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ABSTRACT 
This paper quantifies long-run hydrological 
persistence in reservoir inflows to two regions: 
Melbourne and Sydney. We use a relatively new 
approach in hydrology, Empirical Mode 
Decomposition (EMD). Our three key results are 
summarised below: 
(1) For Melbourne and Sydney inflows, 57-66% of 
total variance was accounted for by periodicities 
<10 years; 20-21% of total variance was 
attributable to periodicities >10 years; and 14-22% 
of variance is residual.  
(2) Long-run persistence is cross-correlated 
between key reservoir inflows within each region.  
(3) Coincidence of troughs in multiple Intrinsic 
Mode Functions (IMFs) may be associated with 
intense drought periods (and vice versa), and may 
further be associated with hydro-meteorological 
influences. We examined one such influence 
(Southern Oscillation Index, [SOI]) and found 
significant correlations in Sydney. 
 
The relatively high proportion of inflow variance 
represented by long-run (>10 years) components is 
a strong illustrator of long-run hydrological 
persistence in these two regions. If not accounted 
for by water supply planners, long-run hydrological 
persistence may contribute to larger water supply 
reliability risk. Further, the regional cross-correlation 
of long-run persistence may amplify this risk, where 
there is high reliance on climate-dependent sources 
(e.g. reservoir inflows) for a city’s water supply. 
 
EMD represents a potentially powerful approach for 
water supply planners seeking to improve reliability 
estimates through explicit incorporation of long-run 
hydrological persistence into future inflow 
modelling. This paper also presents a number of 
methodological insights that are helpful for water 
resource practitioners seeking to apply this 
accessible method.  
 
INTRODUCTION 

Long-run hydrological persistence is pervasive in 
historical river flow data. The implications of 
persistence are especially salient for major cities 
striving to achieve cost-effective reliability in their 
future water supply strategies, particularly in 
regions where hydrology is strongly influenced by 
major climatic systems such as the El Niño 
Southern Oscillation (ENSO). Cities on both sides 

of the Pacific (East Coast Australia and West Coast 
United States) have recently experienced the 
downside of hydrological persistence in the form of 
record droughts that have prompted diversification 
of water supply portfolios, including alternative 
climate-independent sources such as desalination. 
Furthermore, interactions between persistence and 
climate change are just starting to be explored, and 
the latter may further amplify persistence. 

 

Explicit incorporation of long-run hydrological 
persistence has not to date always featured in 
water supply planning by agencies. Persistence 
may pose a downside risk to reliability: hence 
reliability estimates excluding persistence effects 
may be overstated. One potential obstacle for water 
supply agencies is the accessibility of appropriate 
techniques to explicitly incorporate hydrological 
persistence in their reliability modelling. Some 
analysts have also questioned the reliability 
improvement to be expected, reasoning that it may 
not be worth the additional effort (Klemes et al. 
1981). 

 
This paper applies a novel, accessible method to 
capture persistence: EMD. Originally developed in 
oceanography, this paper is amongst the first to 
apply the method directly to reservoir inflows. 
 
PROJECT CONTEXT 
Results presented in this paper constitute Phase 1 
of a multi-year project titled ‘Insuring the Reliability 
of a City’s Water Supply’, led by the University of 
Melbourne with collaborative partners including 
Melbourne Water Corporation and Water NSW.1 
The hydrological component of the project involves 
applied time series analysis and modelling of 
historical natural inflows supporting two of 
Australia’s largest cities: Sydney and Melbourne.  
 
The EMD results presented in this paper are a 
critical input to Phase 2 of the project, which will 
prepare leading practice inflow models for the 
respective cities. The aim is to synthetically 
generate multiple reservoir inflows which replicate 
the features of the original series. This includes 
both observed short-run effects (cross-correlation 
and autocorrelation); and explicit capture of long-
                                                      
1 Prior to 01 Jan 2015, this agency was Sydney 
Catchment Authority. 



run hydrological persistence. These future inflow 
models are designed for use by water supply 
agencies for scenario modelling to evaluate their 
city’s water portfolio options and make sound 
investment decisions to secure their future water 
reliability. 
 
STUDY REGIONS 
This paper examines reservoir inflows supplying 
two cities: Melbourne and Sydney. Historical natural 
inflow data (consisting of measurement records 
with modelled reconstructions of incomplete and 
missing data) were provided by the lead water 
agencies in each city responsible for managing the 
respective reservoir networks, and the supply of 
water from these to the cities. Data were available 
for four reservoirs managed by Melbourne Water 
Corporation (Thomson, Upper Yarra, O’Shannassy 
and Maroondah) for a 98-year period (1913-2010). 
For Sydney, data were available for nine reservoirs 
managed by Water NSW (Warragamba, Nepean, 
Cataract, Avon, Cordeaux, Woronora, 
Wingecarribee, Fitzroy Falls and Tallowa) for a 104-
year period (1909-2012). Basic descriptive statistics 
for these inflow series are presented in Table 1. 
 
This paper considers only the historical natural 
inflow series: it does not encompass any reservoir 
storage or operational factors. EMD was applied to 
total annual inflows, based on the calendar year. 
 
Table 1: Inflow statistics. SD= Standard Deviation; 
CV=Coefficient of Variation 
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Warra 1,058.59 1,145.70 1.082 

Nep 101.21 98.02 0.968 

Cat 81.11 52.21 0.644 

Avon 69.17 55.70 0.805 

Cord 53.87 37.45 0.695 

Woro 40.63 31.60 0.778 

Wing 13.78 8.49 0.616 

Fitz 12.05 6.19 0.514 

Tall 1,201.19 1,176.10 0.979 

: 0.787 

 
LITERATURE REVIEW 
Approaches to Characterising Long-Run 
Persistence 
Quantifying long-run persistence in hydrological 
time series is best-informed by plausible 
hypotheses regarding causal mechanisms. Natural 

reservoir inflows are generally understood to result 
from multiple hydro-meteorological influences (Data 
Generating Processes [DGPs]) occurring over 
various time horizons. Prominent regional 
influences include ENSO (periodicities ranging over 
3-7 years) and the Interdecadal Pacific Oscillation 
(IPO: 10-25 years). Our basic premise is that 
superimposition of these DGPs introduces 
hydrological persistence over a range of scales. 
 
This renders the task of quantifying long-run 
persistence as one of decomposing a hydrological 
time series into discrete signals operating over a 
range of time-frequency domains, with each signal 
potentially representing a discrete hydro-
meteorological influence. These signals may be 
comprised of periodic, monotonic and random 
components. 
 
In the past, characterization of the DGPs that 
influence hydrological persistence has been 
attempted using a range of methods. Generic 
techniques for signal decomposition date from 
Fourier (1822) and gave rise to the modern 
discipline of Singular Spectral Analysis (SSA). The 
Hurst exponent (Hurst 1951) is an early and simple 
quantitative measure of long-term hydrological 
‘memory’, based on British water engineer Hurst’s 
pioneering work on historical river flow records on 
the Nile. The Hurst exponent has been used in 
multiple hydrologic analyses. 
 
Wavelet analysis represents a more recent method 
that has found application in hydrology. However, 
all of these techniques have limitations, prominent 
amongst them being assumptions of stationarity. 
EMD is an alternative method for identifying signals 
operating over a range of time-frequency domains, 
and its advantage over traditional decomposition 
approaches is its ability to identify non-stationary 
modes of persistence with varying frequency and 
amplitude over time (Huang et al. 1998). The EMD 
approach has been successfully applied to global 
precipitation records (Pegram et al. 2008; Peel et 
al. 2009); and McMahon et al. (2008) have applied 
it to local (Canberra) rainfall records. EMD is 
beginning to be applied to hydrological records 
internationally (Napolitano et al. 2011; Sang et al. 
2012; and Karthikeyan and Kumar 2013), though 
has yet to be extensively applied to hydrological 
records in Australia. 
 
METHODS 
EMD is used to decompose an original series into a 
set of IMFs (Huang et al. 1998). Each IMF has a 
characteristic periodicity, and by construction is 
theoretically independent (orthogonal) to the other 
IMFs in the set. The systematic decomposition into 
IMFs is conducted in a series of steps:  
1) identify the local maxima and minima 
(collectively: extrema) of the original series;  
2) fit a spline to the maxima to create an upper 
envelope;  



3) fit a spline to the minima to create a lower 
envelope;  
4) calculate the local mean of the two envelopes 
and subtract this from the candidate series; and 
5) check the newly created series against the IMF 
conditions.  
 
IMFs must satisfy two conditions (Huang et al. 
1998):  
a. the number of zero crossings for the candidate 

series must be within +/- 1 of the total number 
of extrema. (This ensures the dataset is 
discrete, complete, and sampled at consistent 
time intervals); and  

b. the mean of the envelope defined by the local 
minima and maxima is zero  

 
If the IMF conditions are not met, steps 1-5 are 
repeated iteratively in a process called sifting 
(Huang et al. 1998). Sifting has two objectives: to 
eliminate riding waves and to increase the 
symmetry of the wave profile in the series (Huang 
et al. 1998). A ‘stopping criterion’ for sifting is 
defined by the user. We have adopted the criterion 
of Huang et al. (2003), i.e. we accept a candidate 
series as an IMF after five consecutive sifts that 
meet IMF condition (a). Once the first IMF is 
identified, it is subtracted from the original series, 
and the process is repeated on the residual series 
to extract all IMFs present in the data. In 
accordance with Peel et al. (2005), we cease IMF 
extraction when there are a total of ≤3 extrema in 
the candidate series. At this point, the candidate 
series represents a residual. The sum of the IMF 
set, plus the residual, gives the original series. 
 
Methodological Innovations: Splines and 
Endpoints 
Huang et al. (1998) identified areas for 
improvement to the EMD method, most notably the 
choice of spline for creation of the upper and lower 
envelope; and endpoint treatment. In this paper, we 
use the latest innovations in handling these 
limitations: rational spline interpolation and endpoint 
reflectance. 
 
Steps 2 and 3 are crucial to the EMD process, and 
involve spline-fitting. Early applications of EMD 
used the traditional cubic spline. However, cubic 
splines can create over- and under-shooting in the 
fitting procedure, which can overinflate the variance 
of the IMFs and the residual (Peel et al. 2007).  
 
As an alternative, Pegram et al. (2008) and Peel et 
al. (2009) suggested the use of rational splines. 
These have a variable tension parameter, P, 
which allows the tautness of the spline to be 
controlled. The P can vary from zero (cubic spline) 
to larger values where the spline approaches a 
linear interpolator. Increasing P can reduce the 
variance inflation and cross-correlation of individual 
IMFs. Minimising IMF cross-correlation is important, 
because their subsequent use in reconstructing the 

series for synthetic inflow generation requires the 
independence assumption to be well-approximated.  
 
By definition, the EMD method is empirical, and 
experimentation and judgement are required in the 
selection of the most appropriate P. Peel et al. 
(2009) proposed an Orthogonality Index (OI) as a 
measure of collective independence of an IMF set. 
The OI is calculated by scaling the absolute value 
of the IMF cross products by the detrended 
residual. As the OI approaches zero, the 
decomposition approaches orthogonality: hence, 
according to this measure, an optimal P is one that 
minimises OI.  
 
Sensitivity analyses by Peel et al. (2007) and Peel 
et al. (2009) have suggested P values of 5 and 0-2 
respectively as suitable for different rainfall 
datasets. In this paper, given we are applying 
rational spline EMD for the first time to hydrological 
inflows for Melbourne and Sydney, we conducted a 
broad sensitivity analysis (0≤P≤5) on one inflow 
series (Thomson) which guided more targeted 
sensitivity analysis (0.5≤P≤2) to the remaining 
inflow series, before individually selecting the most 
appropriate P for each inflow series. 
 
Endpoint treatment was a second area identified by 
Huang et al. (1998) for methodological 
improvement to EMD. Because any time series 
record is of finite length, it is a truncation of a 
theoretically continuous variable. Without further 
information, it is not possible to ascertain whether a 
series endpoint is in fact an extrema. This poses a 
problem for spline-fitting. Inappropriate treatment 
can allow the endpoints to fluctuate, which may 
inadvertently back-propagate artificial waves 
through a candidate series not observed in the 
original data. This can progressively corrupt 
subsequently extracted higher-periodicity IMFs. An 
initial endpoint technique involved padding the 
series with additional ‘characteristic’ or ‘typical’ 
waves (Huang et al. 1998).  Rilling et al. (2003) 
mirrorized the extrema closest to the edge. The 
average of the two closest maxima (minima) for the 
upper (lower) spline envelope has also been used 
to deal with the endpoint condition (Chiew et al. 
2005). Pegram et al. (2008) used endpoint 
reflectance, which identifies a virtual point that is a 
reflection of the last extrema point on both ends of 
the IMF. This technique sets the virtual point to 
have the same second derivative as the endpoint it 
mirrors, and is a refinement of Rilling’s mirrorizing 
method. Endpoint reflectance has successfully 
limited the influence of the endpoints on the IMFs  
(Peel and McMahon 2006), and is the technique 
used in this paper. EMD analysis including spline-
fitting was conducted in MS Excel using the 
SplineCalc© software package coded in VB. 
Supporting metrics were calculated in the R 
software package. 
 
 



Hypothesis Testing 
Extracting the set of IMFs for a series gives the 
periodicity of each IMF, and the proportion of total 
variance accounted for by each IMF. IMFs may also 
be plotted as time series. These key EMD outputs 
offer powerful potential for hypothesis testing. In 
this study, we tested several hypotheses: 
 
Hypothesis 1: a significant proportion of total inflow 
variance is attributable to IMF periodicities >10 
years, indicating the presence of long-run 
hydrological persistence. Further, reservoir inflows 
with higher variability exhibit a higher proportion of 
EMD residual.  
 
Hypothesis 2: long-run hydrological persistence is 
cross-correlated between reservoir inflows within a 
region. 
 
Hypothesis 3: coincidence of troughs in multiple 
IMFs is associated with major droughts (and vice 
versa). Further, there is a correlation between 
inflow IMFs and possible causal mechanisms (e.g. 
hydro-meteorological phenomena such as the SOI). 
 
RESULTS 
Sensitivity Analysis 
Table 2 shows that for the Thomson inflow series, 
the OI is minimised (and the number and level of 
statistically significant individual cross-correlations 
reduced) using P = 2. The more targeted sensitivity 
analysis (0.5≤P≤2) subsequently conducted on the 
remaining inflow series found that a P within the 
range 0.5-2 provided reasonable scope to 
maximise individual and collective independence of 
the IMFs for these reservoir inflow series. These 
results for hydrological inflows concur with previous 
applications of EMD to a large sample (n=8135) of 
annual precipitation time series (Peel et al. 2009). 
However, as demonstrated in Tables 2 and 3, each 
reservoir presents unique characteristics which 
cautions against a ‘one size fits all’ choice of P for a 
given regional dataset. The result for Upper Yarra 
warrants further explanation: in this case the P with 
the lowest OI (P=2) was not selected. This value 
extracted five IMFs; however IMFs 3 and 4 
exhibited distinguishability issues (as indicated by 
the individual cross-correlation matrix, and visual 
inspection of the graphed IMFs). The lower P 
setting (P=1) was selected instead, as this 
extracted four clearly distinguishable IMFs.  
 
Result 1: Presence of long-run persistence 
Tables 4 and 5 present the EMD results for the 
Sydney and Melbourne inflows respectively. Two 
key results are the IMF periodicities and the 
proportion of total variance accounted for by each 
IMF. Collectively, the Melbourne results indicate 
that 66% of total inflow variance is accounted for by 
periodicities <10 years: 20% of variance is 
attributable to periodicities >10 years, with 14% 
representing a residual. For Sydney, 57% of total 
inflow variance is accounted for by periodicities <10 

years: 21% of variance is attributable to 
periodicities >10 years, with 22% representing a 
residual. This is strong evidence supporting 
Hypothesis 1: long-run persistence is present in 
these inflows. There is also in general a good 
correspondence between variability (measured 
here using the inflow Coefficient of Variation, CV, 
from Table 1) and the proportion of variance in the 
residual category. This was apparent at both a 
regional and (with the exception of Fitzroy Falls) 
individual inflow level. The Sydney inflows exhibit 
considerably higher variability relative to the 
Melbourne inflows.  
          
Table 2: Sensitivity analysis results for Melbourne. 
Optimal OI (hence P selections) are underscored. 
 

Inflow: 
P: 

0 0.5 1 2 3 5 

Thom 0.101 0.103 0.090 0.084 0.135 0.176 

UY 

 

0.113 0.099 0.096 

 OShan 0.073 0.049 0.081 

Maroon 0.069 0.102 0.044 

 
Table 3: Sensitivity analysis results for Sydney. 
Optimal OI (hence P selections) are underscored. 
 

Inflow: 
P: 

0.5 2 

Warragamba 0.062 0.126 

Nepean 0.118 0.059 

Cataract 0.087 0.125 

Avon 0.035 0.064 

Cordeaux 0.049 0.063 

Woronora 0.111 0.146 

Wingecarribee 0.066 0.102 

Fitzroy 0.059 0.049 

Tallowa 0.147 0.140 

 
Result 2: Correlation of long-run persistence 
between reservoir inflows 
To test Hypothesis 2, for each region, correlation 
matrices were produced for the IMFs of similar 
periodicity (e.g. a correlation matrix was produced 
for Melbourne IMF1s, IMF2s, etc). Figures 1 and 2 
show the histograms of these correlation matrices. 
This allows visualisation of how inter-reservoir 
correlation evolves with increasing periodicity. 
While correlations between IMFs in general 
decreased with increasing periodicity, Figures 1 
and 2 highlight persistent high correlations between 
select reservoir inflows in both Melbourne and 
Sydney. For Melbourne, the strongest correlation at 
periodicities >10 years was between Thomson and 
Upper Yarra: the two largest Melbourne reservoirs 
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Figure 1: Correlation coefficient histograms for 
IMFs: Melbourne 
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Figure 2: Correlation coefficient histograms for 
IMFs: Sydney 
 
collectively representing 68% of the Melbourne 
inflow volumes studied here. An interesting area for 
future exploration is the relative contributions of 
scale (reservoir size) and geographic proximity, to 
this result.  
 
For Sydney, a relatively higher proportion of higher 
correlations is apparent at higher periodicities. The 
Nepean-Cataract, Nepean-Wingecarribee and 
Warragamba-Nepean correlations were >0.80 for 
IMF4 (mean periodicity=32.01 yrs). Collectively, 
these reservoirs represent 48% of the Sydney 
inflows studied here, including three of the largest 
four.  
 
For both regions, the critical implication for water 
supply planners is that the relatively high degree of 
correlation in long-run hydrological persistence 
between large reservoirs in the surface water 
supply network amplifies the vulnerability of the city 
to intense droughts. This poses a risk to water 

supply reliability in both cities if there is high 
volumetric reliance on climate-dependent sources 
(i.e. reservoirs). 
 
Result 3: Trough Coincidence and SOI 
Figure 3 plots the time series graph of the EMD 
IMFs for one representative inflow from each 
region: Warragamba (Sydney) and Thomson 
(Melbourne). To test Hypothesis 3, a qualitative 
trough coincidence analysis was undertaken. 
Intense drought periods in the hydrological inflows 
were identified as follows. In each region r, 
transform each total annual inflow series i into z-
variates (where each zit time series has zero mean 
and unit variance) for each timestep t, before 
averaging the nr inflow z-variates each t: 
 

   (1) 
 
 
 
then take a five-year rolling average of zrt. Figure 4 
plots the result, and allows visualisation of periods 
of significant negative deviation in inflow records for 
both regions. Figure 4 indicates intense droughts 
around 1940, 1970, the early 1980s, and the most 
recent ‘millennial drought’ of the early 2000s. 
 
These major drought periods were then compared 
to the Warragamba and Thomson IMFs in Figure 3, 
which shows: 

 the 1940 drought coincides with troughs in 
Warragamba IMFs 1, 2 and 4, and 
Thomson IMF 1; 

 the 1970 drought corresponds with troughs 
in Warragamba IMF3 and 4, and Thomson 
IMF1 and 2; 

 the 1980 drought coincides with troughs in 
Warragamba IMF2 and 3, and Thomson 
IMFs 1, 2 and 3; and 

 the millennial drought was associated with 
troughs in Warragamba IMFs 3, 4 and a 
low residual, and Thomson IMF2 and 3. 

 
The next step is comparison with a potential causal 
mechanism. As the SOI is one candidate for partial 
causal mechanism association and attribution, a 
correlation analysis was undertaken between the 
reservoir inflow series and the SOI. Monthly SOI 
values were sourced from the Bureau of 
Meteorology, and subject to the same EMD 
analysis as the reservoir inflows. A P sensitivity 
analysis suggested 0.5 was an appropriate setting 
for the SOI EMD. Eight IMFs were extracted from 
the monthly SOI series. 
 
The correlation was performed on IMFs from the 
regional inflows and the SOI IMF that exhibited a 
similar periodicity: there were three such SOI IMFs. 
For example, one correlation matrix consisted of 
the four IMF1s from Melbourne (mean 
periodicity=3.26 yrs) and SOI IMF5 
(periodicity=3.61 yrs). Matrices were generated for 

Thomson/ 
Upper Yarra 

̅
∑ ̅

1
 



three periodicities for each region. Table 6 presents 
the results, with the stand-out that Sydney exhibited 
six (out of 9) inflow IMFs, with mean periodicity of 
14.18 years, as significantly correlated with the SOI 
IMF of periodicity 14.62 years. Melbourne exhibited 
only one inflow IMF as significantly correlated 
across the three periodicities studied. Collectively, 
these results provide some evidence in support of 
Hypothesis 3: trough coincidence is associated with 
intense drought periods, and, in Sydney, with a 
plausible causal mechanism examined here (SOI). 
 
Table 6: number of individually significant cross-
correlations between regional inflow IMFs and the 
SOI IMF of similar periodicity 
 

 
SOI MEL SYD 

IMF periodicity [yrs] 3.61 3.26 3.00 

# correlations 0 2 

IMF periodicity [yrs] 6.62 6.19 6.90 

# correlations 1 0 

IMF periodicity [yrs] 14.62 13.18 14.18 

# correlations 0 6 

 
DISCUSSION 
Methodological insights for practitioners 
The sensitivity analysis highlights several practical 
issues in the application of EMD which are helpful 
for future practitioners. There are tradeoffs involved 
in selecting an ‘optimal’ tension parameter. Three 
considerations were used in this analysis: 
minimising individual cross-correlations (the 
number and statistical significance of these); 
minimising the OI; and finally the partitioning of 
variance between IMFs. For example: an IMF that 
makes a marginal contribution to total variance may 
have no physical meaning. These IMFs may fail the 
individual cross-correlation statistical test for 
independence; and further, visual inspection of the 
periodicity in the resultant time series graphic can 
suggest the IMF is not sufficiently distinguishable 
from the previously extracted IMF. A solution in 
these instances may include trialling a different P 
setting. This analysis also demonstrated that a 
single, universally-optimal P setting for a regional 
dataset is unlikely, and a unique P setting for each 
data series may be required if the optimal value is 
sought. Short of this objective, however, P settings 
within a certain range appear to deliver adequate, 
stable IMF sets with associated statistics. 
 
The broad sensitivity analysis on Thomson inflows 
illustrates the tradeoff between minimising OI and 
the number of individually significant cross-
correlations between inflow series. While the P = 0 
setting (the traditional cubic spline, originally (and 
still extensively) used in EMD) gave the least 
number of the latter, it did not yield the minimum OI. 
Difficulty in quantifying the overshooting problem 
associated with the high-curvature cubic spline is 

another reason to avoid choice of P = 0. However, 
setting the tension parameter too high (3≤P≤5) 
introduced numbers of individually significant cross-
correlations. We found that higher P settings 
tended to increase sensitivity to minor deviations 
towards the endpoints of series: ‘tighter’ settings 
gave upper (lower) envelopes that were more likely 
to under- (over-) cut the curvature (cf. local) 
extrema in the series, resulting in artificially inflated 
numbers of extrema. This increased the number of 
sifts required to extract IMFs (as the  stopping 
criteria were rendered disproportionally harder to 
meet), leading to over-sifting and extraction of 
higher-periodicity IMFs which may not be 
independent. Consideration of these factors affirms 
choice of P = 2 as optimal for the test series 
(Thomson inflows). 
 
In general, higher tension parameters produced 
more optimal OI for the Melbourne inflows relative 
to the Sydney inflows. Based on our observations 
of the tension parameter sensitivity analysis, we 
hypothesize that higher tension parameters 
generate more sifting artefacts in time series that 
exhibit higher variability. This interpretation is 
supported by Table 1, which shows that the 
Coefficient of Variation (CV) of the Melbourne 
inflows is markedly lower than for Sydney, 
indicating generally higher variability in the latter 
series. We aim to further test this hypothesis in the 
next phase of research, by expanding the sensitivity 
analysis to include more values of P; and through 
application of EMD to the monthly inflow time series 
(cf. annual totals used in this analysis). If 
substantiated, this hypothesis (lower P is more 
suitable for higher-variability series) will guide future 
practitioners in selecting appropriate tension 
parameters (based on the descriptive statistics of 
the series) more expeditiously. 
 
Future Work 
This paper presented a limited and qualitative 
trough coincidence analysis, as an example of a 
subsequent application that is possible with EMD 
results. Further quantitative work is required to 
strengthen the qualitative results presented here, 
and an examination of lag effects between 
variables can be quantitatively modelled using time 
series analysis. However, these initial results are 
useful in demonstrating sufficient potential to 
warrant quantitative follow-up, including with a 
wider range of potential, partial causal mechanisms 
(e.g. IPO).  
 
There are opportunities to explore the relationship 
between the EMD results presented here, and other 
estimation methods for long-run hydrological 
persistence (e.g. the Hurst exponent). EMD is most 
suited to long records, and the potential to apply 
EMD to extended palaeo datasets is also under 
consideration.  
Lastly: the EMD results presented here were 
produced using total annual inflows. However, the 



inflow data are available at monthly timesteps, and 
it would be interesting to repeat the EMD analysis 
with this finer timestep resolution to test the 
robustness of the IMF results. If total annual inflow 
data are used by practitioners in future analyses, 
consideration may be given to aggregating the 
inflow data into water year (cf. calendar year). 
 
CONCLUSION 
This paper used EMD to characterise hydrological 
persistence in historical reservoir inflows supporting 
the cities of Melbourne and Sydney. Hydrological 
persistence in these series occurs over a range of 
scales, and includes periodic components (IMFs). 
The analysis showed that long-run hydrological 
persistence accounts for a considerable proportion 
of total variance in hydrological inflows, with 20% of 
variance in Melbourne region inflows and 21% of 
Sydney region inflows associated with periodicities 
>10 years. Further, these long-run components of 
hydrological persistence exhibited some strong 
cross-correlations between inflow series within a 
region. Finally, a preliminary application found that 
coincidence of troughs in multiple IMFs are 
associated with intense drought periods, and show 
statistically significant correlations with a plausible, 
partial causal mechanism (SOI). Collectively, these 
results highlight the water supply reliability risk to 
which these cities are exposed if high reliance is 
placed on climate-dependent water supplies (i.e. 
reservoir inflows). The results underscore the need 
for water supply planners to incorporate long-run 
hydrological persistence into future reliability 
modelling, and imply that reliability modelling over 
shorter time horizons which neglects long-run 
hydrological persistence may be deficient in 
estimating reliability.  
 
EMD provides a powerful and accessible technique 
to visualise and quantify hydrological persistence 
over a range of scales. The next phase of this 
research project will harness these EMD results to 
generate synthetic inflow sequences (which include 
the identified components of hydrological 
persistence) to model these cities’ water supply 
reliability under future scenarios of climate change 
and a mix of water supply portfolio options.  
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Table 4: EMD results for Sydney 
 

 
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: EMD IMFs of Warragamba and Thomson inflows. 
 Shading indicates drought periods from Figure 4. 
 
 
Table 5: EMD results for Melbourne 
 

 
 
 
 
 
 
 
 
 
 
 

Metric:  IMF1  IMF2  IMF3 IMF4 Residual Inflow: P:
P
er
io
d
ic
it
y 
[y
rs
]:
 

2.77  6.30  13.00 29.71

 

Warra 0.5

3.01  6.93  13.87 29.71 Nep 2

3.10  7.70  13.87 29.71 Cat 0.5

3.10  7.17  14.86 41.60 Avon 0.5

3.10  8.32  18.91 N/A Cord 0.5

3.10  6.93  13.87 29.71 Woro 0.5

3.01  6.12  12.24 26.00 Wing 0.5

2.76  6.32  14.00 28.00 Fitz 0.5

3.01  6.30  13.00 41.60 Tall 2

:  3.00  6.90  14.18  32.01   

P
ro
p
o
rt
io
n
 o
f t
o
ta
l 

va
ri
an
ce
: 

∑ 

100% 34.98%  15.04%  10.24% 13.03% 26.72% Warra 0.5

100% 44.45%  20.15%  12.45%  5.42%  17.53%  Nep 2

100% 44.35%  26.34%  13.23% 6.84% 9.24% Cat 0.5

100% 34.06%  22.97%  10.41% 10.21% 22.35% Avon 0.5

100% 34.41%  30.87%  12.04% 0.00% 22.68% Cord 0.5

100% 29.74%  15.61%  22.19% 13.69% 18.77% Woro 0.5

100% 51.68%  14.96%  11.27% 2.96% 19.12% Wing 0.5

100% 31.64%  12.68%  18.25% 2.63% 34.80% Fitz 0.5

100% 38.12%  8.89%  13.98% 14.45% 24.56% Tall 2

:  38.16%  18.61%  13.79%  7.69%  21.75%   

Metric: IMF1 IMF2 IMF3 IMF4 Residual Inflow:  P: 

P
er
io
d
‐

ic
it
y 

[y
rs
]:
  3.27 6.76 15.08 39.20 Thom 2 

3.32 6.13 15.08 28.00 UY 1 
3.32 6.13 12.25 24.50 OShan  1 
3.11 5.76 10.32 24.50 Maroon  2 

:  3.26 6.19 13.18 29.05
P
ro
p
o
rt
io
n
 

o
f t
o
ta
l 

va
ri
an
ce
:  ∑ 

100% 50.43% 9.79% 14.47% 8.32% 16.98% Thom 2 
100% 54.35% 7.72% 12.76% 7.43% 17.74% UY 1 
100% 56.67% 11.00% 7.77% 8.59% 15.97% OShan  1 
100% 58.32% 14.93% 10.70% 9.97% 6.08% Maroon  2 

:  54.94% 10.86% 11.43% 8.58% 14.19%  

Figure 4: Five-year rolling average of the mean z-variates 
of total annual inflows to 9 Sydney reservoirs and 4 
Melbourne reservoirs 


