
CPU MISER: A Performance-Directed, Run-Time System
for Power-Aware Clusters

Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W. Cameron
Center for High-End Computing Systems

Department of Computer Science
Virginia Tech, Blacksburg, VA 24061
{ge, fengx, feng, cameron}@cs.vt.edu

Abstract

Performance and power are critical design constraints
in today’s high-end computing systems. Reducing power
consumption without impacting system performance is a
challenge for the HPC community. We present a run-
time system (CPU MISER) and an integrated performance
model for performance-directed, power-aware cluster com-
puting. CPU MISER supports system-wide, application-
independent, fine-grain, dynamic voltage and frequency
scaling (DVFS) based power management for a generic
power-aware cluster. Experimental results show that CPU
MISER can achieve as much as 20% energy savings for the
NAS parallel benchmarks. In addition to energy savings,
CPU MISER is able to constrain performance loss for most
applications within user-specified limits. These constraints
are achieved through accurate performance modeling and
prediction, coupled with advanced control techniques.

1 Introduction

By clustering tens of thousands of power-hungry com-
ponents, today’s high-end systems deliver incredible peak
performance but consume tremendous amounts of electric
power. For example, three of the top 10 systems in the
Top500 list1 — Blue Gene/L, ASC Purple, and NASA
Columbia — consume 2.5, 7.6, and 3.4 megawatts of peak
power, respectively.2 This amount of power consumption
can result in operating costs that exceed acquisition costs.
The heat generated can elevate ambient temperature and in-
crease failure rates.

Reducing the power consumption of these systems is
necessary, but reducing performance substantially is unac-
ceptable. The high-performance, power-aware computing

1Source: The Top500 supercomputer sites, http://www.top500.org/.
2Source: The Green500 List, http://www.green500.org/.

(HPPAC) approach attempts to reduce power while main-
taining performance. This approach leverages power-aware
components that support multiple power/performance
modes and power-aware schedulers that dynamically con-
trol the time components spend in each mode. The chal-
lenge for power-aware schedulers is to place components
in low-power modes only when this will not reduce per-
formance. Several research groups have shown that clever
scheduling of CPU power modes using dynamic voltage and
frequency scaling (DVFS) can save significant amounts of
total system energy for parallel applications [6, 8, 9, 11, 12].

Two types of DVFS schedulers have been implemented
for power-aware clusters: off-line, trace-based schedul-
ing [9] and run-time, profiling-based scheduling [12, 6].
Off-line techniques provide a good basis for comparison
to evaluate the effectiveness of run-time techniques. Run-
time techniques are challenging since effective scheduling
requires accurate prediction of the effects of power modes
on future phases of the application without any a priori in-
formation. False prediction may have dire consequences for
performance or energy efficiency.

Current run-time DVFS techniques for HPC track and
predict either MIPS-based metrics [11, 12] or communi-
cation phases (i.e., occurrences of MPI calls) [6]. Both
techniques have been shown to reduce energy with reason-
able performance loss. However, MIPS-based metrics use
throughput as a performance measure which may not track
the actual execution time and performance impact of DVFS
on applications. On the other hand, intercepting MPI calls
can predict communication phases accurately but this tech-
nique ignores other memory- or I/O-bound phases that pro-
vide additional opportunities for power and energy savings.

This paper describes a new run-time scheduler, named
CPU MISER (which is short for CPU Management Infra-
Structure for Energy Reduction), that supports system-
wide, application-independent, fine-grained, DVFS-based
power management for generic power-aware clusters. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357265026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


contributions of CPU MISER include:

• System-level management of power consumption and
performance. CPU MISER can optimize for perfor-
mance and power on multi-core, multi-processor sys-
tems.

• Exploitation of several types of inefficient phases in-
cluding memory accesses, I/O accesses, and system
idle under power and performance constraints.

• Completely automated run-time DVFS scheduling. No
user intervention required.

• Integrated, accurate DVFS performance-prediction
model that allows users to specify acceptable perfor-
mance loss for an application relative to application
peak performance.

This paper is organized as follows. §2 discusses re-
lated work on DVFS-based, power-aware computing. In §3,
we present the theoretical foundations of CPU MISER, in-
cluding the underlying performance model, workload pre-
diction, and performance control. §4 describes the system
implementation of CPU MISER. Experimental results on a
power-aware cluster are presented and analyzed in §5. Fi-
nally, we summarize our findings and conclusions for CPU
MISER in §6.

2 Related Work

DVFS work originated in the embedded and real-time
systems community [4, 5]. Later work applied similar tech-
niques to the data center as power became a critical issue
for large commercial server farms [1, 3, 10, 18]. Power-
aware high-performance computing attempted to develop
new techniques that save power and energy without impact-
ing performance in parallel, non-interactive scientific appli-
cations.

Initially, off-line, trace-based techniques were pro-
posed [2, 9, 13]. The basic off-line approach involves (1)
source code instrumentation for performance profiling, (2)
execution with profiling, (3) determination of appropriate
processor frequencies for each phase, and (4) source code
instrumentation for DVFS scheduling. Ge et al. [2, 9] use
PMPI to profile MPI communications. Hsu et al. [13]
use compiler instrumentation to profile and insert DVFS
scheduling functions for sequential codes. Freeh et al. [6]
use PMPI to time MPI calls and then insert DVFS schedul-
ing calls based on duration. Off-line approaches typically
require manual intervention to determine the target fre-
quency for inefficient phases.

Run-time DVFS scheduling techniques are automated
and transparent to end users. Hsu and Feng [12] proposed
the β-adaption algorithm to automatically adapt the voltage
and frequency for energy savings at run-time. Lim et al.

[14] implemented a run-time scheduler that intercepts the
MPI calls to identify communication-bound phases in MPI
programs. Wu et al. [17] made use of a dynamic compiler
to monitor the memory-bound regions in sequential codes
for power reduction. In addition, CPUSPEED 3 provides
an interval-based DVFS scheduler for Linux distributions.
CPUSPEED adjusts CPU power/performance modes based
on the CPU utilization during the past interval.

The closest work to ours are CPUSPEED and the work
by Hsu and Feng [12]. Each of these techniques exploit all
possible CPU slackness including MPI communication and
memory access delays. Hsu et al. and CPUSPEED assume
slack opportunities correlate directly to MIPS and CPU uti-
lization, respectively. Our work differs from these other ap-
proaches in the following ways. First, we aruge that our
work is based on an accurate performance model that quan-
tifies the effects of power/performance modes on workload
execution at finer granularity. Second, our work explicitly
controls the performance by improving workload prediction
and reducing performance loss due to false prediction.

The performance model that we used in this paper is
inspired by previous work [4, 17, 7] that decomposes the
workload into on-chip and off-chip memory accesses and
makes DVFS decisions based on the ratio of off-chip mem-
ory accesses to on-chip memory accesses. However, these
models are not directly applicable to workloads with com-
munication, I/O, or system-idle phases. On the contrary,
our model integrates the effects of communication and I/O
phases on performance and makes DVFS decisions based
on the index of CPU intensiveness, thereby including such
phases as opportunities for power savings.

3 The Methodology

For a DVFS-based, power-aware cluster, we assume
each of its compute nodes has N power/performance modes
or processor frequencies available: {f1, f2, . . . , fN} satis-
fying f1 < f2 < . . . < fN = fmax. Without loss of
generality, we assume that the corresponding voltage Vi for
1 ≤ i ≤ n changes with fi.

By changing the CPU from the highest frequency fmax

to a lower frequency f , we can dramatically reduce the
CPU’s power consumption. However, if the workload is
CPU-bound, reducing CPU frequency may also signifi-
cantly reduce performance as well.

Considering a generic application, we can represent its
entire workload as a sequence of M execution phases
over time, i.e., (w1, t1), (w2, t2), . . ., (wM , tM ), where
wi is the workload in the ith phase and ti is the time
duration to compute wi at the highest frequency fmax.
As different workload characteristics require different

3http://carlthompson.net/software/cpuspeed



power/performance modes for optimal power-performance
efficiency, the goal of a system-wide DVFS scheduler is to
identify each execution phase, quantify its workload charac-
teristics, and then switch the system to the most appropriate
power/performance mode.

To derive a generic methodology for designing an au-
tomatic, performance-directed, system-wide DVFS sched-
uler, we formulate the δ-constrained DVFS scheduling
problem as follows: Given a power-aware system and a
workload W , schedule a sequence of CPU frequencies
over time that is guaranteed to finish executing the work-
load within a time duration (1 + δ∗) · T and minimizes
the total energy consumption, where δ∗ is a user-specified,
performance-loss constraint (such as 5%) and T is the ex-
ecution time when the system is continuously running at its
highest frequency fmax.

Co-scheduling power and performance is a complicated
problem. However, empirical observations show that CPU
power decreases drastically as the CPU frequency decreases
while the performance decreases at a much slower rate.
This implies that as long as the performance loss is rela-
tive small, the lower frequency, the lower the energy con-
sumption. Hence, heuristically, if we schedule a minimum
frequency for every execution phase that satisfies the perfor-
mance constraint, the end result is an approximate solution
for the δ-constrained DVFS scheduling problem.

However, because it is difficult to detect the phases
boundaries at run-time, we approximate each execution
phase with a series of time intervals and then schedule the
power/performance modes based on the workload charac-
teristics during each time interval. Therefore, we decom-
pose the task of designing a performance-directed, system-
wide DVFS scheduler into four subtasks: (1) instrument-
ing/characterizing the workload during each time interval;
(2) estimating the time needed to compute a given work-
load at a specific frequency; (3) predicting the workload
in the next time interval; and (4) scheduling an appropri-
ate frequency for the next interval to minimize both energy
consumption and performance loss.

To solve these subtasks, we first describe a performance
model that captures the correlations between workload, fre-
quency, and performance loss due to frequency scaling.
Then, we describe techniques for workload prediction and
performance control.

3.1 Performance Model

At the system level, any time duration t can conceptually
be broken into two parts: tw, the time the system is execut-
ing the workload w, and t0, the time the system is idle. Thus
we have,

t = tw + t0. (1)

Further, we can dissect tw into two parts: tw(fon) [4, 7],
the CPU frequency-dependent part, and tw(foff), the CPU
frequency-independent part. In short, we express tw as

tw = tw(fon) + tw(foff). (2)

Here, fon and foff refer to the on-chip and the off-chip
instruction-execution frequencies, respectively.

In Equation (2), tw(fon) can be estimated by tw(fon) =
won · CPIon

f , where won is the number of on-chip memory
(including register and on-chip cache) accesses, and CPIon

is the average cycles per on-chip access [4, 7]. tw(foff)
can be further decomposed into main-memory access time
tmem and I/O access time tIO. We approximate the main-
memory access time as tmem = wmem · τmem, where wmem

is the number of main-memory accesses and τmem is the
average memory-access latency. Thus, we can quantify the
correlations between t, w, and fmax as

t = won · CPIon

fmax
+ wmem · τmem + tIO + t0 (3)

Since on-chip access is often overlapped with off-chip
access on modern computer architectures [17], we intro-
duce an overlapping factor α (such that 0 ≤ α ≤ 1) into
Equation (3), i.e.,

t = α · won · CPIon

fmax
+ wmem · τmem + tIO + t0. (4)

When the system is running at a lower frequency f , the
time duration to finish the same workload w becomes:

t′ = α · won · CPIon

f
+ wmem · τmem + tIO + t0. (5)

Assuming fmax ≥ f , normally t ≤ t′ and a performance
loss may occur. To quantify the performance loss, we use
the normalized performance loss δ, which is defined as:

δ(f) =
t′ − t

t
. (6)

and substitute t and t′ from Equations (4) and (5), respec-
tively, into Equation (6) to obtain

δ(f) = (α · won · CPIon

fmax
) · 1

t
· fmax − f

f
(7)

Equation (7) indicates that performance loss is deter-
mined by both processor frequency and workload character-
istics. Within the context of DVFS scheduling, we summa-
rize the workload characteristics using κ, which is defined
as

κ = (α · won · CPIon

fmax
) · 1

t
(8)

We interpret κ as an index of CPU intensiveness. When
κ = 1, the workload is CPU bounded, and when κ ≈ 0, the
system is either idle, memory-bound, or I/O-bound.



Given a user specified performance loss bound δ∗, we
identify the optimal frequency as the lowest frequency f∗

that satisfies
f∗ ≥ κ

κ + δ∗
· fmax. (9)

3.2 Workload Prediction

In Equation (8) and (9), we assume the workload is
given when calculating the workload characteristic index
and the optimal frequency. Unfortunately, we normally do
not know the next workload at run-time. Thus, we must
predict the workload with only past information.

In this paper, we use history-based workload prediction.
During each interval, we collect a set of performance events
and summarize them with a single metric κ. Then we pre-
dict the κ value for the future workload using the history
values of κ.

Various prediction algorithms can be used. The simplest
but most commonly used technique is the PAST [16] algo-
rithm:

κ′i+1 = κi, (10)

Here κ′i+1 is the predicted workload at the (i + 1)th in-
terval and κi is the measured workload at the ith interval.
The PAST algorithm works well for slowly varying work-
loads but incurs large performance and energy penalties for
volatile workloads. To better handle volatility, two kinds
of enhancements have been suggested for the PAST algo-
rithm. The first enhancement is to use the average of the
history values across more intervals [15]. The second en-
hancement is to regress the workload either over time [4] or
over the frequencies [12]. A more complicated prediction
algorithm is the proportional-integral-derivative controller
(PID controller), which addresses prediction error respon-
siveness, prediction overshooting, and workload oscillation
by carefully tuning its control parameters.

In this paper, we consider an alternative algorithm called
exponential moving average (EMA), which predicts the
workload using both history values and run-time profiling.
The EMA algorithm can be expressed as:

κ′i+1 = (1− λ) · κ′i + λ · κi (11)

where κ′i is the predicted workload at the ith interval, and λ
is a smoothing factor that controls how much the prediction
will depend on the current measurement κi.

3.3 Performance Loss Control

Two major factors for performance loss include the
DVFS scheduling overhead and the misprediction of work-
load characteristics. Given the stochastic nature of the

Binary Code
Performance

Monitor

Workload Predictor

DVFS 
Scheduler

Performance 
Constraints

Performance 
Events

Run-Time DVFS Scheduling System

User’s Program

Target fCPU

Core 0

Core 1

Core 2

Core 3
OS, Kernel & Hardware

Source Code
Predicted
Workload

Sampling
Interval

Figure 1. The implementation of CPU MISER

workload, misprediction is inevitable. Consequently, dra-
matic performance loss occurs. For example, given a sys-
tem whose highest frequency is fmax = 2.6GHz and low-
est frequency is fmin = 1.0GHz, consider a case where
the predicted workload is κ = 0 and the actual workload is
κ = 1.0, the actual performance loss during the ith interval
would be as high as 160%.

We address this problem by adapting the sampling in-
terval and decreasing the weight of the intervals with pos-
sible large performance loss. Specifically, we decrease the
sampling interval when the processor switches to a lower
frequency and increase the sampling interval when the pro-
cessor runs at a higher frequency. Specifically, we set the
the sampling interval T ′s(f) at frequency f as:

T ′s(f) = max{δ(f)
δ∗

Ts, Ts0} (12)

Here Ts is the standard sampling interval at fmax; δ∗ is the
user-specified, performance-loss constraint; δ(f) is the po-
tential performance loss at frequency f ; and Ts0 is an upper
bound due to practical considerations.

4 System Design

Figure 1 shows the implementation of CPU MISER, a
system-wide, run-time DVFS scheduler for multicore or
SMP based power aware clusters. CPU MISER consists of
three components: performance monitor, workload predic-
tor, and DVFS scheduler. The performance monitor period-
ically collects performance events using hardware counters
provided by modern processors during each interval. The
current version of CPU MISER monitors four performance
events: retired instructions, L1 data cache accesses, L2 data
cache accesses, and memory data accesses.4 The first three

4We chose these performance events for AMD Athlon and Opteron pro-
cessors. For other architectures with different numbers and types of coun-
ters, the performance events monitored may require adjustment.



events capture the on-chip workload won, and the last event
describes the off-chip memory access wmem. Performance
monitors are also used to approximate tIO and t0 from the
statistics data provided by the Linux pseudo-file /proc/stat.

The workload predictor first calculates κ using the per-
formance data collected by performance monitors and then
predicts κ with a workload prediction algorithm. In CPU
MISER, the memory-access latency, τmem, is estimated us-
ing the lat mem rd tool provided in the the LMbench mi-
crobenchmark. As it is nontrivial to estimate α and CPIon

separately at run-time, we approximate their product from
Equation (5) and then use this product and Equation (8) to
compute κ. Though CPU MISER supports several work-
load prediction algorithms, it uses the EMA algorithm by
default. For the EMA algorithm, CPU MISER sets the
smoothing factor to an empirical value of λ = 0.5. This is
semantically equivalent to the proportional mode of a PID
controller with a proportional gain KP = 0.5, i.e.,

κ′i+1 = κ′i + 0.5 · (κi − κ′i) (13)

The DVFS scheduler determines the target frequency
for each processor based on the predicted workload κ′ and
modifies processor frequency using the CPUFreq interface.5

Since the processor only supports a finite set of frequen-
cies, we empirically normalize the calculated frequency as
follows:
∀f∗ ∈ [f1, f2] where f1 and f2 is a pair of adjacent

available CPU frequencies, we set f∗ = f2 if f∗ ∈ [f1 +
f2−f1

3 , f2], and f∗ = f1 if f∗ ∈ [f1, f1 + f2−f1
3 ).

Current multicore processors are only capable of setting
the same frequency for all cores. Thus, the DVFS scheduler
chooses the highest calculated frequency among all cores
for the targeted processor frequency.

One additional function of the DVFS scheduler is to
adapt the sample frequency based on the current frequency
as described in Section 3. In our current implementation,
we use two sampling intervals: when the processor is us-
ing its lowest frequency, we empirically set the sampling
interval to 50ms; otherwise we set the sampling interval as
250ms. We plan to study the effects of varying sampling
frequency in future work.

5 Results and Discussions

5.1 Experimental Methodology

We evaluate CPU MISER on a 9-node power-aware clus-
ter named ICE. Each ICE compute node has two dual-core
AMD Opteron 2218 processors and 4GB main memory.
Each core includes one 128KB split instruction and data

5CPUFreq Linux kernel subsystem allows users or applications to
change processor frequency on the fly.

Table 1. Power/performance modes available
on a dual core dual processor cluster ICE

Frequency (MHz) Voltage (V)
1000 1.10
1800 1.15
2000 1.15
2200 1.20
2400 1.25
2600 1.30

L1 cache as well as one 1MB L2 cache. Each processor
supports 6 power/performance modes as shown in Table 1.
The nodes are interconnected with Gigabit Ethernet. We run
SUSE Linux (kernel version 2.6.18) on each node. We use
CPUFreq for the DVFS control interface and PERFCTR for
the hardware-counter access interface.

The programs we evaluate include the NAS Parallel
Benchmark suite. We use MPI (Message Passing Interface)
as the model of parallel computing. The MPI implementa-
tion is MPICH Version 1.2.7. We note each experiment as
XX.S.NP where XX refers to the code name, S refers to the
problem size, and NP refers to the number of processes. For
example, FT.C.16 means running the FT code with problem
size C on 16 processes. Since we used all cores on each
node during the computation, only 4 nodes are needed to
provide the 16 processors.

We measure the total system power (AC power) for each
node using the Watts Up? PRO ES power meter. We record
the power profile using an additional Linux machine. The
power meter samples power every 1/4 second and outputs
the data to the Linux machine via an RS232 interface.

In all results, energy and performance values are normal-
ize to the highest CPU speed (i.e., 2600MHz). In this sec-
tion, we refer the energy as the total energy consumed by
all the compute nodes, and the performance as the elapsed
wall clock time. We repeat each experiment three times and
report their average values.

5.2 Experimental Results

5.2.1 Overall Energy and Performance Results

Table 2 presents the overall energy and performance re-
sults when running the NPB benchmarks. We run each
code at each frequency shown in Table 1 (denoted as static
DVFS control from this point), followed by one run with
CPU MISER enabled, and another with CPUSpeed enabled.
Table 2 shows CPU MISER can save significant energy
without requiring any priori from the applications. The
behavior of CPU MISER is captured by the theory dis-
cussed in §3. The results also indicate that the benefits of



Table 2. Normalized Performance and Energy for the NAS Benchmark Suite. In each cell, the number on
top is the normalized execution time, and the number on the bottom is the normalized energy. For
CPU MISER, the user specified performance loss is δ∗ = 5%.

Code Frequency (MHz) DVFS Scheduler
1000 1800 2000 2200 2400 2600 CPU MISER CPUSPEED

BT.C.16 1.66 1.17 1.08 1.07 1.05 1.00 1.06 1.48
1.06 0.88 0.84 0.90 0.96 1.00 0.95 1.07

CG.C.16 1.47 1.15 1.11 1.07 1.03 1.00 1.02 1.36
0.98 0.88 0.88 0.91 0.94 1.00 0.93 0.95

EP.C.16 2.57 1.45 1.30 1.18 1.08 1.00 1.10 1.05
1.57 1.07 1.00 0.98 0.98 1.00 0.99 1.01

FT.C.16 1.40 1.10 1.06 1.04 1.02 1.00 1.03 1.07
0.92 0.84 0.83 0.88 0.94 1.00 0.89 0.92

IS.C.16 1.52 1.07 0.99 1.01 1.01 1.00 0.96 1.08
1.01 0.82 0.79 0.85 0.93 1.00 0.80 0.78

LU.C.16 1.62 1.13 1.05 1.02 1.06 1.00 1.03 1.32
1.03 0.86 0.83 0.86 0.96 1.00 0.94 1.01

MG.C.16 1.41 1.11 1.03 1.05 0.99 1.00 1.04 1.32
0.92 0.84 0.81 0.87 0.90 0.98 0.92 0.92

SP.C.16 1.53 1.08 1.03 1.02 1.05 1.00 1.08 1.32
1.00 0.84 0.81 0.87 0.96 1.00 0.98 0.97

CPU MISER vary significantly for different benchmarks.
For codes with large amounts of communication and mem-
ory access, CPU MISER can save up to 20% energy with
4% performance loss. For codes that are CPU-bound (e.g.,
EP), CPU MISER saves little energy since reducing proces-
sor frequency would impact performance significantly.

Figure 2 presents the results from Table 2 in graphical
form. We observe that CPU MISER and static DVFS con-
trol result in similar performance slowdown and energy sav-
ings for BT, CG, and FT. For IS, CPU MISER performs
better while static control performs better for LU, MG, SP,
and EP. However, choosing the best static processor fre-
quency requires either a priori information about the work-
load or significant training and profiling. Thus, the dynamic
and transparent characteristics of CPU MISER are more
amenable to use in systems with changing workloads.

In comparing CPU MISER to CPUSPEED, CPU MISER
saves more energy than CPUSPEED, and its performance
loss is controlled. In contrast, CPUSPEED may lose up
to 40% performance with 7% energy increase. Thus, we
conclude that CPUSPEED is not appropriate for system-
wide DVFS scheduling in high-performance computing. To
achieve optimal energy-performance efficiency, the rigor-
ous theoretical analysis used in CPU MISER is necessary
for scheduler design.

5.2.2 Effects of Workload Prediction Algorithms

We have implemented several workload prediction algo-
rithms in CPU MISER. Here we compare two of them:
the PAST algorithm and the EMA algorithm. The results
of these two algorithms for NPB benchmarks are shown in
Figure 3. We observe that the EMA algorithm controls per-
formance loss better than the PAST algorithm, while the
PAST algorithm may save more energy.

The PAST algorithm responds to the current workload
more quickly than the EMA algorithm, while the EMA has
a tendency to delay its decision until having observed simi-
lar workload for several intervals. These decisions dampen
reactions to dramatic workload changes that last for only
very short durations, thereby reducing the chances of work-
load mispredictions. Furthermore, as described in § 3, mis-
predictions are costly as they account for unpredictable, and
at times, significant performance losses.

5.2.3 The Dynamic Behavior of CPU MISER

To better understand the behavior of CPU MISER, we trace
the system power consumption and CPU frequency settings
on one of the compute nodes. Figure 4 shows the traces for
the FT benchmark.

Figure 4-(a) shows all tested DVFS schedulers can cor-
rectly capture workload phases but different DVFS sched-
ulers may result in different system power consumptions.
In contrast, CPU MISER not only scales down the proces-



Performance Slowdown

-10%

0%

10%

20%

30%

40%

50%

60%

BT CG EP FT IS LU MG SP

CPU-MISER Static Control CPUSPEED

Energy Saving

-10%

-5%

0%

5%

10%

15%

20%

25%

BT CG EP FT IS LU MG SP

CPU-MISER Static Control CPUSPEED

Figure 2. Performance slowdown and energy saving of CPU MISER, static control, and CPUSPEED. A
negative performance slowdown indicates performance improvement and a negative energy saving
indicates energy increases.

Performance Slowdown

-5%

0%

5%

10%

15%

20%

25%

BT CG EP FT IS LU MG SP

RELAX PAST

Energy Saving

-5%

0%

5%

10%

15%

20%

25%

BT CG EP FT IS LU MG SP

RELAX PAST

Figure 3. Performance slowdown and energy saving of CPU MISER when using the PAST algorithm
and the EMA algorithm with λ = 0.5.

System Power Traces

150

200

250

300

350

0 5 10 15 20 25 30
Time (Second)

P
ow

er
 (

W
at

t)

2600 MHZ RELAX PAST Internal 2600 - 1800 MHz

CPU Frequency Setting of Different Cores

1000
1200
1400
1600
1800
2000
2200
2400
2600

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Time (Second)

F
re

qu
en

cy
 (

M
H

Z
)

Core 0&1 Core 2&3

(a) Traces of CPU power consumptions (b) Traces of CPU frequencies at different cores

Figure 4. (a) Power traces and (b) frequency traces of CPU MISER and its EMA algorithm.

sors during the communication phases, but also runs at a
relatively lower frequency during the computation phases.

A detailed examination of CPU MISER in Figure 4-(b)
shows that CPU MISER schedules CPU core 2 and core 3
to a lower frequency than core 0 and core 1. We believe
that the major reason for this difference comes from the fact
that core 0 is taking care of the system activities. Because
two cores on the same processor have to be run at the same
frequency, core 1 incurs some power inefficiency due to its
co-scheduling with core 0, though CPU MISER does cor-
rectly predict the best frequencies for core 0 and core 1.

6 Conclusions and Future Work

In summary, this paper presents the methodology, de-
sign, and evaluation of performance-directed, system-wide,
run-time DVFS schedulers for high performance comput-
ing. We have evaluated CPU MISER, a run-time DVFS
scheduler designed with the proposed methodology on a
real power-aware cluster.

Our experimental results show that NPB benchmarks
save up to 20% energy when using CPU MISER as the
DVFS scheduler and that performance loss for most appli-
cations is within the user-defined limit. This implies that
the methodology we presented in this paper is promising



for large-scale deployment. We attribute these results to the
underlying performance model and performance-loss anal-
ysis. However, we also note that further tuning for CPU
MISER is possible and the subject of future work.

Given that CPU MISER is built upon a generic frame-
work and is transparent to both users and applications, we
expect that it can be extended to many power-aware clusters
for energy savings. In the future, we will refine the run-time
parameter derivation and improve the prediction accuracy.
We will also further investigate the impact of CPU MISER
on more architectures and applications.

Acknowledgement

The authors would like to thank the National Science
Foundation and the Department of Energy for sponsoring
this work under grants NSF CCF-#0347683 and DOE DE-
FG02-04ER25608 respectively.

References

[1] R. Bianchini and R. Rajamony. Power and energy
management for server systems. IEEE Computer,
37(11):68–76, 2004.

[2] Kirk W. Cameron, Rong Ge, and Xizhou Feng. High-
performance, power-aware distributed computing for
scientific applications. IEEE Computer, 38(11):40–
47, 2005.

[3] E. V. Carrera, E. Pinheiro, and R. Bianchini. Con-
serving disk energy in network servers. In the 17th
International Conference on Supercomputing, 2003.

[4] Kihwan Choi, Ramakrishna Soma, and Massoud Pe-
dram. Fine-grained dynamic voltage and frequency
scaling for precise energy and performance trade-off
based on the ratio of off-chip access to on-chip compu-
tation times. In DATE ’04: Proceedings of the confer-
ence on Design, automation and test in Europe, 2004.

[5] Keith I. Farkas, Jason Flinn, Godmar Back, Dirk
Grunwald, and Jennifer M. Anderson. Quantifying
the energy consumption of a pocket computer and a
java virtual machine. In Proceedings of the 2000 ACM
SIGMETRICS (SIGMETRICS’00), 2000.

[6] Vincent W. Freeh and David K. Lowenthal. Us-
ing multiple energy gears in mpi programs on a
power-scalable cluster. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPOPP’05), 2005.

[7] Rong Ge and Kirk W. Cameron. Power-aware
speedup. In The 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS’07), Long
Beach, CA, 2007.

[8] Rong Ge, Xizhou Feng, and Kirk W. Cameron. Im-
provement of power-performance efficiency for high-

end computing. In The 1st Workshop on High-
Performance, Power-Aware Computing, 2005.

[9] Rong Ge, Xizhou Feng, and Kirk W. Cameron.
Performance-constrained distributed dvs scheduling
for scientific applications on power-aware clusters. In
Proceedings of the ACM/IEEE Supercomputing 2005
(SC’05), 2005.

[10] Jerry Hom and Ulrich Kremer. Inter-program opti-
mizations for conserving disk energy. In Proceedings
of the 2005 international symposium on Low power
electronics and design (ISLPED’05), 2005.

[11] Chung-Hsing Hsu and Wu chun Feng. Effective dy-
namic voltage scaling through cpu-boundedness de-
tection. In The 4th international workshop on Power-
aware computer systems (PACS’04), 2004.

[12] Chung-Hsing Hsu and Wu chun Feng. A power-aware
run-time system for high-performance computing. In
Proceedings of the ACM/IEEE Supercomputing 2005
(SC’05), 2005.

[13] Chung-Hsing Hsu and Ulrich Kremer. The design, im-
plementation, and evaluation of a compiler algorithm
for cpu energy reduction. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language
design and implementation (PLDI’03), 2003.

[14] Min Yeol Lim, Vincent W. Freeh, and David K.
Lowenthal. Mpi and communication - adaptive, trans-
parent frequency and voltage scaling of communica-
tion phases in mpi programs. In Proceedings of the
ACM/IEEE Supercomputing 2006 (SC’06), 2006.

[15] Ankush Varma, Brinda Ganesh, Mainak Sen, Suchis-
mita Roy Choudhury, Lakshmi Srinivasan, and Jacob
Bruce. A control-theoretic approach to dynamic volt-
age scheduling. In Proceedings of the 2003 interna-
tional conference on Compilers, architecture and syn-
thesis for embedded systems (CASE’03), 2003.

[16] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In Proceedings
of the First Symposium on Operating System Design
and Implementation (OSDI’94), November 1994.

[17] Qiang Wu, Margaret Martonosi, Douglas W. Clark,
Vijay Janapa Reddi, Dan Connors, Youfeng Wu, Jin
Lee, and David Brooks. Dynamic-compiler-driven
control for microprocessor energy and performance.
IEEE Micro, 26(1):119–129, 2006.

[18] Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou,
Kimberley Keeton, and John Wilkes. Hibernator:
Helping disk array sleep through the winter. In the
20th ACM Symposium on Operating Systems Princi-
ples (SOSP’05), 2005.


