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Abstract  In this paper we construct an optimal quadrature formula in the sense of Sard in the Hilbert space 
2 3( )K P . Using S.L. Sobolev's method we obtain new optimal quadrature formula and give explicit expressions for 

the corresponding optimal coefficients. Furthermore, we investigate order of convergence of the optimal formula. 

The obtained optimal quadrature formula is exact for the functions e-x, 2 3cos
2

 
  
 

x

e x  and 2 3sin
2

 
  
 

x

e x . 
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1. Introduction 
We consider the following quadrature formula  
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0
=0

( )d ( ),
N

x x C xβ β
β

φ φ≅ ∑∫  (1.1) 

with an error functional given by  

 [0,1]
=0

( ) = ( ) ( ),− −∑

N
x x C x xβ β

β
ε δ  (1.2) 

where Cβ and ( [0,1])∈xβ  are coefficients and nodes of 
the formula (1), respectively, x[0,1](x) is the characteristic 
function of the interval [0,1] , and ( )xδ  is Dirac's delta-
function. We suppose that the functions φ belong to the 
Hilbert space  

 2 3

2

( ) = { :[0,1] |
is absolutely continuous and (0,1)},

′′→
′′′∈

K P
L

φ φ
φ

 

equipped with the norm  

 ( )( ){ }1/21 2
2 3 30

| ( ) = d/ d ( ) d ,∫K P P x x xφ φ  (1.3) 

where  

( ) ( )( )
3 1 2

3 33 0

dd/ d = 1 and d/d ( ) d < .
d

P x P x x x
x

φ+ ∞∫
 

The equality (1.3) is semi-norm and = 0φ  if and only 
if 

2 21 2 3
3 3( ) = cos sin ,

2 2
−    

+ ⋅ ⋅ + ⋅ ⋅      
   

x x
xx d e d e x d e xφ  

where d1, d2 and d3 are constants. 
In order that the error functional (1.2) is defined on the 

space 2 3( )K P  it is necessary to impose the following 
conditions  

 

( )
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( ), = 0,

3( ), cos = 0,
2

3( ), sin = 0.
2

−
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x e

x e x

x e x

 (1.4) 

The equalities (1.4) mean that our quadrature formula 

will be exact for functions −xe , 2 3cos
2

 
  
 

x

e x  and 

2 3sin
2

 
  
 

x

e x . 

It should be noted that for a linear differential operator 
of order n, L≡Pn(d/dx), Ahlberg, Nilson, and Walsh in the 
book [1, Chapter 6] investigated the Hilbert spaces in the 
context of generalized splines. Namely, with the inner 
product  

 1
0

, = ( ) ( )d ,〈 〉 ⋅∫ L x L x xφ ψ φ ψ  
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2 ( )nK P  is a Hilbert space if we identify functions that 
differ by a solution of = 0Lφ . Also, such a type of spaces 
of periodic functions and optimal quadrature formulae 
were discussed in [8]. 

The corresponding error of the quadrature formula (1.1) 
can be expressed in the form  

 

1
0

=0
( ) = ( )d ( )

= ( , ) = ( ) ( )d
∞

− ∑∫

∫ 

N

NR x x C x

x x x

β β
β

φ φ φ

φ φ

 (1.5) 

and it is a linear functional in the conjugate space *
2 3( )K P  

to the space 2 3( )K P . 
By the Cauchy-Schwarz inequality  

 *
2 3 2 3| ( , ) | | ( ) | ( )≤ ⋅ K P K Pφ φ  

the error (1.5) can be estimated by the norm of the error 
functional (1.2), i.e.,  

 ( )*
2 3

| ( ) =12 3
| ( ) = , .sup 

K P
K P

φ
φ  

In this way, the error estimate of the quadrature formula 
(1.1) on the space 2 3( )K P  can be reduced to finding a 
norm of the error functional   in the conjugate space 

*
2 3( )K P . 
Obviously this norm of the error functional   depends 

on the coefficients Cβ  and the nodes xβ , = 0,1, , Nβ . 
The problem of finding the minimal norm of the error 
functional   with respect to coefficients Cβ  and nodes 

xβ  is called as Nikol'skii problem, and the obtained 
formula is called the optimal quadrature formula in the 
sense of Nikol'skii. This problem first considered by S.M. 
Nikol'skii [16], and continued by many authors (see e.g. 
[3,6,7,8,17,36] and references therein). A minimization of 
the norm of the error functional   with respect only to 
coefficients Cβ , when nodes are fixed, is called as Sard's 
problem. The obtained formula is called the optimal 
quadrature formula in the sense of Sard. This problem was 
first investigated by A. Sard [19]. 

There are several methods of construction of optimal 
quadrature formulas in the sense of Sard (see e.g. [3,30]). 
In the space ( )

2 ( , )mL a b , based on these methods, Sard's 
problem was investigated by many authors (see, for 
example, [2,3,7,9-15,20,21,23,26-35] and references 
therein). Here, ( )

2 ( , )mL a b  is the Sobolev space of 
functions, with a square integrable m -th generalized 
derivative. 

It should be noted that a construction of optimal 
quadrature formulas in the sense of Sard, which are exact 
for solutions of linear differential equations, was given in 
[11,14], using the Peano kernel method, including several 
examples for some number of nodes. 

Optimal quadrature formulas in the sense of Sard were 
constructed in [12,24,25], using Sobolev's method in the 
spaces 2 2( )K P  and ( , 1)

2
−m mW . Recently in the work [37] 

in (2)
2 ( 1,1)−L  space the optimal quadrature formula was 

obtained for the Cauchy type singular integrals.  
In this paper we give the solution of Sard's problem in 

the space 2 3( )K P , using Sobolev's method for an 
arbitrary number of nodes 1+N . Namely, we find the 
coefficients Cβ  (and the error functional  ) such that  

 * *
2 3 2 3| ( ) = | ( ) .inf 

C
K P K P

β
 (1.6) 

Thus, in order to construct an optimal quadrature 
formula in the sense of Sard in 2 3( )K P , we need to solve 
the following problems:  

Problem 1. Calculate the norm of the error functional 
  for the given quadrature formula (1.1).  

Problem 2. Find the coefficients Cβ such that the 
equality (1.6) be satisfied with fixed nodes Xβ. 

The rest of the paper is organized as follows. In Section 
2 we determine the extremal function which corresponds 
to the error functional   and give a representation of the 
norm of the error functional (1.2). Section 3 is devoted to 

a minimization of 2
  with respect to the coefficients 

Cβ . We obtain a system of linear equations for the 
coefficients of the optimal quadrature formula in the sense 
of Sard in the space 2 3( )K P . Moreover, the existence and 
uniqueness of the corresponding solution is proved. 
Explicit formulas for coefficients of the optimal 
quadrature formula of the form (1.1) are found in Section 
4. In Section 5 we calculate the norm of the error 
functional (1.2) of the optimal quadrature formula (1.1) 
and we give some numerical results. 

2. The Extremal Function and 
Representation of the Error Functional 

( ) x  
In order to solve Problem 1, i.e., to calculate the norm 

of the error functional (1.2) in the space *
2 3( )K P , we use a 

concept of the extremal function for a given functional. 
The function ( )



xψ  is called the extremal for the 
functional ( ) x  (cf. [31]) if the following equality is 
fulfilled  

 ( ) *
2 3 2 3, = | ( ) | ( ) .K P K Pψ ψ⋅

 

   (2.1) 
Since 2 3( )K P  is a Hilbert space, the extremal function 
( )


xψ  in this space can be found using the Riesz theorem 
about general form of a linear continuous functional on 
Hilbert spaces. Then, for the functional ( ) x  and for any 

2 3( )∈K Pφ  there exists such a function 2 3( )∈


K Pψ , for 
which the following equality  

 ( ), = ,φ ψ φ


  (2.2) 

holds, where  

 ( )( )1 (3) (3)
0

, = ( ) ( ) ( ) ( ) d+ +∫ 



x x x x xψ φ ψ ψ φ φ  (2.3) 
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is an inner product defined on the space 2 3( )K P . 
Further, we will investigate the solution of the equation 

(2.2). 
Let first ( ) (0,1)∞∈Cφ , where ( ) (0,1)∞C  is a space of 

infinity-differentiable and finite functions in the interval 
(0,1) . Then from (2.3), an integration by parts gives  

 
1 (6)

0
, = ( ( ) ( )) ( )d .x x x xψ φ ψ ψ φ− −∫  

 (2.4) 

According to (2.2) and (2.4) we conclude that  

 (6) ( ) ( ) = ( ).− −




x x xψ ψ  (2.5) 

Thus, when ( ) (0,1)∞∈Cφ  the extremal function ( )


xψ  
is a solution of the equation (2.5). But, we have to find the 
solution of (2.2) when 2 3( )∈K Pφ . 

Since the space ( ) (0,1)∞C  is dense in 2 3( )K P , then 
functions from 2 3( )K P  can be uniformly approximated as 

closely as desired by functions from the space ( ) (0,1)∞C . 
For 2 3( )∈K Pφ  we consider the inner product ,



ψ φ . 
Now, an integration by parts gives  
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− −∫

 















x x x

x x x
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x x x x

ψ φ ψ ψ φ

ψ ψ φ
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Hence, taking into account arbitrariness ( )xφ  and 

uniqueness of the function ( )


xψ  up to functions −xe , 

2 3cos
2

 
  
 

x

e x  and 2 3sin
2

 
  
 

x

e x , taking into account 

(2.5), it must be fulfilled the following equation  

 (6) ( ) ( ) = ( ),− −




x x xψ ψ  

with boundary conditions  

 (3) (3)(0) (0) = 0, (1) (1) = 0,ψ ψ ψ ψ+ +
   

 (2.6) 

 (4) (4)(0) (0) = 0, (1) (1) = 0,ψ ψ ψ ψ′ ′+ +
   

 (2.7) 

 (5) (5)(0) (0) = 0, (1) (1) = 0.ψ ψ ψ ψ′′ ′′+ +
   

 (2.8) 

Thus, we conclude, that the extremal function ( )


xψ  is 
a solution of the boundary value problem (2.5)-(2.8). 

Taking the convolution of two functions f  and g , i.e. ,  

 
( * )( ) = ( ) ( )d

= ( ) ( )d ,

−

−

∫
∫

n

n

f g x f x y g y y

f y g x y y
 (2.9) 

we can state the following result which obtained in [4]. 
Theorem 2.1.  

The solution of the boundary value problem (2.5)-(2.8) 
is the extremal function ( )



xψ  of the error functional 
( ) x  and it has the following form  
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2 22 3
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3 3cos sin ,
2 2

−− +
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x x

x G x d e

d e x d e x
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where 1d , 2d  and 3d  are arbitrary real numbers, and  

 

2

2

3sh( ) cos
2 31( ) = sign .

6 3 2cos
2 3

−

   + ⋅ +     
  
 + ⋅ +     

x

x

x e x

G x x

e x

π

π
 (2.10) 

Now, using Theorem 2.1, we immediately obtain a 
representation of the norm of the error functional  
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=0 =0

1 1 1
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=0

| ( ) = ( , )

= [ ( )
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∑ ∑
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N

K P

C C G x x

C G x x x G x y x y

β γ β γ
β γ

β β
β

ψ

(2.11) 

Thus, Problem 1 is solved. Further in Sections 3 and 4 
we deal with Problem 2. 

3. The System for Coefficients of The 
Optimal Quadrature Formula 

Let the nodes xβ  of the quadrature formula (1.1) be 
fixed. The error functional (1.2) satisfies the conditions 
(1.4). Norm of the error functional ( ) x  is a 
multidimensional function of the coefficients Cβ  

( = 0,1, , ) Nβ . For finding its minimum under the 
conditions (1.4), we apply the Lagrange method. Namely, 
we consider the function  

( )
0 1 1 2 3
2

1

2 22 3

( , , , , , , )

= 2 ( ),

3 32 ( ), cos 2 ( ), sin
2 2

−

Ψ

+

         + +               
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and its partial derivatives equating to zero, so that we 
obtain the following system of linear equations 
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1
2

2

=0
1
2

1 3= 1 , cos
2

3 3 1= cos sin ,
2 2 2 2

3sin
2

3 3 3= sin cos ,
2 2 2 2

−  
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+ −            
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∑ ∑

∑

xN Nx

xN

C e C e x
e

e

C e x

e

γ
γ

γ γ γ
γ γ

γ

γ γ
γ

 (3.2) 

where ( )G x  is determined by (2.10) and  

 1
0

( ) = ( )d .−∫f x G x x xβ β  

The system (3.1)-(3.2) has the unique solution and it 

gives the minimum to 2
  under the conditions (3.2) (see 

[5]). 
Thus at fixed values of the nodes xβ , = 0,1, , Nβ , 

the norm of the error functional ( ) x  has the unique 

minimum for some concrete values of =


C Cββ , 
= 0,1, , Nβ . As we mentioned in the first section, the 

quadrature formula with such coefficients 


Cβ  is called 
the optimal quadrature formula in the sense of Sard, and 


Cβ , = 0,1, , Nβ , are the optimal coefficients. In the 

sequel, for convenience the optimal coefficients 


Cβ  will 
be denoted as Cβ . 

4. Coefficients of Optimal Quadrature 
Formula in the Sense of Sard 

In this section we solve the system (3.1)-(3.2) and find 
an explicit formula for the coefficients Cβ . We use a 
similar method, offered by Sobolev [30] for finding 
optimal coefficients in the space ( )

2 (0,1)mL . Here, we 
mainly use a concept of functions of a discrete argument 
and the corresponding operations (see [31] and [32]). For 
completeness we give some of definitions. 

Let nodes xβ  are equal spaced, i.e., =x hβ β , 

= 1/h N . Assume that ( )xφ  and ( )xψ  are real-valued 
functions defined on the real line  .  
Definition 4.1.  

The function ( )hφ β  is a function of discrete argument 
if it is given on some set of integer values of β . 
Definition 4.2.  

The inner product of two discrete functions ( )hφ β  and 
( )hψ β  is given by  

 [ ]
=

, = ( ) ( ),
∞

−∞
⋅∑ h h

β
φ ψ φ β ψ β  

if the series on right hand side converges absolutely. 
Definition 4.3.  

The convolution of two functions ( )hφ β  and ( )hψ β  is 
the inner product  

 
[ ]
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∞

−∞

−

⋅ −∑

h h h h h

h h h
γ

φ β ψ β φ γ ψ β γ

φ γ ψ β γ
 

Suppose that = 0Cβ  when < 0β  and > Nβ . Using 
these definitions, the system (??)-(2) can be rewritten in 
the convolution form  
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where  
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−

−
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β
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β
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β

β

β

β 1 1 .
 
  −
 

  
 (4.3) 

Now, we consider the following problem:  
Problem A. For a given ( )f hβ  find a discrete function 

Cβ and unknown coefficients 1 2 3, ,d d d , which satisfy the 
system (4.1)-(4.2).  
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Further, instead of Cβ we introduce the functions u(hβ) 
and v(hβ) as  

 1

2 22 3

( ) = ( )* ,

( ) = ( )

3 3cos sin .
2 2

−+

   
+ +      

   

h

h h

v h G h C

u h v h d e

d e h d e h

β
β

β β

β β

β β

β β

 

In such a statement it is necessary to express Cβ by the 
function u(hβ). For this we have to construct such an 
operator D(hβ), which satisfies the equation  

 ( )* ( ) = ( ),D h G h hβ β δ β  (4.4) 

where δ(hβ) is equal to 0  when β=0 and is equal to 1  
when β=0, i.e., δ(hβ) is a discrete delta-function. 

In connection with this, a discrete analogue D(hβ) of 
the differential operator d6/dx6-1, which satisfies (4.4) was 
constructed in [22] and some properties were investigated. 

Following [22] we have: 
Theorem 4.1. The discrete analogue of the differential 

operator 
6

6
d 1
d

−
x

 satisfying the equation (4.4) has the 
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| | 1
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where  
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are zeros of the polynomial  
 4 3 2

4 1 2 1( ) = 1,P K K Kτ τ τ τ τ− + − +  (4.6) 
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here  
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is the polynomial of degree 4, h  is a small parameter.  
Theorem 4.2.  

The discrete analogue D(hβ) of the differential operator 
6

6
d 1
d

−
x

 satisfies the following equalities: 
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Here ( )G hβ  is the function of discrete argument, 

corresponding to the function ( )G x  defined by (2.10), and 
( )hδ β  is the discrete delta-function.  
Then, taking into account (4.4) and Theorems 4.1 and 

4.2, for optimal coefficients we have  

 = ( )* ( ).C D h u hβ β β  (4.7) 

Thus, if we find the function ( )u hβ , then the optimal 
coefficients can be obtained from (4.7). In order to 
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calculate the convolution (4.7) we need a representation of 

the function ( )u hβ  for all integer values of β . According 

to (4.1) we get that ( ) = ( )u h f hβ β  when [0,1]∈hβ . 

Now, we need a representation of the function ( )u hβ  
when < 0β  and > Nβ . 

Since = 0Cβ  for [0,1]∉hβ , then 

= ( )* ( ) = 0C D h u hβ β β , [0,1]∉hβ . Now, we calculate 

the convolution ( ) = ( )*v h G h Cββ β  when [0,1]∉hβ . 
Let < 0β , then, taking into account equalities (10) and 

(2), we have  
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Denoting 

 

1
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we get for < 0β  
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and for > Nβ  

( )1 2

1
2

1
2 2 1

2

2

2

2

3

2

31 2 cos
21( ) =

12 3cos 1
2

3 32 sin sin 12
2 2

3cos
2

12
33 sin

2

33 cos
2

12

sin

−−

− −

   − −     
 
 ⋅ −
 
 

 
− ⋅ −  

 
        +
  
 −      

 
  
 +

+

h
h

h
h

h

h

h

h

e e e h

v h

e

e h e b e

e h

b

e h

e h

b

e

β
β

β
β

β

β

β

β

β

β

β

β

β

β

,
3

2

 
 
 
 
  
      

hβ
 

Now, setting  

 

1 1 1
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we formulate the following problem:  
Problem B. Find the solution of the equation  

 ( )* ( ) = 0, [0,1],∉D h u h hβ β β  (4.8)
 

in the form  
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( )1 2

1
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1
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1
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(4.9) 

where d1
-, d2

-, d3
-, d1

+, d2
+, d3

+ are unknown coefficients.  
It is clear that  

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 2 2 2

2 2 2 3 3 3 3 3 3

= 12 , = 12 , = 12 ,

= 12 , = 12 , = 12 .
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+ − +

− + −

d d d b d d d d d

b d d d d d b d d
 

These unknowns d1
-, d2

-, d3
-, d1

+, d2
+, d3

+ can be found 
from the equation (4.8), using the function D(hβ). Then, 
the explicit form of the function u(hβ) and optimal 
coefficients Cβ can be obtained. Thus, in this way Problem 
B, as well as Problem A, can be solved. 

However, instead of this, using D(hβ) and u(hβ) and 
taking into account (4.7), we find here expressions for the 
optimal coefficients Cβ, β=1,…,N-1. For this purpose we 
introduce the following notations  

( )
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1
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The series in the previous expressions are convergent, 
because | |< 1kτ . 

Now we have the following. 
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Theorem 4.3.  
The coefficients of optimal quadrature formulas in the 

sense of Sard of the form (1.1) in the space 2 3( )K P  have 
the following representation  

 ( )
2

=1
= ,

= 1, , 1,

−+ +

−

∑


N
k kk k

k
C T m n

N

β β
β τ τ

β

 (4.10) 

where km  and kn  are defined above,  
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T
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 (4.11) 

and 1 2, , ,k K K Kτ  are given in Theorem 4.1.  
Proof. Let {1, , 1}∈ − Nβ . Then from (4.7), using 

(4.5) and (4.9), we have  
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Hence, taking into account the previous notations, we 
get  

 ( )
2

=1
= ( )* ( ) .−+ +∑ N

k kk k
k

C D h f h m nβ β
β β β τ τ  (4.12) 

Now, using Theorems 4.1 and 4.2 and equality (4.3), 
we calculate the convolution ( )* ( )D h f hβ β . Namely,  
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2
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D h f h D h

D h D D h D h
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K K K

γ γ

β β β

γ γ  

Substituting this convolution into (4.12), taking into 
account (4.11) we obtain (4.10), and Theorem 4.3 is 
proved.  

According Theorem 4.3 it is clear, that in order to 
obtain the exact expressions of the optimal coefficients 
Cβ  we need only km  and kn , = 1,2k . They can be 

found from an identity with respect to ( )hβ , which can be 
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obtained by substituting the equality (4.10) into (4.1). 
Namely, equating the corresponding coefficients the left 
and the right hand sides of the equation (4.1) we find km  
and kn . The coefficients 0C  and NC  follow directly 
from (4.2). 

Finally, we can formulate and prove the following 
result: 
Theorem 4.4.  

The coefficients of the optimal quadrature formulas in 
the sense of Sard of the form ()  in the space 2 3( )K P  are  
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where T  is defined by (4.11) and 1 2, , ,k K Kτ  are given 
in Theorem 4.1 and < 1kτ .  

Proof. First from equations (4.2) we have  
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Hence, using (4.10), after some simplifications we get  
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Further, we consider the convolution G(hβ)*Cβ in 
equation (4.1), i.e.,  
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where  
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Using (4.10), after some calculations and 
simplifications 1S  can be reduced to the following form  
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where we used the fact that kτ  are zeros of the 
polynomial 4 ( )P τ  defined by (4.6). 

Also, keeping in mind (4.2), for 2S  we get the 
following expression  
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Now, substituting (4.15) into equation (4.1) we get the 
following identity with respect to ( )hβ   
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 (4.16) 

where ( )f hβ  is defined by (4.3). 
Unknowns in (4.16) are 1m , 2m , 1n , 2n , 1d , 2d  and 

3d . Equating the corresponding coefficients of he β , 

2 3cos
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h

e h
β

β  and 2 3sin
2
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h

e h
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β  of both sides 

of the identity (4.16), for unknowns 1m , 2m , 1n  and 2n  
we get the following system of linear equations  
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The coefficients 1d , 2d  and 3d  can be found also from 

(15) by equating the corresponding coefficients of he β , 

2 3cos
2

−  
  
 

h

e h
β

β  and 2 3sin
2

−  
  
 

h

e h
β

β . In this way 

the assertion of Theorem 4.4 is proved.  
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Proving Theorem 4.4 we have just solved Problem A, 
which is equivalent to Problem 2. Thus, Problem 2 is 
solved, i.e., the coefficients of the optimal quadrature 
formula (1.1) in the sense of Sard in the space K2(P3) for 
equal spaced nodes are found. 

5. The Norm of the Error Functional of 
the Optimal Quadrature Formula in 
the Sense of Sard 

In this section we calculate square of the norm of the 
error functional (4.2) of the optimal quadrature formula 
(4.1). 

The following result holds: 
Theorem 5.1.  

The square of the norm of the error functional (1.2) of 
the optimal quadrature formula (1.1) on the space K2(P3) 
has the form  
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where kτ  are given in Theorem 4.1 and | |< 1kτ .  
Proof. In the equal spaced case of the nodes, the 

expression (2.11), using (2.10), we can rewrite in the 
following form  

 

( ) ( ) ( )

( )

(

2

=0 =0

=0

1 1
2 2

1
1 1
2 2

= 1

1
12

3 32 cos 2 cos
2 2

2 2 1,
3 32 3 sin 2 3 sin

2 2

−

−

−

 
 − ⋅ − −
 
 

+ −

    −           − + +
   
+ +         

∑ ∑

∑



N N

N

C C G h h f h

C f h

e e

e e

e e

β γ
β γ

β
β

β γ β

β  

where ( )f hβ  is defined by (4.3).  
Hence taking into account equality (3.1) we get  
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Using equalities (4.2) and (4.3), after some 
simplifications, we obtain  
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(5.1) 

Now from (4.16) equating the corresponding 

coefficients of he β , 2 3cos
2

−  
  
 

h

e h
β

β  and 
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2 3sin
2

−  
  
 

h

e h
β

β , for 1d , 2d  and 3d  we get the 

following expressions  
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Substituting these expressions in (5.1) we find  
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Finally, using the expression for optimal coefficients 
Cγ  from Theorem 4.4, after some calculations and 
simplifications, we get the assertion of Theorem 5.1. 
Theorem 5.1 is proved.  

Now we give some numerical results.  
For convenience the absolute value of the (1.5) of the 

optimal quadrature formula (1.1) we denote by | ( ) |NR φ . 
Then by the Cauchy-Schwarz inequality we have  

 *
2 3 2 3| ( ) | | ( ) | ( ) .≤ ⋅ NR K P K Pφ φ  (5.2) 

In the space 2 3( )K P  using Theorems 4.4, 5.1 and (4.6), 
(5.2) for the error of the optimal quadrature formula (1.1) 
we have the results for the cases 10=N , 50 and 100 
which are given in the second row of Table 1. In the third 
row of the Table 1 we give the results of the errors of 
optimal quadrature formula of the form (1.1) in the space 

(3,2)
2W  which are given in the work [24].  

Table 1. Comparison the errors of optimal quadrature formulas in 
K2(P2) and W2

(3,2) spaces for the cases N = 10, 50 and 100 
 N=10 N=50 N=100 
*
2 3| ( ) K P

 
0.10788⋅10-4 0.5642497⋅10-7 0.643488⋅1

0-8 

(3,2)
2| W  0.10790⋅10-4 0.5642501⋅10-7 0.643488⋅1

0-8 

The numerical results show that the errors of the 
optimal quadrature formula in the space 2 3( )K P  is less 
than the errors of the optimal quadrature formula in the 
space (3,2)

2W  for the cases 10=N  and 50.  

 



48 American Journal of Numerical Analysis  

6. Conclusion 
The paper is devoted to construction of the optimal 

quadrature formulas in the sense of Sard in the space 
2 3( )K P . We found the extremal function which 

corresponds to the error functional   and gave a 
representation of the norm of the error functional (1.2). 
The system of linear equations for the coefficients of the 
optimal quadrature formula is obtained. Moreover, we 
invastigated the existence and uniqueness of the solution 
of obtained system. Explicit formulas for coefficients of 
the optimal quadrature formula of the form (1.1) are found. 
The obtained optimal quadrature formula is exact for the 

functions −xe , 2 3cos
2

 
  
 

x

e x  and 2 3sin
2

 
  
 

x

e x . In 

Section 5 we calculate the norm of the error functional of 
the optimal quadrature formula and we give some 
numerical results. 
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