17)
To further speed up the formulation of the least squares

system, we apply this same discrete energy to all spline
patches within each offset layer. We then add in the original
gradient constraints (14) only along seam boundary pixels,
i.e., pairs of pixels that have two different labels, as shown
by the pair of black pixels in Figure 2c.

4.2. Multiplicative (gain) offsets

The observant reader may have noticed that multi-spline
offset fields are just a generalization of the bias-gain correc-
tion fields commonly used to adjust the exposures of images
before blending [11, 15, 19]. A single linear spline patch per
source image is equivalent to the commonly used affine in-
tensity variation model. If full spline fields are used, one can
view our new technique as simply constraining the spline
correction fields to map overlapping pixels near boundary
regions to the same value.

The important difference, however, between our deriva-
tion from the original Poisson blending equations and a
more heuristic implementation is that our approach directly
tells us how to set the tradeoff between the smoothness in
the final correction field and the strength of the seam match-
ing term. Without this balance, the resulting correction
fields can result in composites with either visible tears or
flat spots.

Viewing Poisson blending as the computation of per-
image correction fields suggests that computing multiplica-
tive gain fields may be preferable to computing additive off-
set fields [31, 18]. In fact, most visible seams in panoramas
are due to camera exposure variation, vignetting, or illumi-
nation changes (the sun going behind a cloud), all of which
are better modeled as multiplicative gains rather than ad-
ditive offsets. This is true even if the images are gamma-
corrected, since the resulting images are still related by a
multiplicative factor, i.e., I2 = kI1 ⇒ Iγ2 = kγIγ1 .

To estimate a multiplicative gain, we simply take the log-
arithm of each input image before computing the seam dif-
ference, or, equivalently, take the logarithm of the ratio of
overlapping seam pixels. (Dark pixels can be clamped to a
minimum value such as 1.) The resulting computed offset
field is then exponentiated and used as a multiplicative gain
field.

In our experience, multiplicative gain correction works
very well when the inputs are in the camera sensor (RAW)
domain. However, JPEG images produced by cameras
and commercial software have usually undergone black box
processing [1] that causes them to no longer fit a purely ad-
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Figure 3. Comparison of multiplicative gain vs. additive offset
blending: (a) unblended image; (b) additive offset blending; (c)
square root offset blending; (d) multiplicative gain blending. Note
how the additive result has a visible contrast change across the
seam.

ditive or multiplicative model. For this reason we prefer to
compute the offset field in a log/linear domain. In our expe-
rience, the square root function approximates the log func-
tion well for bright values and approaches linear for dark
values. In our implementation, we apply the square root
function (with pixels normalized to a [0, 1] range) to each
pixel before computing the seam differences. The resulting
offset field is then added to the square root pixel values and
the result is then squared.

Figure 3 compares the result using the multiplicative
gain approach vs. the traditional additive Poisson blend-
ing approach. Because the additive offset does not model
the differing amounts of contrast in the two source images
(which are related by a multiplicative exposure difference),
the blended result in Figure 3b has a visible contrast change
in the vicinity of the seam (more muddy looking colors to
the right of the seam, which are better seen in the supple-
mentary materials).

4.3. Laplacian pyramid blending

While Poisson blending does a good job of compensat-
ing for slowly varying differences between images such as
exposure or lighting changes, it has a harder time hiding ar-
tifacts due to inhomogeneous (inconsistent) textures in the
two images. Consider, for example, the wave-tossed waters
shown in Figure 4. While Poisson blending does a good job
of disguising low-frequency color and intensity differences,
the differences between the individual wave patterns result
in visible seams. Applying multi-band Laplacian pyramid
blending [9, 7] with a small number of pyramid levels to

(a) (b)

Figure 4. Using Laplacian pyramid blending to disguise texture
differences: (a) image robustly blended in the square root pixel
domain; (b) with the addition of three-level Laplacian pyramid
blending. Note how the differences in the wave patterns and small
misalignments are effectively masked.

the gain or bias-compensated images helps disguise these
differences. Since our multi-spline Poisson blending effec-
tively handles the low frequency differences between the
images, there is no need to use a large number of pyra-
mid levels. The multi-level pyramid filtering operations can
therefore be restricted to a narrow band around the seams,
which can lead to large computational savings.

4.4. Blending Gigapixel images

To make our technique even more efficient, instead of
computing the seam costs at the final image resolution, we
compute these costs at the same resolution as the graph cut
optimization performed in [20], which is 1/8th the horizon-
tal and vertical resolution of the final panorama.

The decision to accumulate the seam costs on a lower
resolution image is actually well-justified. Since the rela-
tive contribution of each seam constraint to the spline ver-
tices is a slowly varying function, summing these contribu-
tions over a slightly coarser grid than the pixels (but still
finer than the spline) does not affect the results very much.
Because we are computing a least squares correction, sum-
ming up the least squares contributions over regions does
not affect the final cost, except for the replacement of the
spline weights with a slightly more discretized version.

Another way of looking at this is that if we are estimating
the offset or gain adjustment between overlapping images, a
similar result will be obtained if we look at lower-resolution
versions of these images, so long as the lowered resolution
is still significantly higher than the spline grid.

Once we have computed our multi-spline correction
fields [29], these are then upsampled to the final Gigapixel
resolution during the tile-based final compositing process
[20].



5. Solving the system
A variety of techniques can be used to solve the small

sparse positive definite system of equations arising from the
multi-spline correction fields. For large sparse system, it-
erative techniques (potentially enhanced with multi-grid or
multi-level preconditioning) can be used [25]. When the
systems are smaller, direct factorization techniques such as
Cholesky decomposition are more efficient [10].

Because his sparse systems are larger, Agarwala [2] uses
the conjugate gradient sparse iterative solver, which par-
tially accounts for his longer run times. Because our multi-
spline systems are much smaller, we use direct techniques.
The efficiency of these techniques depends on the amount
of fill-in during the factorization process, which can be re-
duced by an appropriate reordering of the variables [10, 29].

For two-dimensional grid problems, nested dissec-
tion, which recursively splits the problem along small
length rows or columns, results in good performance, i.e.,
O(n log n) space and O(n3/2) time (or better for asymmet-
rically shaped domains), where n is the number of vari-
ables. In order for this technique to work, we need to en-
sure that all the spline variables line up in the same rows
and columns, which is why we use the aligned spline grid
shown in Figure 2b.

6. Experiments
In order to validate our approach and to see how much

of a speedup could be expected, we first obtained the four
large panoramas shown in Figure 6 from the author of [2].
For these images, we used an additive offset field to match
the results presented in [2] as closely as possible. We also
used a spline spacing of S = 64 and bilinear splines.

The results of running our algorithm (in January, 2008)
[29] on these four data sets are shown in Table 2. Our multi-
spline technique is about 5–10× faster and requires about
10× less memory than the quadtree-based approach devel-
oped in [2]. The two techniques produce results of compa-
rable visual quality, as can be seen by inspecting the large
full-size images provided in the supplementary material.

Grid size S RMS error max error solve time (s)
8 0.0886 11.20 163.383

16 0.1039 12.80 11.714
32 0.1841 13.70 0.851
64 0.2990 14.40 0.070

128 0.4118 13.90 0.019

Table 1. RMS and maximum error comparisons to the ground
truth Poisson blend for different grid sizes S, along with the linear
system solution time (in seconds); the time for setup and rendering
the final offset fields is about 2 seconds. For these experiments, we
used the 9.7 Mpixel St. Emilion dataset shown in Figure 5.

Table 1 shows how the RMS (root mean square) and
maximum error (in gray levels) in the solution depend on
the grid size S. For these experiments, we used the so-
lution to the St. Emilion data set provided by Agarwala
[2] (Figure 5) as our ground truth. We then ran our fast
multi-spline-based solver using a variety of grid sizes, S =
{8, 16, . . . , 128} and computed both the RMS and maxi-
mum error between the offset field we computed and the
full solution. As you can see, the RMS error grows steadily
with the grid size, while the maximum error does not vary
that much. Visual inspection of the full-resolution results
(which are available as part of the supplementary materials)
shows that the maximum error is concentrated at isolated
pixels along seam boundaries where highly textured regions
are mis-aligned. Fortunately, these “errors” are masked by
the textures themselves, so that the final blended images ap-
pear of identical quality to the eye.

Next, we applied our technique to the Seattle Skyline im-
age shown in Figure 4 of [20], using the multiplicative gain
(log intensity) formulation because of the large exposure
differences. In this case, because the seam costs were com-
puted on a 1/8th (on side) resolution image, the seam cost
evaluation (shown as Setup in Table 2) and system solving
times as well as the memory requirement are comparable to
those of the 84 Mpixel RedRock panorama. The rendering
time required to read back and warp the source images, ap-
ply the spline-based correction, and write out the resulting
tiles is significantly longer.

A cropped portion of our result is shown in Figure 5,
and the unblended, offset, and blended images at the 1/8th
working resolution, along with some cropped portions of
the final Gigapixel image are shown in the supplementary
materials.

The most visible artifacts in these results, besides the sat-
urated regions and gross misalignments caused by the mov-
ing crane, are the occasional seams visible in the sky regions
near dark buildings, which are due to some of the original
source images having saturated pixels (usually in the blue
channel) in these regions. Unfortunately, since the values at
these pixels do not reflect the true irradiance, the multiplica-
tive gain computed in areas that border unsaturated pixels is
inconsistent, and cannot simultaneously hide both kinds of
seams.

7. Discussion and extensions
As we can see from our experiments, the biggest dif-

ference between our multi-spline approach and full Pois-
son blending (and its quadtree approximation) is that we
enforce piecewise smoothness in both the x and y dimen-
sions, whereas Poisson blending can tolerate irregular off-
sets along the seam. While our approach can occasion-
ally lead to artifacts, e.g., in images that are not log-linear,
Poisson blending can introduce different artifacts, such as



(a) (b) (c)

Figure 5. Fast Poisson blending using multi-splines: (a) unblended composite; (b) piecewise smooth multi-spline offset image; (c) final
blended composite.

Quadtree Multi-spline Setup Solve Render
Dataset # Mpix V (%) T (s) M V (%) T (s) M T (s) M T (s) M T (s)
Sedona 6 34.6 0.47 29 52 0.0271 7 4 3.33 3 0.28 5 2.70
Edinburgh 25 39.7 1.15 122 123 0.0315 9 10 3.99 10 0.41 7 3.84
Crag 7 62.7 0.47 78 96 0.0271 12 7 6.16 6 0.54 9 4.82
RedRock 9 83.7 0.46 118 112 0.0270 16 10 8.11 8 0.75 13 6.42
Seattle 650 3186.9 0.0009 8+ 57 6.35 57 1.42 34 56m

Table 2. Performance of the quadtree vs. multi-spline based solver. The first three columns list the dataset name, the number of source
images, and the number of pixels. The next three columns show the results for the quadtree-based acceleration, including the ratio of
variables to original pixels (as a percentage), the total run time (in seconds), and the memory usage (in Mbytes). The next three columns
show the corresponding results for our multi-spline based approach (for all of our experiments, S = 64). Our results are roughly 5–
10× faster and smaller. The final sets of columns break down the time and memory requirements of the three multi-spline blending
stages, namely the setup (computation of seam boundary constraints), the direct solution using nested dissection, and the final rendering
(compensation) stage. The numbers in the Quadtree column are from [2], which does not report the processor used. The numbers in the
other columns are from experiments run single-threaded on a 2.40 Intel GHz CoreTM2 Duo processor with 4GB RAM purchased in March,
2007, and therefore likely comparable to the processor used by Agarwala. Note that the Gigapixel Seattle total time (8+) does not include
the i/o bound rendering stage, which took 56 minutes to produce the final image tile set.

“ruffles” that sometime propagate away from seam bound-
aries when they disagree. Improving the alignment between
images using an optic-flow deghosting technique [26] fol-
lowed by robustly estimating the mapping between over-
lapping images is likely to futher improve the results.

In terms of computational complexity, as the resolution
of photographs continues to increase, our multi-spline based
approach has better scaling properties that the quadtree
based approach. Because the number of spline control ver-
tices depends on the smoothness of the unmodeled inter-
exposure variation and not the pixel density, we expect it to
remain fixed. In the quadtree-based approach, the number
of variables increases linearly with the on-side (as opposed
to pixel count) resolution. In order to further speed up the
linear system solving part of our algorithms, we are also
investigating hierarchically preconditioned conjugate gradi-
ent descent [27].

8. Conclusions
In this paper, we have developed a new approach

to gradient domain compositing that allocates a separate
smoothly varying spline correction field for each source im-
age. We also investigated the benefits of using a multiplica-
tive gain formulation over the more traditional additive off-
set formulation. Using our approach, we obtain linear sys-
tems an order of magnitude smaller than those obtained with

a quadtree representation of a single offset map, while pro-
ducing results of comparable visual quality. We also sug-
gest areas for further investigations into better quality algo-
rithms for seam blending.
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[24] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.
ACM Transactions on Graphics (Proc. SIGGRAPH 2003),
22(3):313–318, July 2003. 1, 2, 3

[25] Y. Saad. Iterative Methods for Sparse Linear Systems. Soci-
ety for Industrial and Applied Mathematics, second edition,
2003. 6

[26] H.-Y. Shum and R. Szeliski. Construction of panoramic mo-
saics with global and local alignment. International Journal
of Computer Vision, 36(2):101–130, February 2000. Erratum
published July 2002, 48(2):151–152. 7

[27] R. Szeliski. Locally adapted hierarchical basis precondi-
tioning. ACM Transactions on Graphics (Proc. SIGGRAPH
2006), 25(3):1135–1143, August 2006. 1, 2, 4, 7

[28] R. Szeliski and J. Coughlan. Spline-based image registra-
tion. International Journal of Computer Vision, 22(3):199–
218, March/April 1997. 4

[29] R. Szeliski, M. Uyttendaele, and D. Steedly. Fast Poisson
blending using multi-splines. Technical Report MSR-TR-
2008-58, Microsoft Research, April 2008. 2, 5, 6

[30] D. Terzopoulos. Multilevel computational processes for vi-
sual surface reconstruction. Computer Vision, Graphics, and
Image Processing, 24:52–96, 1983. 4

[31] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens.
Automated model-based bias field correction of MR im-
ages of the brain. IEEE Transactions on Medical Imaging,
18(10):885–896, 1999. 4


