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X X
#(x) =die* +d,-e2 -COS(§XJ+d3 .e2 .sin(éx)

where d4, d, and d are constants.

1. Introduction

We consider the following quadrature formula In order that the error functional (1.2) is defined on the
1 N space K, (Ps) it is necessary to impose the following
j0¢(x)dx = ;’CM(Xﬂ)’ 1.1 conditions
X\ =
with an error functional given by (4(x), € ) =0,
N X J3
0(X) = g017(X) = X CpS(x—xg), (1.2 /(x),e2 co{?xJ =0, (1.9
p=0
where C 4 and Xg (e]0,1]) are coefficients and nodes of X J3
2 i —_— =
the formula (1), respectively, x[0,1](x) is the characteristic (x).e sm[ XJ 0.

function of the interval [0,1], and &(x) is Dirac's delta-
function. We suppose that the functions ¢ belong to the
Hilbert space

Ko(R3) ={¢:[0,1] > R|¢"

is absolutely continuous and ¢"’ € L, (0,1)}, X (\/’ ]

The equalities (1.4) mean that our quadrature formula

X
will be exact for functions e * , e2 cos(%xj and

e2 sin —3x
equipped with the norm
12 It should be noted that for a linear differential operator
||¢| K2(P3)|| = {J‘l(ps(d/dx),,ﬁ(x))z dx} . (1.3 of order n, L=P,(d/dx), Ahlberg, Nilson, and Walsh in the
0 book [1, Chapter 6] investigated the Hilbert spaces in the
context of generalized splines. Namely, with the inner

where
product

dd 1 2
P(d/dx)=—+1 d P, (d/d dx < o, 1
, (d/ dx) v an IO( , (d/dx) $(x))"dx < oo () = IOL¢(X)'LW(X)an
The equality (1.3) is semi-norm and ||4] = 0 if and only
if
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K, (R,) is a Hilbert space if we identify functions that
differ by a solution of Lg =0. Also, such a type of spaces
of periodic functions and optimal quadrature formulae
were discussed in [8].

The corresponding error of the quadrature formula (1.1)
can be expressed in the form

1 N
Ry (9) = | ¢(x)dx— > Cpé(Xp)
ne=l; ﬂzz:o P (1.5)

= (0,4) = [ 1()g(x)dx

and it is a linear functional in the conjugate space K;(Pg)
to the space K,(R;).
By the Cauchy-Schwarz inequality

|49 1< [0 Ko (Py)|-| 1 K2 (Py)|

the error (1.5) can be estimated by the norm of the error
functional (1.2), i.e.,

[akae|=  sup (1.0
|4k 2 (Ps)|=L

In this way, the error estimate of the quadrature formula
(1.1) on the space K,(P;) can be reduced to finding a

norm of the error functional ¢ in the conjugate space

K2(Py).
Obviously this norm of the error functional ¢ depends
on the coefficients C4 and the nodes xz, f=0,1,...,N .

The problem of finding the minimal norm of the error
functional ¢ with respect to coefficients Cp and nodes

Xz is called as Nikol'skii problem, and the obtained

formula is called the optimal quadrature formula in the
sense of Nikol'skii. This problem first considered by S.M.
Nikol'skii [16], and continued by many authors (see e.g.
[3,6,7,8,17,36] and references therein). A minimization of
the norm of the error functional ¢ with respect only to
coefficients Cg, when nodes are fixed, is called as Sard's

problem. The obtained formula is called the optimal
quadrature formula in the sense of Sard. This problem was
first investigated by A. Sard [19].

There are several methods of construction of optimal
quadrature formulas in the sense of Sard (see e.g. [3,30]).

In the space L(Zm) (a,b) , based on these methods, Sard's

problem was investigated by many authors (see, for
example, [2,3,7,9-15,20,21,23,26-35] and references

therein). Here, L(Zm)(a,b) is the Sobolev space of

functions, with a square integrable m -th generalized
derivative.

It should be noted that a construction of optimal
quadrature formulas in the sense of Sard, which are exact
for solutions of linear differential equations, was given in
[11,14], using the Peano kernel method, including several
examples for some number of nodes.

Optimal quadrature formulas in the sense of Sard were
constructed in [12,24,25], using Sobolev's method in the

spaces K, (P,) and Wz(m'm_l) . Recently in the work [37]

in L(ZZ) (-1,1) space the optimal quadrature formula was

obtained for the Cauchy type singular integrals.
In this paper we give the solution of Sard's problem in
the space K,(P;) , using Sobolev's method for an

arbitrary number of nodes N +1. Namely, we find the
coefficients C4 (and the error functional /) such that

)| = int |15 R (1.6)
Cp

Thus, in order to construct an optimal quadrature
formula in the sense of Sard in K, (P;), we need to solve

the following problems:

Problem 1. Calculate the norm of the error functional
¢ for the given quadrature formula (1.1).

Problem 2. Find the coefficients Cg such that the
equality (1.6) be satisfied with fixed nodes Xg.

The rest of the paper is organized as follows. In Section
2 we determine the extremal function which corresponds
to the error functional ¢ and give a representation of the
norm of the error functional (1.2). Section 3 is devoted to

a minimization of ||f||2 with respect to the coefficients
Cp. We obtain a system of linear equations for the

coefficients of the optimal quadrature formula in the sense
of Sard in the space K, (P;). Moreover, the existence and

uniqueness of the corresponding solution is proved.
Explicit formulas for coefficients of the optimal
quadrature formula of the form (1.1) are found in Section
4. In Section 5 we calculate the norm of the error
functional (1.2) of the optimal quadrature formula (1.1)
and we give some numerical results.

2. The Extremal Function and
Representation of the Error Functional
£(x)

In order to solve Problem 1, i.e., to calculate the norm

of the error functional (1.2) in the space K;(P3) , We use a

concept of the extremal function for a given functional.
The function w,(x) is called the extremal for the

functional ¢(x) (cf. [31]) if the following equality is
fulfilled

(L) = [A KR w. K, (R)]- 2.1)

Since K, (PR;) is a Hilbert space, the extremal function
w,(x) in this space can be found using the Riesz theorem

about general form of a linear continuous functional on
Hilbert spaces. Then, for the functional ¢(x) and for any

¢ € K, (P;) there exists such a function y, € K,(P;), for
which the following equality

(0.0)=(v,.9) (2.2)

holds, where

(vid)= I;(wés) 00+, (0) (#2009 + 90 )x 2.3)



American Journal of Numerical Analysis 37

is an inner product defined on the space K, (PR;).

Further, we will investigate the solution of the equation
(2.2).

Let first ¢  C®)(0,1), where C(0,1) is a space of
infinity-differentiable and finite functions in the interval
(0,1) . Then from (2.3), an integration by parts gives

(Wd) = [ WO -, 0Nk 2.4
According to (2.2) and (2.4) we conclude that
w0 -y, (x) = —0(x). (2.5)

Thus, when ¢ c (0,1) the extremal function v, (x)

is a solution of the equation (2.5). But, we have to find the
solution of (2.2) when ¢ € K, (R;).

Since the space c (0,1) is dense in K,(P3), then
functions from K, (P;) can be uniformly approximated as

closely as desired by functions from the space c 0,1).
For ¢ eK,(P;) we consider the inner product (y,,¢).
Now, an integration by parts gives

(wed)= (v 00w ()90l
(v 0+ v 0) 0 00l
HyP 0+ ye (0) 000

[ © (-, ()x)dx.

Hence, taking into account arbitrariness ¢(x) and

uniqueness of the function w,(x) up to functions e ™,

X X
g2 cos(? x] and e2 sin[%x} , taking into account
(2.5), it must be fulfilled the following equation

O () —y, (x) = —£(x),

with boundary conditions

v +y,0=0, yO W) +y,(1)=0,  (2.6)
v 00 +y,.(0=0, V) +y,(M)=0, (@7
v+, (0 =0y P M) +y,.()=0. (2.8

Thus, we conclude, that the extremal function v (x) is
a solution of the boundary value problem (2.5)-(2.8).

Taking the convolution of two functions f and 9 , e,
(f*9)(0) = [ f(x=y)g(y)dy
= [ fgx-yy,

we can state the following result which obtained in [4].
Theorem 2.1.

The solution of the boundary value problem (2.5)-(2.8)
is the extremal function y,(x) of the error functional

£(x) and it has the following form

(2.9)

vy (%) = ~(G*0)() + dye ™

X X
+d, -2 ~cos[§xj+d3 -e2 ~sin(§x},

where d;, d, and dj are arbitrary real numbers, and

X
sh(x) +e2 ~cos(§x+%}

ey

+e 2.cos| —X+—
2 3

G(x) = %signx . (2.10)

Now, using Theorem 2.1, we immediately obtain a
representation of the norm of the error functional

k@] =)

N N
=12, 2.C4C,Glxp—%,)
B=0y=0

N
2 ZC/;J;G(X— xﬁ)dx+j;j;c;(x— y)dxdy].
=0

(2.11)

Thus, Problem 1 is solved. Further in Sections 3 and 4
we deal with Problem 2.

3. The System for Coefficients of The
Optimal Quadrature Formula

Let the nodes xg of the quadrature formula (1.1) be

fixed. The error functional (1.2) satisfies the conditions
(1.4). Norm of the error functional ¢(x) is a

multidimensional function of the coefficients Cﬂ

(#=0,1,...,N) . For finding its minimum under the

conditions (1.4), we apply the Lagrange method. Namely,
we consider the function

¥(C,Cy..,Cy 0y, g, d3)
=[] + 2 (209,67

+2d {f(x), e2 COS(? XH +2d5 [f(x), e2sin [% Xn

and its partial derivatives equating to zero, so that we
obtain the following system of linear equations

N
>'C,G(x5—x,)+0e *p
7=0

Xp J3
S 3
+dye 2 cos(7xﬁJ

Xp

== (3
d.e 2 sin| —
+3 |[2 X,B
= f(xp),
B=01,...N,

(3.1)
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N N
—X 1 \/é
ZCye 7 :1—; ZCye 2 cos[7x7J

7=0 7=0

(3.2

1
2
=& sin ﬁ —CO0S ﬁ +£,
2 2 2 2
where G(x) is determined by (2.10) and

(x5) :I;G(x—xﬂ)dx.

The system (3.1)-(3.2) has the unique solution and it
gives the minimum to ||£||2 under the conditions (3.2) (see

[5]).
Thus at fixed values of the nodes xg, #=0,1,...,N,

the norm of the error functional ¢(x) has the unique

minimum for some concrete values of Cz=Cp ,
£=01,...,N. As we mentioned in the first section, the

quadrature formula with such coefficients Cp is called
the optimal quadrature formula in the sense of Sard, and

Cp, #=01,...,N, are the optimal coefficients. In the

sequel, for convenience the optimal coefficients Cz will
be denoted as Cs.

4. Coefficients of Optimal Quadrature
Formula in the Sense of Sard

In this section we solve the system (3.1)-(3.2) and find
an explicit formula for the coefficients C; . We use a
similar method, offered by Sobolev [30] for finding
optimal coefficients in the space L(Zm)(o,l). Here, we

mainly use a concept of functions of a discrete argument
and the corresponding operations (see [31] and [32]). For
completeness we give some of definitions.

Let nodes Xp are equal spaced, i.e., Xg = ph

h=1/N . Assume that ¢(x) and w(x) are real-valued

functions defined on the real line R.
Definition 4.1.
The function ¢(hp) is a function of discrete argument

if it is given on some set of integer values of g .
Definition 4.2.
The inner product of two discrete functions ¢(hg) and

w(hpB) is given by

[6.w]= > s(hB)-w(hp),
p=—x0

if the series on right hand side converges absolutely.
Definition 4.3.
The convolution of two functions ¢(hg) and y(hp) is

the inner product
¢(hB)*y (hp) = [¢(hy),w (hB —hy)]
= 2, #(hy)-w(hs—hy).
y=—0

Suppose that Cp=0 when <0 and #>N . Using

these definitions, the system (??)-(2) can be rewritten in
the convolution form

hp
G(hB)*Cy +dye ™ +dge 2 cos(?hﬂ}

g (4.1)
+dge 2 sin[%hﬂ} = f(hp), f=0,1,...,N,
N
ZCye_hﬂ =1—1,
/=0 €
N hp % cos(@}
ZcﬂeZCos{ghﬂ]:% —%, (4.2)
A=0 +sin[§}

\ hp 15in(£}
2% e

>cC e 2 sin| hp +—
A 2 2 2"
p=0 —cos[ﬁj

2
where

e (e+1)+ el (e’1 +1)+

_1 hg 1
f(hg)=—| -~ =
(h#) 12| 2e 2 cos[%hﬂ}{ez cos{%}ﬂ}

1 _hs
+2¢2 sin[ﬁje 2 sin(ﬁhﬂ]
2 2
1 hg
+2¢ 25in(£}e 2 sin(ﬁhﬁj
2 2
hs 1
+2¢ 2 cos[?hﬂ]-[e 2 cos(%}l}—l :
(4.3)

Now, we consider the following problem:

Problem A. For a given f(hg) find a discrete function
Cs and unknown coefficients d;,d,,ds, which satisfy the
system (4.1)-(4.2).
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Further, instead of Cz we introduce the functions u(hf)
and v(hp) as
v(hp) =G(hp)*Cy

u(hp) = v(hp)+die™"”
hs hs
+dye 2 cos[?hﬂ}dge 2 sin(?hﬂj.

In such a statement it is necessary to express Cy by the
function u(hp). For this we have to construct such an
operator D(hg), which satisfies the equation

D(hp)*G(hp) = 6(hp),

where &(hp) is equal to 0 when =0 and is equal to 1
when =0, i.e., &{hp) is a discrete delta-function.

In connection with this, a discrete analogue D(hg) of
the differential operator d®/dx®-1, which satisfies (4.4) was
constructed in [22] and some properties were investigated.

Following [22] we have:

Theorem 4.1. The discrete analogue of the differential

6
operator %—1 satisfying the equation (4.4) has the
X

(4.4

form
ST
2B |82,
k=1
2
D(hﬂ)——— 1+ ZBK, | BI=1, (4.5)
Kl_Ml"'z B=0,
k= 1Tk
where
. Ky ++KE —4K, +8
== 2 )
4 [ir2
+\/(K1+ K{ —4K, +8) -16
. Ky +yKZ —4K, +8
79 :Z

2 )
—\/(K1+«/Kf—4K2+8j -16

are zeros of the polynomial
P,(r) =" -K* +K,r* =K,z +1, (4.6)

ool

ol )

(e
J3sin(/3h) - 2sh(h)ch(h)

sh(h)+sh(2).cos[*§hJ

—/3ch [g)sin [\f hJ

+sh

Kl = ZCh(h)"r

2cos(J§h)sh(h)+4sh(h)ch(h)

‘- —2\/§sin(\/§h)ch(h)
2" h J3
sh(h)+sh(2j~cos 7h
—/3ch (g)sin(\ch
My = 2~(ch(h)+2005(§h}ch(gn,
and || <1,
(rkz —Zrkch(h)+l)-A4(rk)
By = ,

(qf ~1)-(20 ~ Kyric + 2)

here

A (7) =" -4r° cos(?h}ch (gj

+272 (1+ cos(\/gh)+ch(h))

—4t cos (? hj ch (gj +1

is the polynomial of degree 4, h is a small parameter.
Theorem 4.2.
The discrete analogue D(hp) of the differential operator
6
d—6—1 satisfies the following equalities:
dx

@D(hp)*e" =0,
(2)D(hB)*e ™" =0,

hs

(3)D(hg)*e 2 cos[%hﬂjz
_hs

(4)D(hB)*e 2 cos(%hﬂ]=0,
hg

(5)D(hpB)*e 2 sm(\fhﬁ]:

_hp
(6)D(hp)*e 2 sm(\/fhﬂJ:O,
(7)D(hp)*G(hp) = 5(hp),

Here G(hp) is the function of discrete argument,
corresponding to the function G(x) defined by (2.10), and

s(hp) is the discrete delta-function.
Then, taking into account (4.4) and Theorems 4.1 and
4.2, for optimal coefficients we have

Cz = D(hB)*u(hp). 4.7

Thus, if we find the function u(h/)’)' then the optimal
coefficients can be obtained from (4.7). In order to



40 American Journal of Numerical Analysis

calculate the convolution (4.7) we need a representation of
the function uths) for all integer values of B . According
to (4.1) we get that YNA) = T(NB) \ypen DB <[0I]
Now, we need a representation of the function uths)
Whenﬂ<0andﬂ>N.

Since Cp=0 for hp «[0,1] , then
Cp =D(hB)*u(hp)=0, hp«[0,1]. Now, we calculate
the convolution v(hg) =G(hB)*Csz when hp ¢[0,1].

Let g <0, then, taking into account equalities (10) and
(2), we have

v(hp)=G(hp)*Cp

= i C,G(hg—-hy)

y=—»
hp
s Lo ) 0e 2 cos| V3
——12[e (1—e )—2e cos( 5 hg
1 _hs 1
-{ez cosﬁ—ll—Ze 2 sin[?hﬂ}ez sinﬁ
hg
e 2 cos ﬁhﬁ
hp e o 2
—e Z:;‘) e+ Y A
4 —J3e 2 sin[7hﬂ]
N
-y .C.e 2 cos{ﬁhyJ+
2
7=0
hg
J3e 2 cos(%hﬂ]
hg
+e 2 sin(ﬁhﬁJ
2
N
-y .C.e 2 sin[ﬁhyj
2
r=0 ]
Denoting

1Y,
=—3yC,e",
. 12;)7

hy
1N -y \/§
b——ECEZCOS—h ,
2 12 4 {2 }/J

7=0
1Ny
=—>Ce 2 sin( hyJ
12 5

we get for <0

el (1—9‘1)
_hs

v(hﬂ)z—é -2e 2 cos{?hﬂj

> B
-[eZ cos——l]

2

b moy L
—2e 2 sin{?hﬂ]-eZ sin?—lelehﬂ

hs hs
+12b, [e 2 cos[%hﬂ}—«/ge 2 sin(?hﬁ]}

hg hp
+12h, L\/@ez cos[? hﬂ} +e 2 sin (? h/z’jﬂ :

and for g >N

hp
M (1_e1)_26 2 cos| V3
e (1 e ) 2e cos( 5 hﬂ]

VR = - [1 P }

e5 cos—-1
2

_hs 1
—-2e 2 sin ?hﬂj-ez sin%—lele‘hﬁ
hs
e? cos(?hﬂ]
+12b2 hp
—\/§e7 sin(?hﬂ
hs .
J3e 2 cos{%hﬂ]
+12by
hg
+e 2 sin(ﬁhﬁ]
2
Now, setting
dy =dp -by,
dy =d; —by,
d3 =dz-bs,
d” =d; +by,
d; = d2 +b2,
dy =dj+b;.

we formulate the following problem:
Problem B. Find the solution of the equation

D(hp)*u(hp)=0, hp¢[0,1],

in the form

(4.8)



American Journal of Numerical Analysis

_hg 1
eh/}(l—e ) 2e 2 cos(ihﬂJ
1+
- -[ez cos——l}
12 2
hg 1
-2e 2 sm(\/jhﬂ)eZ sin?
L o i
e? cos(?hﬁ]
hs
—J3e2 sm(ihﬁ]
hs
J3e 2 cos(?hﬂ}
hpg
+e 2 sin(?hﬁ}
f(hp),0< <N,
_ hp
hB (1 _ 2 ﬁ
e (1 e ) 2e cos(zhﬂ]
1+ 3
- -[eZ cos——l}
12 2
_hg 1
-2 2 sm(\/jhﬁj-eZ sin?
L o i
e? cos(?hﬂj
hs
—J3e 2 sm(ihﬁJ
hp
J3e 2 cos{ghﬂj
5 g
+e25in£§hﬂJ

where d;", d,’, dg’, d;, d,*, d3™ are unknown coefficients.

+d; ey dy

+d3 B <0,

u(hp) =

+dre ™ +d3

,B>N
4.9

It is clear that
d :12(d1+ +d1‘), by :12(d1+ —dl‘), d, :12(o|2+ +d2‘),

by =12(dj —dz_),d3 =12(d; +d§), by =12(d; —dg).

These unknowns d;’, d,, d3’, d;*, d,", d3* can be found
from the equation (4.8), using the function D(hg). Then,
the explicit form of the function u(hg) and optimal
coefficients C4 can be obtained. Thus, in this way Problem
B, as well as Problem A, can be solved.

However, instead of this, using D(hg) and u(hp) and
taking into account (4.7), we find here expressions for the
optimal coefficients C4, f=1,...,N-1. For this purpose we
introduce the following notations

3 3
p=-1-=- ,
K sh(h)+sh(2)-cos£\/2§hJ
—@ch(gj-sin[f hJ
_—%e’hy (1—9’1)

hy

hy

+fe 2sln

sin(ﬁh(N+
2
h(N+y)

h(N+y)
e 2

+de”

+d,

+d3

~f(h(N+7))

k=12

© 2
gl {e s

1 h(N+y)
| e2 cosﬁ—l +£e 2
2 6

1
+le2 cos ﬁhy | e2 cosﬁ—l
6 2 2

1
—le2 sm(\/éhyj e2 smﬁ

2]

1
7)j-e2 sing

cos[gh(Nﬂf)]

41

The series in the previous expressions are convergent,

because |7, |<1.
Now we have the following.
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Theorem 4.3.
The coefficients of optimal quadrature formulas in the
sense of Sard of the form (1.1) in the space K, (P;) have

the following representation

2
Cﬂ :T+;(mkrf+nkrli\l_ﬂ),
=1

(4.10)
£=1..,N-1
where m, and n, are defined above,
2
J3
h NM2hl=
24(ch(h)- ){cos( 5 h ch(zj
T= , (41D

K (Ky +2-2K;)

and 7, K, K{, K, are given in Theorem 4.1.

Proof. Let ge{l,...,N—=1}. Then from (4.7), using
(4.5) and (4.9), we have

Cp =D(hp)*u(hp)

= Y, D(hp-hyu(hy)

y=—

-1
= > D(hp~hy)u(hy)

=—00

y=
N
+2.D(hB~hy)u(hy)

7=0
+ 2. D(hB-hy)u(hy) = D(hB)* f (hp)
7=N+1

—%e‘hy (1—e‘1)

hy
+1e2 cos \/ghy
6 2

+Z kpz Ly’

k=1 Tk p=1 _hy
e 2 cos(ﬁhyj
B 2
_hy
3e 2 sm[ihy
2
_hy
J3e 2 cos[%hy}
hy
-e 2 sm[\/fhyj

|- f(=hy)

+dg

1
-sin{?h(Nw)Je?
B« p N
+Z Tk Z K Sin£+dfefh(N“’)

k=1 ‘k y=1 2
h(N+y)
e 2

+dy
cos(éh(N +y)J
h(N+y)
EERRREND

—J3e sm(7h(+7jﬂ

h(N+y)
+dg {\/gez cos[gh(f}/n
h(N+y)
+e 2 sin[?h(N +y)j]

|~f(h(N+7))

Hence, taking into account the previous notations, we
get

2
Cp =D(hp)* F(hB)+ z(msz e ) (4.12)
k=1

Now, using Theorems 4.1 and 4.2 and equality (4.3),
we calculate the convolution D(hg)* f (hg3) . Namely,

D(hp)* f(hp) = D(hp)*(-1)
= Z D(hy) = —{D(O)+2D(h)+ZZD(hy)J

y=-© y=2

sl o]

K (Ky +2-2K,)

Substituting this convolution into (4.12), taking into
account (4.11) we obtain (4.10), and Theorem 4.3 is
proved.

According Theorem 4.3 it is clear, that in order to
obtain the exact expressions of the optimal coefficients
Cpz we need only mg and n,, k=1,2. They can be

found from an identity with respect to (h/), which can be
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obtained by substituting the equality (4.10) into (4.1).
Namely, equating the corresponding coefficients the left
and the right hand sides of the equation (4.1) we find m
and n, . The coefficients Cy and Cy follow directly
from (4.2).

Finally, we can formulate and prove the following
result:
Theorem 4.4.

The coefficients of the optimal quadrature formulas in
the sense of Sard of the form () in the space K, (P;) are

2 N
T my 7, Nk 7|
CO =1- _}: kk n Kk ’
h 1 h h
e — k=1\& —7¢ 7€ -1

2
Cﬁ :T+Z(mkfkﬂ+nkfli\‘_ﬂ),
k=1
p£=1.,N-1
h 2 N
m n
e -1 k=1\ € -1 e -1

where T is defined by (4.11) and 7y, K,;, K, are given
in Theorem 4.1 and |7 | <1.
Proof. First from equations (4.2) we have

Co=1-et ZC e
1
ezsn[ [ezcosi
2 2 2
N1
73— D.Ce? sm(\/ghyj
=1
3 1
e2 sinﬁ
—e2 sm[ —ez cosﬁ
2 2 2
N1
73— D.Ce? sm{\@hyj
CN = r=1
T :
e2 sinﬁ
2
Hence, using (4.10), after some simplifications we get
2 N
ozl —— 3| M T (413
e -1 ale’" -7 e -1
h 2 N
cy =T hz{m__jl @10
h h
e -1 k=1\e -7 e -1

Further, we consider the convolution G(hg)*Cy in
equation (4.1), i.e.,

ZC G(hg -hy)

=0

% sign ( hﬂ hy)

G(hp)*Cpy =

ehﬁ—hy _e—hﬁ+hy

hg—-hy
+e 2 cos(%(hﬁ—hy)}
hp-h
: —ﬁezy-sin[g(hﬂ—hy)]
hg-hy
e 2 cos(\f(hﬁ h )j

hg-h
—ﬁe_Ty ~sin(§(hﬁ—hy)}

=51-S,,

(4.15)
where

ehB-hy _ o-hp+hy

+ehﬂ;h7 cos(\/ﬁ(hﬂ h )J
; :E%C% _\/gehﬂ;h}’ sin[g(hﬂ_hy)]
_eihﬁ;hV cos(@(hﬂ h )j

hB—h
J3e 2 ysin[?(hﬂ—hy)]

and

ehB=hy _g=hp+hy

+ehﬂ;hy Cos[%(hﬂ—hy)]
o %cy : —ﬁehﬁ;W sin(g(hﬁ— h7)j
_e‘hﬂ;hy Cos[‘/g(hﬂ h )J
_ﬁe—hﬁ;hy sin[g(hﬂ—hy)]

Using (4.10), after some calculations and
simplifications S; can be reduced to the following form




44 American Journal of Numerical Analysis

I hg ] o _h ]
P _ef 1 g2 cos{?hﬁ] e 2cos[\/2§hj+\/§e 25in(\/2§hJ—1
hg T h +
1 3 ) 3 -h
S ==Cpy| —/3e 2 sm(_hﬂj 1-2e cos(h +e
6 2
_hp _hp _h 3 _h 3
e 2 cos(\/fhﬁ] e 2 sm(\/fhﬁ] ) e ZCOS({h]-f-\/éTkle 25in(£hj—l
L ] . kz‘lmk h \/g
N = -1 —2.-h
LA | T +i M %o |, 1 .-np 1-277e 2Cos( ) hJ+rk e
6 e"-1 (Se"-r re-1] 6 X i
T 2 my 7y nkqi\' 1 b V3 rkeiE Ccos ﬁh +\/§rke755in ﬁh -1
: - +y =+ —|+=e 2 cos| —~hp N 2 2
[1-e o —e l-re” 6 2 +Ny 7k
k=17k k h A
[ h N h Ve i 1-27.e 2005{3hJ+rfe_h
e2 cos[ZhJ+\/_e2 sm[th L 2
h
! h J3 Lo 2ﬂsm ﬁhﬂ
1-2e2 cos(fh}wh 6 2
o i}
h h - f Ne 2 f A
h h e 2sin 3e 2 cos +
5 7 le2 cos(\/zgh]ﬂ@q{leZ sin(\/fh]—l T ( J
. +ka N _h \/g "
k= > 1-2e 2cos| —h |+e”
! 1-2rte2 cos[\/thﬂ-{Zeh ( 2
h h
h h 17 f Bl J3
- = e 2sin e 2cos h
7,82 cos(?hj%@rkez sin(fh}—l k [ J ( 2
N 2
+Ny T
- 1-27 eg cos ﬁh +z2eM . +kz_:mk o B
L “ 2 & | - 1-2zte Zcos[;h]+rgze_h
hp
1.7 [ B h h
+=e 2 sin| —nh .l _n
6 [ 2 ’BJ e Zsin[\/ch—\/grke ZSin[\/;h}r\/g
r . N
h +Ny 7]
V3, \/— kK h
2 2 _h
€ sm( fe cos +3 1-27e ZCos[ch+rfeh
T
h
1-2e2 cos(fh]wh L _

h where we used the fact that 7z, are zeros of the
, T 12 sm(\/; ] NET ~1a2 cos([ ]Jr\f polynomial P,(z) defined by (4.6).

_+ka Also, keeping in mind (4.2), for S, we get the

h

- 2 following expression
k
' 1-2rte2 cos[\f hJ+rk2eh . :
h hg _.-hp
e’ —e
782 SIHLJ—hJ J3re? sm(\/_thf " "
Y _1 5 [ > [V3
N7k h S, =—Cqy| +e 2 cos| ~—hpB |-+/3e 2 sin| ~—hg
2 (B o 12 2 2
1-27,.e2 cos 7h +7ce hp g
hp ) —-e 2 cos \Ehﬂ —e 2 sin ﬁhﬂ
J3 2 2
+6e 2 cos 7hﬁ - -

+ieh/8 %C e_h}/ _ie_hﬂ.ic eh}’
12 g7 12 =



American Journal of Numerical Analysis 45

o B}
D> C,e 2cos ﬁhy
1 Y (3 = 2
+—e2 cos| hp || 77
12 2 N _hy NG
+/3)C.e 2 sm(—hy]

y=1

- hy :
ZC e 2 sin \/gh;/
1 3 2
+—e 2 sin| —hg |-
12 2 N _hy NG
—V3) Ce 2 cos[ hy}
2
L 7=l
S 5 -
hg D C,e? cos[—hyj

—ie77cos ﬁh/} 7=
12 2 N hy NG
—V3) C,e? sm(—hy}

=1

h
hp %C e 27 sm{ﬁhyJ
—iezsin(ﬁhﬁ] 7=t .
12 2 A
+IZC e2 cos[—hy}

y=1

Now, substituting (4.15) into equation (4.1) we get the
following identity with respect to (hj5)

hg
S-S, +de ™ +dye 2 cos(?hﬂ}

hp
+0ge 2 sin(?hﬂ}z f(hB),

(4.16)

where f(hg) is defined by (4.3).
Unknowns in (4.16) are my, my, iy, Ny, dqy, d, and

d; . Equating the corresponding coefficients of e
_hg _hg
e 2 cos(fhﬂ} and e 2 sm(\/fhﬁj of both sides

of the identity (4.16), for unknowns my, m,, n; and n,
we get the following system of linear equations

N N _
Ay + Apmy + 70 By + 75 Bony =Ty,
N N _
7 Ay +73 Apmy + By + Bpony =Ty,
N N _
7 Aoty + 173 AgoMy + Bogy + Boony =Ty,

N N _
Aoy + AgoMy + 71 Byyy + 175 Byonp =T,

h
€2 sin[\/;hJ
All = h f
1-2re2 COS{;hJ-ﬁ-leeh

where

h
75e2 sin(\/ch
Ap = Y ,
1-27,e2 cos[;h] 3¢
h
€2 sm[\/ghj
By =
i —2rje2 cos(h}+e
7,e2 sm[h}
Bpp =
5 —2r502 cos[hj
b 762 cos[\/éh] -1
Aoy = - :
17 h
e —Z'l \/§
1- 2r1e2 cos| X2h |+ e
2
" 12e2 cos \/é -1
Pop =+ e
27 h h
e' -1 u
2 1-27,€2 cos[\/f hj+r22eh
h
h 7182 oS ﬁh —7f
e 41 2
BZl eh 1+ h \/, J
1 — _
! 2 — 2742 005[23 hJ+eh
h
h 7562 COS ﬁh —72
B, = €7y 2
22 - h h L
ery—1 -
? 5 — 21,02 cos(\/z§ hJ+eh
h
Te2 sin ﬁh
e 2
1-2e2 cos[;’h}reh
h
Te2 cos ﬁh -T
_3 Tel 2

2 M1 h '
1- 2ezcos£\/2§h]+eh

The coefficients d;, d, and d3 can be found also from

(15) by equating the corresponding coefficients of el
_hg _hg
e 2 cos(?hﬂ} and e 2 sm[?hﬂ) In this way

the assertion of Theorem 4.4 is proved.
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Proving Theorem 4.4 we have just solved Problem A,
which is equivalent to Problem 2. Thus, Problem 2 is
solved, i.e., the coefficients of the optimal quadrature
formula (1.1) in the sense of Sard in the space K(Ps) for
equal spaced nodes are found.

5. The Norm of the Error Functional of
the Optimal Quadrature Formula in
the Sense of Sard

In this section we calculate square of the norm of the
error functional (4.2) of the optimal quadrature formula
4.2).

The following result holds:

Theorem 5.1.

The square of the norm of the error functional (1.2) of
the optimal quadrature formula (1.1) on the space Ky(Ps)
has the form

° 2N -DT +Cy +C
(=1 BTSN g 120,420,
2 6 3
where
& o -7
Q=Y e
k=1
h
QZZZZ: v — 7k T € —7g N
k=1 1—Tke Tk—eh
h
e 2COS[\/§hJ(7k+TN+l)
2
2 2.-h N
_ A
QS_kZl _D \/§ my
l1-2ne Zcos[ZhJ+rfe_h

h
3 -
e 2COS(\2fhj(T +r|£\'+1)—r|i\'e h_ g2
+ Ng |-

h
2 -2z 2 cos(fh}w‘h

where 7 are given in Theorem 4.1 and |7 |[<1.

Proof. In the equal spaced case of the nodes, the
expression (2.11), using (2.10), we can rewrite in the
following form

el = (-2)- icﬂ{%CyG(hﬂ—hM— f (hﬂ)J
p=0 7=0
N 1
+> Cpf(hB)-—=
p=0
Ze% cos [EJ—Ze_; cos [ﬁ]
g : +1

1 1
+2\/§eE sin (%J + 2\/§e7E sin (%J

(2e- 21y

where f(hg) is defined by (4.3).
Hence taking into account equality (3.1) we get

hg
N die ™ +dje 2 cos(?hﬂ]
2
== > C
=2l
+dge 2 sin[7hﬁj

1
2e—2e7 122 cos {?]

+ZC,B hﬁ - 1
2e_5 cos(%}

1
2/3e2 sin[?]
+ +1.

1
+243e 2sin (?J

Using equalities (4.2)
simplifications, we obtain

1
Eez cos E
2 2

and (4.3), after some

P = o, (1_e—1)+ d,

12 1 J3 _hs
+2|e2cos| — [+1]- > Cuze 2
[ [ ] ]go :

~cos[§hﬂ]

12

1 1
el _e_eg2? COS[?J-FG 2 cos(%}

1 1
~J3e25sin (%} —\/§e_E sin (?j

N
+1- ZCﬂ
p£=0

Now from

coefficients  of

(4.16) eq

ehﬂ

(5.1)

uating the corresponding

_hp (\/g

e 2 cos 7hﬂj and
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_hs
e 2 sin(?hﬂ}, for d; , d, and d; we get the

following expressions

_1 N hg
dl —E{e-i-l-i-CO—ZCﬂe +2\]1J,

f=1
1
2e 2cos(§}+2—co
N hs
1 +ZCﬂe 2 cos{ﬁhﬂj
dy=— ,
277 p=1 s
+f2cﬂe 2 sm(ihﬁJ
B=1
- (\]2 +\/§\]3)

1
2e ZCOS[[]+\/_C0
_hp
1 —IZC e 2 cos(ihﬁJ
hg
+§:Cﬂe 2 sm(ﬁhﬂJ

=1

2(35-+/33,)

Substituting these expressions in (5.1) we find

e =1- Zcﬁ+— [6C0+2e_1ﬂzlc 4e"

1 hg
+4e2cos[\/§J %Cﬂe 2 cos[ﬁhﬂj
2 ) =
1 hg
+4e2 sm[ﬁj D Cpe 2 sm[ihﬁj
1
+2(1—e‘1)J1+4[1—e2cos(?j}J2

1
—4e2 sin [?j%].

where

my h \/7
1-2r.e 2005(hj+rke h
+kz ) 5 :
=1

N Hle Zcos(;hJ—rk e

+Ny

h
2 -2re 2 cos(fh}w‘h

h
Jz=e 2 sin(?hj

h
1-2e 2 cos[\/z§ h}re‘h

My 7y

h
1-2re 2 cos(f h]+ Ze "

+> N+1

= N7,
k=1 4 hk k
< [VB) -
% - 2re 2cos(£hj+e h

Finally, using the expression for optimal coefficients

Cy from Theorem 4.4, after some calculations and

simplifications, we get the assertion of Theorem 5.1.
Theorem 5.1 is proved.

Now we give some numerical results.

For convenience the absolute value of the (1.5) of the
optimal quadrature formula (1.1) we denote by | Ry (#) |-

Then by the Cauchy-Schwarz inequality we have

IRy @ E KPR 6.2

In the space K, (P;) using Theorems 4.4, 5.1 and (4.6),
(5.2) for the error of the optimal quadrature formula (1.1)
we have the results for the cases N =10, 50 and 100
which are given in the second row of Table 1. In the third
row of the Table 1 we give the results of the errors of
optimal quadrature formula of the form (1.1) in the space

W2(3'2) which are given in the work [24].

Table 1. Comparison the errors of optimal quadrature formulas in
Ka(P,) and W,*? spaces for the cases N = 10, 50 and 100

N=10 N=50 N=100

*
“g K2 (P3)” 0.10788-10* | 0.5642497-107 8_'8643488'1
”E |W2(3'2) ” 0.10790-10* | 0.5642501.107 8_'8643488'1

The numerical results show that the errors of the
optimal quadrature formula in the space K, (P;) is less

than the errors of the optimal quadrature formula in the
space W2(3'2) for the cases N =10 and 50.
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6. Conclusion

The paper is devoted to construction of the optimal
quadrature formulas in the sense of Sard in the space
Ko(P;) . We found the extremal function which

corresponds to the error functional ¢ and gave a
representation of the norm of the error functional (1.2).
The system of linear equations for the coefficients of the
optimal quadrature formula is obtained. Moreover, we
invastigated the existence and uniqueness of the solution
of obtained system. Explicit formulas for coefficients of

the optimal quadrature formula of the form (1.1) are found.

The obtained optimal quadrature formula is exact for the
X X
functions e X, e2 cos(?x] and e? sin[%xj . In

Section 5 we calculate the norm of the error functional of
the optimal quadrature formula and we give some
numerical results.
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