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Introduction

Convective transport of supra-thermal electrons can play a significant role in the energy
balance of stellarators in case of high power electron cyclotron heating. Here, together
with neoclassical thermal particle fluxes also the supra-thermal electron flux should be
taken into account in the flux ambipolarity condition, which defines the self-consistent
radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial
electric field, one needs an iterative procedure to solve the ambipolarity condition, where
the supra-thermal electron flux has to be calculated for each iteration. A conventional
Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes [1] is
rather slow for performing the iterations in reasonable computer time. In the present
report, the Stochastic Mapping Technique [2, 3] (SMT), which is more effective than the
conventional Monte Carlo method, is used instead. Here, the problem with a local mo-
noenergetic supra-thermal particle source is considered and the effect of supra-thermal
electron fluxes on both, the self-consistent radial electric field and the formation of dif-
ferent roots of the ambipolarity condition are studied.

Flux balance and neoclassical particle fluxes

In a stellarator the constraint that the ion and electron fluxes be equal determines the
radial electric field. Thus, the equation for the flux balance, Γnc

e + Γs
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be fulfilled on each flux surface. Here, Γnc
α with α = e, i are the neoclassical particle

fluxes [1],

Γnc
α = −nα

{

Dα
11

(

n′

α

nα

−

qαEr

Tα

)

+Dα
12

T ′

α

Tα

}

,

with qα, nα, Tα, Er being the particle charge, density, temperature and the radial electric
field, respectively, and prime denotes a derivative with respect to a formal radius.

The neoclassical diffusion coefficients Dα
11

and Dα
12

are computed according to the Shaing-
Houlberg-model [4], where instead of εh the effective ripple εeff [5] is used [6]. The balance
equation is a non-linear equation in the radial electric field which might have multiple
roots.

Supra-thermal particle fluxes

The supra-thermal particle flux, Γs
e, is of particular importance for the confinement since

it can influence the radial electric field through the ambipolarity condition [1]. Following
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the SMT approach [2, 3], the usual expression for particle flux through the magnetic
surface ψ̂ = ψ̂0 defined in guiding center variables and flux coordinates (ψ̂, θ, ϕ) can be
written as an average over Poincaré cuts of the phase space flux density,

Γs
e = 2π

∑

m

∫

d5uΓm(u)δ(t− u5)
[

Θ
(
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)

− Θ
(
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)]

.

Here, Γm(u) is the pseudo-scalar particle flux density through those Poincaré cuts, u de-
notes the five variables x1, x2, p, λ, t, where x1, x2 are contravariant coordinates in a local
magnetic coordinate system, and p, λ, t are the momentum modulus, the particle pitch
and the time, respectively. The summation over m is a summation over contributions
from different Poincaré cuts and Θ is the Heaviside step function. In SMT, Z(zm, τ) is
the solution to equations of particle drift motion with zm being the initial value of phase
space variables on the Poincaré cut with index m, and with τbm being a transition time
between cuts. All details of SMT can be found in Ref. [2, 3]. The energy flux is obtained
in the same way and it differs from Γs

e by the factor wk(u) in the sub-integrand, where
wk is the value of the kinetic energy of the particle at the phase space point u on the cut.

Computational results

For numerical computations, the magnetic field from the W7-AS stellarator [7] was used
in its real space representation. In Figure 1, particle and energy fluxes of supra-thermal
particles are shown, respectively. The particle source is on the magnetic axis in the
magnetic field minimum located at the elliptic cross section of W7-AS. Trapped particles
with a pitch value λ0 = 0.1 and fixed energies w0 ranging from w0 = 2T0 to w0 = 9T0

are generated there. The source rate in these computation was νstat = Psource/w0 where
Psource = 400 kW is the source power. The profiles of the equilibrium parameters were the
following, Tα(ψ̂) = T0(1.2− ψ̂), nα(ψ̂) = n0(1.2− ψ̂)2, Φ(ψ̂) = T0ψ̂/e, where T0 = 3 keV,
n0 = 3 · 1013 cm−3, and a = 17.4 cm, respectively. The quantity ψ/ψb = ψ̂ = (r/a)2

was chosen as a formal flux label, where the radius r = R − R0 is computed in the mid
plane of the symmetric cross section and R0 is the radius of the magnetic axis. It can be
seen that the energy of the source particles has a significant influence on the profiles of
supra-thermal fluxes.

The results of self-consistent modeling are presented in Figures 2 and 3, where a modified
density profile n0(1.2 − ψ̂2) is used. Figure 2 shows the self-consistent Er-profile with
neoclassical fluxes only. Supra-thermal electron fluxes are given for λ0 = 0.1 and two
energies, in each case with its respective Er-profile. One can clearly see that particles
with lower energy (4T0) have time to slow down, whereas particles with higher energy
(9T0) quickly drift out of the plasma.

Figure 3 shows the formation of the “electron root” in a rather narrow region near the
magnetic axis. Figure 3 also shows the dependence of fluxes on Er in two radial positions.
One can see that at r = 5.5cm two stable solutions exist, which finally result in the
formation of the “electron root”. The decision which root has to be chosen is based on
the minimization of a generalized heat production rate [1]. Following that approach, the
position of the poloidal shear layer can be determined from

P (r) =

∫ Ee
r

Ei
r

(ZiΓ
nc
i − Γnc

e − Γs
i ) dEr = 0 ,
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where Ei
r and Ee

r are the stable solutions for Er in the “ion” or “electron root”, respec-
tively. The “ion root” is then realized for P > 0 and the “electron root” for P < 0 [1].
Basically, the ion root is realized almost everywhere. When approaching the axis, the
neoclassical fluxes are decreasing together with the magnetic surface area, but at the
same time the supra-thermal flux is increasing. Finally, the neoclassical bifurcation oc-
curs and the root is changed from “ion” to “electron”. Further inward, the “electron
root” disappears which can be seen in Figure 3 where the pertinent root vanishes. This
event is an artifact of the neoclassical transport model used in the present computation
where the ion flux is decreasing with increasing Er and cannot balance the supra-thermal
flux anymore. As discussed in Ref. [1], the validity of the neoclassical theory may be
violated in such a case of a very strong radial electric field.

Summary

The application of SMT to a “global” computation of supra-thermal particle fluxes in
a stellarator shows that this method is fast enough to allow for iterations of the radial
electric field using the ambipolarity condition taking into account fluxes from supra-
thermal particles. For this purpose, SMT is the ideal tool, because the computation
of one self-consistent profile requires only tens of minutes on a DEC Alphastation 500
depending on accuracy. Therefore, SMT combined with a neoclassical balance code
permits the self-consistent modeling of particle and energy balance in a stellarator with
strong electron or ion cyclotron heating where the convective transport of supra-thermal
particles plays a significant role. It is also shown that convective fluxes are very sensitive
to the detailed structure of the supra-thermal particle source. In the case of ECRH,
non-linear effects of wave-particle interaction are dominant in the formation of such a
source [8]. The method for modeling this effects has been recently developed and will be
included in future models based on SMT.
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Figure 1: Particle flux (left) and energy flux (right) versus normalized flux label ψ̂,
respectively. The particle energy ranges from w0 = 2T0 to w0 = 9T0 from bottom to top.
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Figure 2: Radial electric field Er resulting from neoclassical fluxes only (left) and supra-
thermal particle flux Γs

e (right) versus radius r, respectively. The supra-thermal fluxes
are computed for w0 = 4T0 (full) and w0 = 9T0 (dashed) in each case with a selfconsistent
Er. In addition, the profiles of ne and Te in dimensionless units are given (left plot).
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Figure 3: Left: Radial electric field Er versus radius r for two energies of source particles
and for the neoclassical equilibrium (blue dots). Right: Total electron flux at r = 5.5cm
(1) and at r = 5.0cm (2), supra-thermal electron flux (3) and ion flux (4) versus radial
electric field Er, respectively, for the w0 = 9T0-case. Circles mark stable roots, whereas
crosses mark unstable ones.
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