
July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

Optimization
Vol. 00, No. 00, November 2014, 1–23

RESEARCH ARTICLE

Firefly Penalty-based Algorithm for Bound Constrained

Mixed-Integer Nonlinear Programming

M. Fernanda P. Costaa ∗, Ana Maria A. C. Rochab, Rogério B. Franciscoa

and Edite M. G. P. Fernandesb

a Centre of Mathematics, University of Minho, 4710-057 Braga, Portugal
bAlgoritmi Research Centre, University of Minho, 4710-057 Braga, Portugal

(v1.0 released February 2011)

In this article, we aim to extend the firefly algorithm (FA) to solve bound constrained mixed-
integer nonlinear programming (MINLP) problems. An exact penalty continuous formulation
of the MINLP problem is used. The continuous penalty problem comes out by relaxing the
integrality constraints and by adding a penalty term to the objective function that aims to
penalize integrality constraint violation. Two penalty terms are proposed, one is based on the
hyperbolic tangent function and the other on the inverse hyperbolic sine function. We prove
that both penalties can be used to define the continuous penalty problem, in the sense that it
is equivalent to the MINLP problem. The solutions of the penalty problem are obtained using
a variant of the metaheuristic FA for global optimization. Numerical experiments are given on
a set of benchmark problems aiming to analyze the quality of the obtained solutions and the
convergence speed. We show that the firefly penalty-based algorithm compares favorably with
the penalty algorithm when the deterministic DIRECT or the simulated annealing solvers are
invoked, in terms of convergence speed.

Keywords: mixed-integer programming; firefly algorithm; penalty function;

AMS Subject Classification: 90C30; 90C26; 90C11; 90C56; 90C59

1. Introduction

This article aims to analyze the merit, performance-wise, of a penalty approach
for globally solving mixed-integer nonlinear programming (MINLP) problems. A
continuous relaxation of the MINLP problem is carried out by converting it to a
finite sequence of nonlinear programming (NLP) problems with only continuous
variables. The problem to be addressed has the form:

min f(x)
subject to x ∈ C ⊂ Rn (a compact set)

xi ∈ R for i ∈ Ic ⊆ I ≡ {1, . . . , n}
xj ∈ Z for j ∈ Id ⊆ I (in particular xj ∈ {0, 1})
Ic ∩ Id = ∅ and Ic ∪ Id = I

(1)

where f is a nonlinear continuous function. The study carried out in this article
assumes that the compact set C is C = {x ∈ Rn : li ≤ xi ≤ ui, i ∈ I}. Since xj ∈ Z

∗Corresponding author. Email: mfc@math.uminho.pt

ISSN: 0233-1934 print/ISSN 1029-4945 online
c⃝ 2014 Taylor & Francis
DOI: 10.1080/0233193YYxxxxxxxx
http://www.informaworld.com



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

2 Firefly Penalty-based Algorithm for MINLP

for j ∈ Id, we define the feasible region of problem (1) as follows:

W = {x ∈ C ⊂ Rn : xj ∈ Z for j ∈ Id ⊆ I}. (2)

This way, |Ic| is the number of continuous variables, |Id| gives the number of integer
variables, and l and u are the vectors of the lower and upper bounds on the variables
respectively.
The continuous relaxation of a MINLP is obtained by relaxing the integrality

conditions from xj ∈ Z, j ∈ Id to xj ∈ R, j ∈ Id. Many approaches using continuous
relaxation have been devised to solve MINLP problems [35]. The most used and
simple approach solves the continuous relaxation of the MINLP problem followed
by rounding off the continuous values (of the integer variables) to their nearest
integral values. This type of approach does not work well on problems with a large
number of variables.
In general, the presence of integer variables implies that the feasible region W is

not convex. We may distinguish convex from nonconvex MINLP problems. If the
problem functions are convex, the MINLP problem is called convex; otherwise it
is called nonconvex. A convex MINLP problem is easier to solve than a nonconvex
one, since its continuous relaxation is itself a convex problem, and therefore likely to
be tractable, at least in theory. Surveys on integer and mixed-integer programming
can be found in [14, 25].
Exact and heuristic methods have been proposed to solve MINLP problems. For

convex MINLP, some quite effective exact methods that have been devised based on
the convex property include branch-and-bound (BB) [10, 13], outer approximation
[1], branch-and-reduce [36], branch-and-cut, generalized Benders decomposition,
LP/NLP-based BB and hybrid methods [11, 14]. They are capable of solving large
problems with hundreds of variables although the computational time required to
reach a solution may grow exponentially. By contrast, the continuous relaxation of
a nonconvex MINLP is itself a global optimization problem, and therefore likely
to be NP-hard. Spatial BB has emerged from a combination of the standard BB
approach and standard NLP methods, like for example sBB and BARON solvers.
COUENNE (Convex Over- and Under-ENvelopes for Nonlinear Estimation) is a
popular spatial BB solver for solving nonconvex MINLP [10]. The main issues
addressed by the paper are related with bounds tightening and branching strategies.
When solving nonconvex MINLP, most algorithms have difficulty in reaching a
feasible point. This issue has been addressed in the literature by feasibility pumps
[12, 19]. Recent derivative-free methods for locating a local minimizer of MINLP
problems are presented in [2, 3, 9, 30, 31]. In the first paper, the generalized pattern
search algorithm for linearly constrained (continuous) optimization was extended
to mixed variable problems and the constraints are treated by the extreme barrier
approach. In [3, 9], pattern search based methods are used to tackle continuous
and discrete variables simultaneously. The approaches in [30, 31] use a discrete line
search to deal with the discrete variables, although in [31] a simple penalty is used
to handle the nonlinear constraints.
Recently, exact penalty approaches have also been extended to general nonlinear

integer programming problems. Furthermore, it has been shown that a general class
of penalty functions can be used to solve general MINLP problems [15, 32, 33, 35,
37].
When a global solution to a nonconvex NLP problem is required, global opti-

mization solvers capable of converging to a global minimizer may be used, like for
example, the exact methods BARON [33, 38], αBB [4] and DIRECT [21, 27, 29].
In the context of penalty function techniques for solving general constrained



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 3

NLP problems, a diversity of metaheuristic algorithms (like differential evolution,
electromagnetism-like mechanism, genetic algorithm and artificial fish swarm algo-
rithm) have been appearing in the literature [5, 7, 16, 17, 20]. Recently, a meta-
heuristic algorithm, termed as firefly algorithm (FA), that mimics the social behav-
ior of fireflies based on the flashing and attraction characteristics of fireflies, has
been developed for continuous optimization [40, 41]. Several variants of the firefly
algorithm do already exist in the literature. Improvements have been made to FA
aiming to accelerate convergence (see, for example, [28, 34, 42]). A Gaussian FA
[22] and a hybrid FA with harmony search is proposed in [24]. Another modified FA
is presented in [39], allowing the movement of the brightest firefly along a direction
randomly chosen from a set of directions, provided that its brightness improves. A
convergence analysis based on a parameter selection on FA is presented in [8]. A
recent review of firefly algorithms is available in [23].
Our contribution in this article is directed to the area of continuous reformula-

tion of bound constrained MINLP problems by relaxing the integrality conditions
and adding suitable penalty terms to the objective function. Two penalty terms
are proposed: one is based on the hyperbolic tangent function and the other on the
inverse hyperbolic sine function. These proposals satisfy the required assumptions
to prove that the bound constrained MINLP problem is equivalent to a continuous
penalty relaxation, in the sense that they have the same global minimizers. Further-
more, for the NLP problems, a new fitness-based adaptive scheme is incorporated
into the firefly movement equation, within the metaheuristic FA, to globally solve
the continuous penalty problem. This new adaptive FA is less dependent on user
provided parameters since only one control parameter is required to switch from
global to local search.
The remaining part of this article is organized as follows. Section 2 describes the

two proposed continuous penalty terms, including their properties and Section 3
reviews FA and presents the new ideas concerning the fitness-based adaptive firefly
movement. Section 4 contains the results of all the numerical experiments and the
conclusions are summarized in Section 5.

2. Penalty function technique

This section is concerned with the exact penalty approach that can be extended to
solve MINLP problems. In this context, problem (1) is equivalent to the following
continuous reformulation, which comes out by relaxing the integer constraints on
the variables and adding a particular penalty term to the objective function:

min ψ(x; ε) ≡ f(x) + P (x; ε)
subject to x ∈ C

xi ∈ R for i = 1, . . . , n,
(3)

where ε ∈ (0, ε̄] and P (x; ε) is the penalty term, in the sense that they have the same
global minimizers. The resulting penalty function in the NLP problem (3) is termed
‘exact’ since the two problems have the same global minimizers for a sufficiently
small value of the penalty parameter ε [32, 33]. The following assumptions about
f and the penalty P are considered.

Assumption 2.1 The function f is bounded on C and there exists an open set
A ⊃ W and positive real numbers p and L, such that for all x, y ∈ A, f satisfies



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

4 Firefly Penalty-based Algorithm for MINLP

the following condition

|f(x)− f(y)| ≤ L∥x− y∥p. (4)

Assumption 2.2 For all x, y ∈W and for all ε ∈ R+,

P (x; ε) = P (y; ε). (5)

Assumption 2.3 There exists an ε̄, and for all z ∈W there exists a neighborhood
S(z) such that

P (x; ε)− P (z; ε) ≥ L̄∥x− z∥p, for all x ∈ S(z) ∩ (C\W ) and ε ∈ (0, ε̄], (6)

where L̄ > L and p is chosen as in (4). Furthermore, let S =
∪

z∈W S(z), ∃x̄ /∈ S
such that

lim
ε→0

(P (x̄; ε)− P (z; ε)) = +∞ for all z ∈W, (7)

P (x; ε) ≥ P (x̄; ε) for all x ∈ C\S and for all ε > 0. (8)

Theorem 2.4 : (Theorem 2.1 in [32]) Let Assumptions 2.1, 2.2 and 2.3 hold. Let
W and C (W ⊆ C ⊂ Rn) be compact sets. Let ∥ · ∥ be a suitable chosen norm.
Then, ∃ε̄ ∈ R+ such that for all ε ∈ (0, ε̄], problems (1) and (3) have the same
global minimizers.

Proof : (See [32]) �

An example of the class of penalty terms that can be used to solve MINLP
problems is the following [32, 33, 35]:

P (x; ε) =
∑
j∈Id

min
lj≤di≤uj

di∈Z

log (|xj − di|+ ε) . (9)

In [32], assuming that f satisfies Assumption 2.1, it is shown that the penalty (9)
satisfies Assumptions 2.2 and 2.3. Then Theorem 2.4 can be applied and it has
been concluded that ∃ε̄ > 0 such that for any ε ∈ (0, ε̄], problem (1) and problem
(3) based on penalty (9) have the same global minimizers.
Different penalty terms may be defined for problem (3), as long as some properties

are maintained. Our proposals consider the hyperbolic tangent and the inverse hy-
perbolic sine functions. For these functions, we prove that Assumptions 2.2 and 2.3
hold.

2.1. The hyperbolic tangent penalty

The first newly proposed penalty term for solving MINLP via the equivalence
between problems (1) and (3) is based on the hyperbolic tangent function, tanh(·),
which is differentiable and strictly increasing on the set C containing [l, u]:

P t(x; ε) =
1

ε

∑
j∈Id

min
lj≤di≤uj

di∈Z

tanh (|xj − di|+ ε) (10)



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 5

and ε ∈ R+ is the penalty parameter.
According to Theorem 2.4, we prove that penalty P t can be used in problem (3).

Property 2.5 For the penalty term in (10), there exists ε̄ > 0 such that for any
ε ∈ (0, ε̄], problems (1) and (3) have the same global minimizers.

The proof of this result is closely related to the proof given in [32] and is left for
the Appendix A of the paper.
Figure 1 shows the behavior of the hyperbolic tangent penalty (10) as ε decreases

(for ε = 1, 0.5, 0.25, 0.125, 0.0625, 0.03125). The figure also shows the penalties
based on the ‘log’ penalty (P) in (9), for ε = 1 and ε = 0.03125. We observe that
the penalty in (10) increases faster than the penalty ‘log’ as ε decreases and the
integrality violation increases.

0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

6

8

10

 min
i
 |x  − d

i
|

hyperbolic tangent penalty

 

 
ε=1
ε=0.5
ε=0.25
ε=0.125
ε=0.0625
ε=0.03125
ε=1 (P)
ε=0.03125 (P)

Figure 1.: Behavior of the ‘tanh’ penalty for six different values of ε

2.2. The inverse hyperbolic sine penalty

The inverse hyperbolic sine, asinh(t), is a differentiable function, for all real t, that
is suitable to define the penalty term in the problem (3) when solving MINLP prob-
lems like (1). Function asinh(t) is nonnegative and strictly increasing on [0,+∞).
The penalty term takes the form

P a(x; ε) =
∑
j∈Id

min
lj≤di≤uj

di∈Z

asinh

(
1

ε
|xj − di|+ ε

)
(11)

where ε > 0 is the penalty parameter. The behavior of the inverse hyperbolic
sine penalty for ε = 1, 0.5, 0.25, 0.125, 0.0625, 0.03125 is shown in Figure 2. For
comparison, the ‘log’ penalty (P) for ε = 1 and ε = 0.03125 is also displayed. In
this case, as ε decreases and the integrality violation increases, the behavior of
penalty (11) is somewhat similar to the ‘log’ penalty.
Once again, using Theorem 2.4 we can prove the following:

Property 2.6 For the penalty term in (11), there exists ε̄ > 0 such that for any
ε ∈ (0, ε̄], problems (1) and (3) have the same global minimizers.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

6 Firefly Penalty-based Algorithm for MINLP

0 0.1 0.2 0.3 0.4 0.5
−4

−3

−2

−1

0

1

2

3

4

5

 min
i
 |x  − d

i
|

inverse hyperbolic sine penalty

 

 
ε=1
ε=0.5
ε=0.25
ε=0.125
ε=0.0625
ε=0.03125
ε=1 (P)
ε=0.03125 (P)

Figure 2.: Comparison of ‘asinh’ penalties for different ε values

The proof of this result is closely related to the proof given in [32] and is left for
the Appendix A of the paper.

2.3. The exact penalty algorithm

We now briefly describe the exact penalty method aiming to find a global minimizer
of a MINLP problem [33]. See Algorithm 1. In this article, we implement the exact
penalty method with the newly proposed penalty terms (10) and (11), since they
satisfy Assumptions 2.2 and 2.3, as shown in Subsections 2.1 and 2.2. To compute a
δ(k) approximation to the global minimizer of the penalty problem (3) that satisfies

ψ(x(k); ε(k)) ≤ ψ(x; ε(k)) + δ(k), for all x ∈ C (12)

for fixed ε(k) and δ(k), we propose the stochastic population-based strategy known
as FA. The motivation and advantages for using FA (in Algorithm 2 below) are
described in the next section.
The penalty parameter is updated ε(k+1) = σεε

(k), σε ∈ (0, 1), when the com-
puted approximate global minimizer x(k), of the penalty function ψ(x; ε(k)), is not
feasible for problem (1) and condition

ψ(x(k); ε(k))− ψ(z(k); ε(k)) ≤ L(ε(k))∥x(k) − z(k)∥p (13)

holds, where z(k) ∈ W is the point that minimizes the distance between x(k) and
the set S(z(k)) = {x ∈ Rn : ∥x − z(k)∥∞ < ρ}, for a sufficiently small positive ρ,

i.e., z
(k)
j ∈ Z, j ∈ Id results from rounding x

(k)
j to the nearest integer, and z

(k)
i =

x
(k)
i , i ∈ Ic (see Proposition 2 in [33]). On the other hand, the parameter ε(k)

remains unchanged when x(k) is feasible or when x(k) is infeasible but condition
(13) is not satisfied.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 7

Data: f∗ (or kmax), δmin ≪ 1, ε(1) > 0, δ(1) > 0, σε ∈ (0, 1), σδ ∈ (0, 1), p
Set k = 1;
Randomly generate x(0) ∈ C;
while x(k−1) /∈W or f(x(k−1)) > f∗ + δmin do

Given x(k−1), compute an approximate global minimizer x(k) of
problem (3) using Algorithm 2 such that

ψ(x(k); ε(k)) ≤ ψ(x; ε(k)) + δ(k), for all x ∈ C

if x(k) /∈W and ψ(x(k); ε(k))− ψ(z(k); ε(k)) ≤ L(ε(k))∥x(k) − z(k)∥p then

Set ε(k+1) = σεε
(k), δ(k+1) = δ(k);

else

Set ε(k+1) = ε(k), δ(k+1) = σδδ
(k);

end
Set k = k + 1

end

Algorithm 1: Penalty algorithm

In our implementation of the penalty algorithm we set the function L(ε(k)) to
depend on the selected penalty term (‘tanh’-based in (10) or ‘asinh’-based in (11))
using the upper bounds defined for L̄ in (A1) or (A4) respectively, and guaranteeing
that L(ε(k)) is positive for ε(k) > 0 and L(ε(k)) → 0 when ε(k) → 0.
The algorithm terminates when a feasible solution is found within δmin of the

known global optimum solution. However, if the optimal value is not known, the
algorithm may use another condition, for example, one based on the number of
iterations, k > kmax, for a given threshold value kmax (or on the total number of
function evaluations, nf > nfmax, where nfmax is the threshold value).
The convergence results presented in [33] for a general equivalence framework,

where a general constrained NLP problem is considered equivalent to a sequence
of penalty problems by adding a suitable penalty term to the objective function
(in the sense that they have the same global minimizers), have been extended to
the exact penalty method with the penalty term (9), for solving a MINLP problem
via an NLP continuous reformulation.
Based on the results reported in [33], we now state the main convergence results

of Algorithm 1.
We assume that the sequence of iterates {x(k)} is well defined, i.e., the approx-

imate global minimizer x(k) of the penalty function ψ(·) that satisfies condition
(12) can be found. Since we use the metaheuristic FA to compute the approximate
global minimizer, there is no theoretical guarantee that the approximate solution
can be found in finite time. Relying on the probability theory a stochastic conver-
gence may be established for FA. This type of convergence is different from the
convergence concept of classical analysis. The probabilistic version of pointwise
convergence from elementary real analysis is the convergence with probability one.
This means that, in the limit, the convergence of FA to an approximate minimizer
of the penalty function will be guaranteed with probability one. This issue will be
addressed in a future study.

Lemma 2.7: Let {x(k)} be the sequence of iterates produced by Algorithm 1.
Then either

• ∃k̄ such that ε(k) = ε̄, for any k ≥ k̄, and every accumulation point x̄ of the
sequence {x(k)} is feasible (x̄ ∈W ); or

• ε(k) → 0 and every accumulation point x̄ of a subsequence {x(ki)} is feasible,



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

8 Firefly Penalty-based Algorithm for MINLP

with ki belonging to the set of indices in which condition (13) is satisfied;

holds.

The following lemma states that the parameter ε is updated only a finite number
of times.

Lemma 2.8: Let {x(k)} and {ε(k)} be sequences produced by Algorithm 1. Then
∃k̄ such that ε(k) = ε̄, for any k ≥ k̄.

The following result is a consequence of Lemmas 2.7 and 2.8 and δ(k) → 0.

Theorem 2.9 : Every accumulation point x̄ of the sequence of iterates {x(k)}
produced by Algorithm 1 is a global minimizer of the problem (1).

Since our penalty term proposals satisfy Assumptions 2.2 and 2.3, the proofs of
Lemmas 2.7 and 2.8 and Theorem 2.9 follow the same arguments used in the proofs
of Lemma 1, Lemma 2 and Theorem 2 in [33].

3. Solving NLP continuous problems

Firefly algorithm is a bio-inspired metaheuristic algorithm that is capable of con-
verging to a global solution of an optimization problem. It is inspired by the flashing
behavior of fireflies at night. According to [39–41], the three main rules used to
construct FA are the following:

• all fireflies are unisex, meaning that any firefly can be attracted to any other
brighter one;

• the brightness of a firefly is determined from the encoded objective function;

• attractiveness is directly proportional to brightness but decreases with distance.

The performance of any metaheuristic depends on the diversification (or explo-
ration) and intensification (or exploitation) features of the algorithm. Diversifica-
tion aims to explore the search space and to compute a diversity of solutions. The
exploration aspect of a metaheuristic relies on randomization. Intensification aims
to locally exploit a region identified as a promising one. FA is a population-based
metaheuristic that does not require any derivative information and its performance
does not depend on the properties of the objective function. The balance between
local and global searches is crucial for the success of FA. Both searches emerge
from the equation of the firefly movement (see equation (14) below), in particular,
they depend on how the control parameters vary. Furthermore, the performance of
the algorithm is only moderately affected by the size of the population of fireflies.
The algorithm is not dependent on large population sizes to be able to converge to
high quality solutions.

3.1. Classical FA

We use the point x = (x1, x2, . . . , xn)
T to represent the location of a firefly in the

search space C and the position of the jth point of a population of m points is
represented by xj ∈ Rn. In the classical FA, a firefly i is attracted to another more
brighter firefly j, and the movement may be determined by:

xi = xi + β(xj − xi) + αL(0, 1)σi/2, (14)

where the second term on the right hand side of (14) is due to the attraction while
the third term is due to randomization with α ∈ (0, 1) being the randomization



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 9

parameter. Here, L(0, 1) is a random number from the standard Lévy distribution
(with a location parameter equals to 0, a scale parameter equals to 1, and the
shape parameter equals to 0.5), and the vector σi gives the variation of xi relative
to the position of the best firefly, x1, as follows:

σi =
(
|xi1 − x11|, . . . , |xin − x1n|

)T
.

The parameter β gives the attractiveness of a firefly

β = β0 exp
(
−γ∥xi − xj∥2

)
, (15)

and varies with the light intensity seen by adjacent fireflies and the distance between
themselves. β0 is the attraction parameter when the distance is zero. The parameter
γ characterizes the variation of the attractiveness, and is crucial to speed the
convergence of the algorithm. In theory, γ could take any value in the set [0,∞).
When γ → 0, the attractiveness is constant β = β0 and a flashing firefly can be
seen anywhere in the domain. When γ → ∞ the attractiveness is almost zero in the
sight of other fireflies or the fireflies are short-sighted. In particular, when β0 = 0,
the algorithm behaves like a simple random walk. In summary, the three control
parameters of FA are: the randomization parameter α, the attractiveness β, and
the absorption coefficient γ [23, 43]. In the herein presented implementation of FA,
we use previously proposed updates for α and γ that decrease with the iteration
counter, kFA, of the algorithm [18]. Thus, α is allowed to decrease linearly with
kFA, from an upper level αmax to a lower level αmin:

α = αmax − kFAαmax − αmin

kFA
max

, (16)

where kFA
max is the threshold number of allowed iterations. In order to make the

attraction term on the right hand side of (14) to dominate the movement mostly
at the end of the iterative process, γ is also decreased with kFA from γmax to γmin,
as follows:

γ = γmax exp

(
kFA

kFA
max

ln

(
γmin

γmax

))
. (17)

Algorithm 2 presents the main steps of a classical FA. We note that the best point
of the population is the position of the brightest firefly. When fireflies are ranked
according to their fitness, i.e., according to the objective value ψk(·) ≡ ψ(·; ε(k)),
the best firefly is x1.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

10 Firefly Penalty-based Algorithm for MINLP

Data: kFA
max, f

∗, and from Algorithm 1: x1 = x(k−1), ε(k) and δ(k).
Set kFA = 1;
Randomly generate xi, i = 2, . . . ,m;
Compute ψk(xi) ≡ ψ(xi; ε(k)), i = 1, . . . ,m, rank fireflies (from lowest to
largest ψ);
while kFA ≤ kFA

max and ψk(x1) > f∗ + δ(k) do
forall xi, i = 2, . . . ,m do

forall xj , j < i do
if ψk(xj) < ψk(xi) then

Move firefly i towards j using (14);
Compute ψk(xi);

end

end

end

Compute ψk(xi), i = 1, . . . ,m, rank fireflies (from lowest to largest ψ);
Set kFA = kFA + 1;

end

Algorithm 2: Classical FA

3.2. Adaptive FA

An opportune parameter choice is fundamental to increase the overall efficiency of
the algorithm. Here we propose an adaptive FA in the sense that the local search
activity relies on the relative variation in fitness between the firefly i and each of
the other brighter fireflies. The brighter is the firefly (relative to firefly i) the higher
is the attraction, i.e., when ψk(xj) < ψk(xl) < ψk(xi), the attractiveness is higher
when firefly i moves towards firefly j than towards firefly l, being equal to one when
the movement is towards the brightest firefly x1. In the context of solving the NLP
continuous problem (3), the movement that results from firefly i be attracted to
the brighter firefly j is defined by

xi = xi + exp (−α) ψ
k(xi)− ψk(xj)

ψk(xi)− ψk(x1)
(xj − xi) + αL(0, 1)σi/2, (18)

where the attractiveness depends on the variation in fitness ψ between the firefly i
and the brighter firefly j, relative to the difference between firefly i and the bright-
est firefly of all. Thus, it has the ability to easily adapt to problem landscape. The
randomization term is similar to (14). We note here that the second term of equa-
tion (18) is scaled by the parameter exp (−α) that aims to enforce the second term
dominance at the end of the iterative process, while the third term dominates at
the beginning of the iterations (see the above referred updating scheme (16)). The
adaptive FA possesses good exploring as well as exploiting capabilities. Unlike the
classical and other variants of FA, the adaptive FA has just one control parameter.

4. Numerical experiments

Several sets of experiments were carried out aiming to compare the convergence
speed and the solution quality produced by the algorithm when tested with both
penalty terms P t(·) in (10) and P a(·) in (11). Convergence speed is measured
comparing the number of function evaluations needed to reach a certain threshold



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 11

Table 1.: Comparison of ‘FA’ and ‘adaptive FA’.

|fbest − f∗| using penalty (10) |fbest − f∗| using penalty (11)

Prob. f∗ ‘FA’ ‘adaptive FA’ ‘FA’ ‘adaptive FA’

ACK 5 0 8.882e-16 8.882e-16 8.882e-16 8.882e-16
AP -0.3523 8.603e-05 8.603e-05 8.604e-05 8.607e-05
Bea 0 1.573e-18 2.444e-21 1.034e-18 6.296e-20
BL 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
BF1 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Buk 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
DA -24777 4.831e-01 4.817e-01 4.817e-01 4.817e-01
DP 2 0 1.583e-20 1.680e-19 6.073e-19 3.931e-18
DP 4 0 5.064e-17 3.242e-17 2.371e-18 5.089e-19
Him 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
LM2 5 0 1.146e-31 1.500e-32 1.701e-27 2.122e-27
NF2 0 2.038e-04 0.000e+00 0.000e+00 0.000e+00
RG 5 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
S10 -10.5319 4.384e-03 4.384e-03 4.384e-03 4.384e-03
SS 5 0 2.581e-17 8.969e-31 0.000e+00 2.782e-26

of objective function value (available in literature). Solution quality is measured
in terms of difference between the obtained result and the best known optimal
value, f∗. The numerical experiments were carried out on a PC Intel Core 2 Duo
Processor E7500 with 2.9GHz and 4Gb of memory RAM. The algorithms were
coded in Matlab Version 8.1 (R2013a).

4.1. Experimental setting

During most experiments the size of the population in the ‘FA’ and ‘adaptive FA’
is made to depend on the problem’s dimension and is set to m = min{5n, 50}.
Twenty-two instances of 14 MINLP problems are used for benchmarking. Seven
problems have n = 2 variables, two have n = 4 variables, problem Dixon-Price
is tested with n = 2 and n = 4, problem Sum Squares is tested with n = 5 and
n = 10, and problems Ackley, Levy and Rastrigin are tested with n = 5, 10 and 20.
See the Appendix B for the full description of the problems and their acronyms.
The parameters in Algorithm 1 are set as follows: ε(1) = 10, δ(1) = 1, δmin=1e-04,
σε = 0.1, σδ = 0.1, p = 1, kmax = 20. On the other hand, in Algorithm 2 we set:
kFA
max = 100, αmax = 0.5, αmin = 0.001, γmax = 10, γmin = 0.001, and β0 = 1.

4.2. Comparison between ‘FA’ and ‘adaptive FA’

First, a comparison between ‘FA’ and the herein proposed ‘adaptive FA’, based on
the solution quality is presented. Algorithm 1 is terminated when the number of
iterations exceeds kmax. Table 1 shows the difference between the objective function
value of the best run (out of 10 independent runs) and the known global solution,
|fbest−f∗|. Both penalty terms (10) and (11) are tested. The results correspond to
instances of the 14 problems with small dimensions. We conclude that ‘adaptive FA’
performs slightly better than ‘FA’ and the penalty algorithm associated with the
hyperbolic tangent function, described in (10), produces higher quality solutions
on 8 cases against 6 of the penalty (11) (among the 30 results of both variants,
where 16 are ties).



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

12 Firefly Penalty-based Algorithm for MINLP

Table 2.: Population size effect, using ‘adaptive FA’.

|fbest − f∗| of penalty (10) |fbest − f∗| of penalty (11)

Prob. f∗ m = 10 m = 25 m = 50 m = 10 m = 25 m = 50

ACK 5 0 2.850e-09 8.882e-16 8.882e-16 1.712e-10 8.882e-16 4.441e-15
LM2 5 0 2.935e-17 1.500e-32 1.500e-32 1.796e-17 2.122e-27 2.000e-27
RG 5 0 2.842e-13 0.000e+00 0.000e+00 4.320e-12 0.000e+00 0.000e+00
SS 5 0 7.436e-19 8.969e-31 1.409e-17 9.307e-17 2.782e-26 4.084e-27

4.3. Population size effect on performance

In this section, we present some results concerning with the effect on the algorithm
performance of the size of the population of fireflies. We use four instances with n =
5 and test three values of m: 2n, 5n and 10n. Table 2 reports on |fbest − f∗|. Both
proposed penalties (10) and (11) are tested. Based on the results we may conclude
that the quality is higher with larger population sizes, although the difference
between the use of m = 5n and m = 10n is almost not noticeable.

4.4. Other experimental tests

Finally, we use all the instances above mentioned and analyze the performance
of the exact penalty technique in terms of the quality of the obtained solutions.
Table 3 shows the difference |fbest − f∗| obtained after running each instance 10
times with each tested penalty. For these experiments, the penalty algorithm is
terminated solely with the condition k > kmax with kmax = 20. We also note that
the population size is again set tom = min{5n, 50}. For comparison, we present the
results for the penalties (10), (11) and (9). We also aim to compare the performance
of the algorithm when using different values for the initial ε(1): 10 and 100. Since
larger dimensional instances are now included in the test set, we allow the ‘adaptive
FA’ to run for a maximum of 50 iterations.
Apart four instances, BL, BF1, Buk and Him, that perform evenly and extremely

well with the three tested penalties, we observe that the quality of the obtained
solutions is higher with the penalty (10) with 42% of the tested cases (considering
the total of 26 sets of runs with different |fbest − f∗| values, out of 44 sets), than
with the penalties (11) (with 35% of the cases) and (9) (with only 23% of the
cases). We also observe that the quality is higher when ε(1) = 10 is used (71%
against 29%, among 14 instances with different |fbest − f∗| values) with penalty
(11) and (59% against 41% among 17 instances) with penalty (9), and it is a tie
when penalty (10) is used.
On the other hand, Table 4 shows the average number of function evaluations,

‘nfavg’, and the standard deviation of function evaluations, ‘St.D.’, required to
reach a feasible solution within δmin of the known global optimum solution, i.e.,
the algorithm terminates when both conditions x(k) ∈ W and f(x(k)) ≤ f∗ + δmin

(for δmin =1.0e-04) are met. During these experiments, to check if x(k) ∈W , where
z(k) is defined as in (13), we use ∥x(k) − z(k)∥∞ ≤ σmin, where the tolerance error
σmin is set to 1.0e-05.
The goal now is to analyze the convergence speed of the Algorithm 1 when using

the proposed penalties and ε(1) = 100. For these experiments we also set kFA
max = 50.

We note that the average number of function evaluations is computed only from the
runs that terminated with the conditions x(k) ∈W and f(x(k)) ≤ f∗ + δmin. These
are considered successful runs and the table reports the percentage of successful
runs, ‘SR’ (%). In the table, the character ‘–’ means that only one run in 10 was
successful, thus nfavg is the number of function evaluations of that run and St.D.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 13

Table 3.: Reports on solution quality |fbest − f∗|, using kmax = 20.

penalty (10) penalty (11) penalty (9)

Prob. f∗ ε(1) = 10 ε(1) = 100 ε(1) = 10 ε(1) = 100 ε(1) = 10 ε(1) = 100

ACK 5 0 8.882e-16 8.882e-16 8.882e-16 8.882e-16 7.994e-15 4.441e-15
ACK 10 0 1.155e-14 2.220e-14 3.286e-14 4.707e-14 1.998e-13 2.212e-13
ACK 20 0 2.049e+00 2.027e+00 1.884e+00 1.425e+00 2.639e+00 2.026e+00
AP -0.3523 8.606e-05 8.603e-05 8.605e-05 8.601e-05 8.603e-05 8.607e-05
Bea 0 4.933e-18 3.896e-20 7.654e-19 1.057e-17 2.776e-19 2.415e-18
BL 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
BF1 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Buk 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
DA -24777 4.817e-01 4.817e-01 4.817e-01 4.817e-01 4.817e-01 4.817e-01
DP 2 0 1.392e-19 2.939e-19 1.019e-19 9.919e-18 3.001e-18 7.392e-18
DP 4 0 2.159e-18 1.029e-18 2.778e-21 5.908e-19 1.762e-16 4.226e-17
Him 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
LM2 5 0 1.500e-32 4.134e-31 1.500e-32 3.215e-27 1.184e-28 2.815e-26
LM2 10 0 7.228e-29 3.757e-26 2.412e-25 6.729e-25 4.323e-28 1.141e-26
LM 20 0 1.164e-12 9.289e-14 7.292e-13 9.477e-14 2.051e-12 3.806e-16
NF2 0 1.803e-03 0.000e+00 7.557e-02 0.000e+00 8.109e-02 0.000e+00
RG 5 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.468e-09 0.000e+00
RG 10 0 2.985e+00 4.033e+00 3.980e+00 4.975e+00 4.975e+00 5.586e+00
RG 20 0 8.958e+00 7.961e+00 8.959e+00 1.095e+01 7.790e+00 1.112e+01
S10 -10.5319 4.384e-03 4.384e-03 4.384e-03 4.384e-03 4.423e-03 4.384e-03
SS 5 0 2.821e-30 1.440e-18 1.077e-26 1.963e-26 2.246e-28 1.200e-25
SS 10 0 5.327e-27 4.490e-18 5.393e-25 4.904e-20 1.110e-25 1.951e-24

does not apply. The instances where the algorithm was not able to reach a feasible
solution within the specified error tolerance, in any run, are identified with ‘0’ in
‘SR’. ‘Emphasized’ values in parentheses correspond to the objective function value
of the best run (in the column of the average number of function evaluations) and a
measure of the proximity of the obtained solution x(k) to the known global solution
x∗ (in the column of St.D.).
From the results we may conclude that the herein proposed penalties (10) and

(11) have comparable convergence behavior. The penalty (10) solves 59% of tested
instances with 90–100% of successful runs (and 73% of instances with 80–100%
of successful runs) and has 14% of instances with only unsuccessful runs, and the
penalty (11) successfully solves 68% of instances with 90–100% of successful runs
(and 73% of instances with 80–100% of successful runs), but has 18% of instances
with only unsuccessful runs. On the other hand, the penalty (9) used in [32, 33]
is successful in 90–100% of the runs when solving 64% of the instances (and is
successful in 80–100% of the runs with 68% of the instances), and produces only
unsuccessful runs on 23% of the instances. We note that the penalty algorithm
associated with the function (10) performs slightly better than with the other two
cases in comparison, with an overall average percentage of successful runs of 75%,
against 74% of the function (11) and 72% of penalty (9).
We now use two well-known global search techniques available in the litera-

ture to solve the NLP continuous problems (3) in this exact penalty context. The
first is the deterministic and exact global search procedure ‘DIRECT’ [27]; the se-
cond is a point-by-point stochastic global algorithm known as ‘simulated annealing’
(SA) [26]. The function ‘simulannealbnd’ from the Global Optimization ToolboxTM

of Matlab is invoked.
The results for comparison are reported in Table 5. The penalty algorithm is

terminated with the conditions

x(k) ∈W and f(x(k)) ≤ f∗ + 1.0e-03 (19)

where the tolerance error σmin is now set to 1.0e-03, and f(x(k)) is the solution



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

14 Firefly Penalty-based Algorithm for MINLP

Table 4.: Reports on convergence speed, using δmin =1.0e-04 and σmin =1.0e-05.

penalty (10) penalty (11) penalty (9)

Prob. nfavg St.D. SR nfavg St.D. SR nfavg St.D. SR

ACK 5 3.585e+04 6.860e+03 100 4.417e+04 1.360e+04 90 3.740e+04 3.785e+03 90
ACK 10 2.429e+05 1.449e+04 60 2.537e+05 4.038e+04 70 2.471e+05 5.254e+04 50
ACK 20 6.808e+05 – 10 (1.9e+00 ) (1.0e+00 ) 0 (1.8e+00 ) (9.1e-01 ) 0
AP 7.769e+03 1.596e+04 80 3.624e+03 2.881e+04 90 4.922e+03 6.051e+03 100
Bea 4.668e+03 4.316e+03 100 3.040e+03 1.972e+03 100 2.742e+03 1.533e+03 100
BL 3.958e+03 2.232e+03 100 4.368e+03 2.107e+03 100 3.762e+03 1.295e+03 100
BF1 3.585e+03 1.741e+03 100 4.476e+03 1.659e+03 100 3.777e+03 1.253e+03 100
Buk 1.202e+04 1.682e+04 100 1.305e+04 1.127e+04 100 6.092e+03 6.206e+03 100
DA (-2.5e+04 ) (0.0e+00 ) 0 (-2.5e+04 ) (0.0e+00 ) 0 (-2.5e+04 ) (0.0e+00 ) 0
DP 2 1.044e+04 1.854e+04 100 3.055e+03 2.264e+04 90 2.594e+03 1.108e+03 100
DP 4 1.226e+04 3.906e+03 100 1.410e+04 3.060e+03 90 1.059e+04 1.595e+04 70
Him 6.280e+03 5.827e+03 100 6.233e+03 2.557e+03 100 4.284e+03 1.574e+03 100
LM2 5 3.483e+04 9.766e+03 100 3.265e+04 4.510e+03 100 2.759e+04 5.135e+03 100
LM2 10 2.077e+05 2.556e+04 100 1.947e+05 2.139e+04 100 2.274e+05 2.818e+04 100
LM 20 5.856e+05 5.003e+04 80 5.670e+05 9.963e+04 90 8.435e+05 2.145e+04 80
NF2 9.558e+04 1.162e+05 100 5.870e+04 1.128e+05 90 2.832e+04 2.765e+04 100
RG 5 2.026e+05 2.147e+05 50 1.333e+05 1.467e+05 40 (9.9e-01 ) (9.9e-01 ) 0
RG 10 (2.0e+00 ) (1.0e+00 ) 0 (1.0e+00 ) (1.0e+00 ) 0 (4.0e+00 ) (9.9e-01 ) 0
RG 20 (1.1e+01 ) (1.0e+00 ) 0 (8.3e+00 ) (1.0e+00 ) 0 (8.0e+00 ) (1.0e+00 ) 0
S10 3.954e+04 1.632e+05 80 4.345e+04 2.888e+04 80 2.447e+04 9.547e+03 100
SS 5 2.743e+04 5.375e+03 100 3.234e+04 6.598e+03 100 2.960e+04 6.394e+03 100
SS 10 1.962e+05 2.550e+04 100 2.155e+05 3.197e+04 100 2.025e+05 2.288e+04 100

reported by ‘DIRECT’ and by ‘SA’, and is the best solution (among m) obtained
by our proposed ‘adaptive FA’. For these tests, the initial value for ε(1) is set to
100. While we use ‘nfavg’ and ‘St.D.’ as criteria to analyze the convergence speed
of our ‘adaptive FA’ and ‘SA’, only the number of function evaluations, ‘nf ’, is
required as convergence criterion for ‘DIRECT’, as long as the obtained solution
satisfies conditions (19), identified in the table with ‘1’ in the columns marked with
‘Suc’. On the other hand, if one of the conditions in (19) is not satisfied, the penalty
algorithm stops after 50 iterations, the run is identified with ‘0’ (unsuccessful run)
and the best reported solution is shown ‘emphasized’ inside parentheses.
Table 5 also displays the CPU time, ‘T’, in seconds, required to achieve the

reported solution. For the proposed ‘adaptive FA’ and for ‘SA’, the times corre-
spond to the averaged values registered during the successful runs, ‘Tavg’ (among
10 runs), or the time of the best run when all of them are unsuccessful. All the
other statistics concerned with the ‘adaptive FA’ have the same meaning as in the
previous table.
For a fair comparison between ‘adaptive FA’, ‘DIRECT’ and ‘SA’ (when invoked

in the penalty algorithm context) we use the same stopping criterion. Thus, each
algorithm is terminated when the number of penalty function evaluations exceeds
a threshold value, npenfmax, set to 5000. We also test ‘DIRECT’ with the stopping
parameter values defined by default. We also run two sets of experiments with the
‘SA’: the first set stops the solver when 5000 function evaluations are reached; the
second uses the stopping criteria and parameters defined by default in Matlab.
We observe that the penalty strategy based on the ‘adaptive FA’ is capable of

solving (i.e., conditions (19) are met for at least one run) 82% of the instances, and
has 90–100% of successful runs in 73% of the instances. In general, the unsuccessful
runs occur when solving the larger dimensional problems. The total time required
to solve the entire set of tested problems is 6.33e+02 seconds.
When the solver ‘DIRECT’ is used to solve the bound constrained NLP continu-

ous penalty problems, we obtain different convergence speeds. The version with the
setting npenfmax=5000 is able to successfully solve 55% of the instances (Suc = ‘1’
in the table), while the version with the default parameter values solves only 32%.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 15

T
ab

le
5.
:
C
om

p
ar
is
o
n
of

‘ n
f a

v
g
’,
‘n
f
’,
‘S
R
’,
‘S
u
c’
,
‘T

a
v
g
’
a
n
d
‘T
’,
u
si
n
g
δ m

in
=
1
.0
e-
03

an
d
σ
m
in
=
1.
0
e-
0
3,

a
n
d
p
en

al
ty

(1
0)
.

‘a
d
a
p
ti
v
e
F
A
’(
a
)

‘D
IR

E
C
T
’(
a
)

‘D
IR

E
C
T
’
(d

ef
a
u
lt
† )

‘S
A
’(
a
)

‘S
A
’
(d

ef
a
u
lt
‡ )

P
ro
b
.

n
f
a
v
g

S
t.
D
.

T
a
v
g
♯

S
R

n
f

T
§

S
u
c

n
f

T
§

S
u
c

n
f
a
v
g

S
t.
D
.

T
a
v
g
♯

S
R

n
f
a
v
g

S
t.
D
.

T
a
v
g
♯

S
R

A
C
K

5
1
.8
6
5
e+

0
4

2
.5
1
1
e+

0
3

3
.6
e+

0
0

9
0

4
.8
4
9
e+

0
3

1
.1
e+

0
0

1
1
.3
0
0
e+

0
1

2
.1
e-
0
2

1
(5
.6
e-
0
2
)

(1
.7
e-
0
2
)

7
.6
e+

0
1

0
(1
.7
e+

0
0
)

(9
.6
e-
0
1
)

7
.6
e+

0
1

0
A
C
K

1
0

1
.0
8
8
e+

0
5

1
.7
2
1
e+

0
4

3
.3
e+

0
1

8
0

5
.1
4
7
e+

0
3

1
.7
e+

0
0

1
2
.3
0
0
e+

0
1

8
.1
e-
0
3

1
(7
.9
e+

0
0
)

(3
.0
e+

0
0
)

1
.6
e+

0
2

0
(8
.2
e+

0
0
)

(3
.0
e+

0
0
)

1
.8
e+

0
2

0
A
C
K

2
0

(3
.6
e+

0
0
)

(1
.5
e-
0
3
)

1
.4
e+

0
2

0
5
.7
7
5
e+

0
3

3
.0
e+

0
0

1
4
.3
0
0
e+

0
1

2
.2
e-
0
2

1
(7
.6
e+

0
1
)

(8
.3
e+

0
0
)

2
.1
e+

0
2

0
(1
.5
e+

0
1
)

(8
.4
e+

0
0
)

5
.0
e+

0
2

0
A
P

8
.5
4
1
e+

0
3

5
.3
4
1
e+

0
3

7
.8
e-
0
1

1
0
0

6
.8
1
0
e+

0
2

9
.9
e-
0
2

1
(0
.0
e+

0
0
)

1
.8
e-
0
1

0
7
.2
2
7
e+

0
3

4
.8
3
1
e+

0
3

3
.5
e+

0
0

1
0
0

1
.0
9
4
e+

0
4

9
.2
9
6
e+

0
3

5
.3
e+

0
0

1
0
0

B
ea

9
.5
5
2
e+

0
3

4
.9
9
8
e+

0
3

8
.7
e-
0
1

1
0
0

1
.0
2
9
e+

0
3

1
.7
e-
0
1

1
(6
.8
e-
0
1
)

1
.9
e-
0
1

0
2
.2
5
3
e+

0
4

2
.4
9
1
e+

0
4

1
.1
e+

0
1

1
0
0

1
.0
8
6
e+

0
4

7
.5
5
3
e+

0
3

5
.3
e+

0
0

1
0
0

B
L

8
.0
4
1
e+

0
3

4
.2
3
2
e+

0
3

9
.2
e-
0
1

1
0
0

2
.6
6
3
e+

0
3

3
.9
e-
0
1

1
(3
.1
e+

0
0
)

2
.7
e-
0
1

0
5
.4
3
3
e+

0
3

2
.8
7
0
e+

0
3

2
.7
e+

0
0

1
0
0

7
.6
5
1
e+

0
3

4
.3
7
5
e+

0
3

3
.8
e+

0
0

1
0
0

B
F
1

9
.5
4
4
e+

0
3

5
.5
2
5
e+

0
3

1
.1
e+

0
0

1
0
0

1
.2
4
7
e+

0
3

2
.0
e-
0
1

1
1
.5
0
0
e+

0
1

4
.0
e-
0
3

1
3
.3
0
0
e+

0
3

2
.2
3
2
e+

0
3

1
.7
e+

0
0

1
0
0

2
.3
6
4
e+

0
3

1
.0
1
9
e+

0
3

1
.2
e+

0
0

1
0
0

B
u
k

4
.1
2
1
e+

0
4

5
.2
7
9
e+

0
4

4
.8
e+

0
0

1
0
0

(1
.0
e+

0
2
)

2
.0
e+

0
0

0
(1
.0
e+

0
2
)

2
.2
e-
0
1

0
2
.3
5
9
e+

0
4

1
.3
8
6
e+

0
4

1
.2
e+

0
1

3
0

2
.0
4
9
e+

0
4

1
.0
1
4
e+

0
4

1
.0
e+

0
1

8
0

D
A

(-
2
.5
e+

0
4
)

(0
.0
e+

0
0
)

3
.0
e+

0
1

0
(-
2
.5
e+

0
4
)

2
.2
e+

0
0

0
(-
2
.1
e+

0
4
)

2
.0
e-
0
1

0
0
.0
0
0
e+

0
0

0
.0
0
0
e+

0
0

0
.0
e+

0
0

0
1
.3
0
7
e+

0
4

2
.5
0
7
e+

0
3

1
.3
e+

0
0

1
0
0

D
P

2
1
.1
0
6
e+

0
4

6
.1
8
7
e+

0
3

1
.1
e+

0
0

1
0
0

6
.6
3
0
e+

0
2

9
.6
e-
0
2

1
(1
.0
e+

0
0
)

1
.7
e-
0
1

0
6
.3
4
8
e+

0
3

5
.6
8
5
e+

0
3

3
.1
e+

0
0

9
0

5
.2
5
3
e+

0
3

2
.2
7
5
e+

0
3

2
.5
e+

0
0

1
0
0

D
P

4
2
.9
1
9
e+

0
4

4
.3
3
1
e+

0
4

2
.9
e+

0
0

9
0

(3
.8
e-
0
3
)

6
.7
e+

0
0

0
(1
.0
e+

0
0
)

2
.2
e-
0
1

0
7
.5
1
0
e+

0
4

1
.9
0
6
e+

0
4

3
.6
e+

0
1

4
0

5
.3
3
5
e+

0
4

2
.0
0
0
e+

0
4

2
.6
e+

0
1

3
0

H
im

2
.7
1
3
e+

0
4

2
.5
5
3
e+

0
4

3
.1
e+

0
0

1
0
0

2
.4
5
0
e+

0
2

4
.9
e-
0
2

1
(1
.3
e+

0
1
)

1
.7
e-
0
1

0
4
.1
1
3
e+

0
3

1
.4
7
9
e+

0
3

2
.0
e+

0
0

1
0
0

4
.2
5
4
e+

0
3

2
.8
5
4
e+

0
3

2
.1
e+

0
0

1
0
0

L
M
2
5

1
.5
2
7
e+

0
4

2
.4
4
5
e+

0
3

2
.9
e+

0
0

1
0
0

(5
.1
e-
0
6
)

1
.1
e+

0
1

0
(9
.9
e-
0
1
)

2
.0
e-
0
1

0
(2
.4
e-
0
3
)

(1
.8
e-
0
1
)

7
.6
e+

0
1

0
(2
.8
e-
0
3
)

(9
.2
e-
0
2
)

7
.4
e+

0
1

0
L
M
2
1
0

6
.4
2
8
e+

0
4

1
.2
3
0
e+

0
4

2
.0
e+

0
1

1
0
0

(8
.3
e-
0
3
)

3
.5
e+

0
1

0
(1
.4
e+

0
0
)

3
.9
e-
0
1

0
(6
.3
e-
0
1
)

(1
.3
e+

0
0
)

1
.7
e+

0
2

0
(6
.0
e-
0
1
)

(1
.2
e+

0
0
)

1
.8
e+

0
2

0
L
M

2
0

2
.1
3
4
e+

0
5

2
.7
4
0
e+

0
4

1
.2
e+

0
2

9
0

(3
.1
e-
0
1
)

1
.5
e+

0
2

0
(2
.4
e+

0
0
)

1
.1
e+

0
0

0
(7
.4
e+

0
0
)

(2
.9
e+

0
0
)

2
.2
e+

0
2

0
(4
.6
e+

0
0
)

(2
.7
e+

0
0
)

8
.9
e+

0
2

0
N
F
2

9
.3
7
5
e+

0
4

8
.2
6
7
e+

0
4

1
.5
e+

0
1

9
0

(4
.3
e-
0
1
)

1
.0
e+

0
1

0
(2
.6
e+

0
3
)

2
.9
e-
0
1

0
8
.2
1
3
e+

0
4

5
.9
6
1
e+

0
4

4
.5
e+

0
1

3
0

6
.3
5
2
e+

0
4

2
.8
9
3
e+

0
4

3
.5
e+

0
1

4
0

R
G

5
4
.7
7
3
e+

0
4

2
.9
5
2
e+

0
4

8
.7
e+

0
0

6
0

5
.5
9
7
e+

0
3

1
.2
e+

0
0

1
1
.3
0
0
e+

0
1

4
.0
e-
0
3

1
(1
.6
e-
0
2
)

(9
.1
e-
0
3
)

7
.4
e+

0
1

0
1
.1
3
0
e+

0
4

–
6
.5
e+

0
0

1
0

R
G

1
0

(2
.7
e+

0
0
)

(9
.4
e-
0
1
)

7
.9
e+

0
1

0
5
.1
3
5
e+

0
3

1
.7
e+

0
0

1
2
.3
0
0
e+

0
1

7
.8
e-
0
3

1
(5
.0
e+

0
0
)

(1
.0
e+

0
0
)

1
.6
e+

0
2

0
(5
.0
e+

0
0
)

(1
.0
e+

0
0
)

1
.8
e+

0
2

0
R
G

2
0

(1
.1
e+

0
1
)

(9
.8
e-
0
1
)

1
.4
e+

0
2

0
7
.0
9
7
e+

0
3

3
.7
e+

0
0

1
4
.3
0
0
e+

0
1

2
.3
e-
0
2

1
(2
.8
e+

0
1
)

(3
.0
e+

0
0
)

2
.1
e+

0
2

0
(3
.4
e+

0
1
)

(2
.0
e+

0
0
)

1
.5
e+

0
3

0
S
1
0

3
.8
0
5
e+

0
4

4
.8
0
9
e+

0
4

6
.8
e+

0
0

1
0
0

(-
1
.1
e+

0
1
)

2
.7
e+

0
0

0
(-
9
.3
e-
0
1
)

2
.8
e-
0
1

0
3
.7
4
6
e+

0
4

2
.0
2
0
e+

0
4

2
.1
e+

0
1

7
0

4
.7
2
9
e+

0
4

–
2
.6
e+

0
1

1
0

S
S
5

1
.4
2
9
e+

0
4

4
.0
5
0
e+

0
3

2
.6
e+

0
0

1
0
0

(1
.2
e+

0
0
)

5
.1
e+

0
1

0
(9
.4
e+

0
1
)

2
.2
e-
0
1

0
(1
.3
e-
0
4
)

(6
.5
e-
0
3
)

7
.8
e+

0
1

0
(4
.4
e-
0
5
)

(3
.2
e-
0
3
)

7
.6
e+

0
1

0
S
S
1
0

7
.3
2
1
e+

0
4

1
.5
8
3
e+

0
4

2
.2
e+

0
1

1
0
0

(2
.9
e+

0
2
)

1
.4
e+

0
2

0
(3
.4
e+

0
2
)

3
.9
e-
0
1

0
(3
.7
e-
0
2
)

(6
.3
e-
0
2
)

1
.6
e+

0
2

0
(1
.7
e-
0
2
)

(3
.9
e-
0
2
)

1
.8
e+

0
2

0

T
o
ta
l
ti
m
e

6
.3
3
e+

0
2

4
.2
6
e+

0
2

4
.5
7
e+

0
0

1
.7
3
e+

0
3

3
.9
2
e+

0
3

(a
)
co

rr
es
p
o
n
d
s
to

n
p
en

f
m
a
x
=
5
0
0
0
;

†
n
p
en

f
m
a
x
=

2
0
a
n
d
m
a
x
im

u
m

n
u
m
b
er

o
f
it
er
a
ti
o
n
s
se
t
to

1
0
;

‡
n
p
en

f
m
a
x
=

3
0
0
0
n
a
n
d
o
th

er
cr
it
er
ia

li
k
e
th

e
a
v
er
a
g
e
ch

a
n
g
e
in

th
e
fu
n
ct
io
n
v
a
lu
e,

ru
n
n
in
g
ti
m
e
li
m
it
,
o
b
je
ct
iv
e
fu
n
ct
io
n
li
m
it

(a
m
o
n
g
si
x
cr
it
er
ia
);

♯
a
v
er
a
g
e
ti
m
e
(i
n
se
co

n
d
s)

o
v
er

th
e
su

cc
es
sf
u
l
ru

n
s,

o
r
th

e
ti
m
e
o
f
th

e
re
p
o
rt
ed

so
lu
ti
o
n
if
n
o
n
e
o
f
th

e
ru

n
s
is

su
cc
es
sf
u
l;

§
ex

ec
u
ti
o
n
ti
m
e
(i
n
se
co

n
d
s)

to
re
a
ch

th
e
so
lu
ti
o
n
if
S
u
c=

‘1
’,
o
r
th

e
ti
m
e
o
f
th

e
re
p
o
rt
ed

so
lu
ti
o
n
if
S
u
c=

‘0
’.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

16 Firefly Penalty-based Algorithm for MINLP

The total time required by ‘DIRECT’ (with setting npenfmax=5000) to reach
the reported solutions for all the problems is 4.26e+02. The default ‘DIRECT’
version takes much less time (4.57e+00 seconds) since it terminates mostly before
a good solution is reached, due to the default parameter values (npenfmax = 20
and maximum number of iterations set to 10).
When the penalty approach invokes the ‘SA’, we conclude that both tested ver-

sions, one based on setting npenfmax =5000 and the other based on default pa-
rameters, successfully solve (with 90-100% of successful runs) a small percentage of
instances, 27% and 32% respectively. Overall, the first version produces a solution
satisfying the conditions (19) in at least one run for 45% of the instances, against
55% of the second version. The total times to achieve the reported solutions are
of the same order of magnitude: 1.73e+03 for ‘SA’ (with npenfmax =5000) and
3.92e+03 for ‘SA’ (with stopping default values).
From the comparison between the ‘adaptive FA’ and ‘DIRECT’ (with the setting

npenfmax =5000) we conclude that the ‘adaptive FA’ performs better in terms of
robustness (73% of successful runs against 55%), although it requires much more
function evaluations. In terms of total time to achieve the reported solutions of all
instances, ‘adaptive FA’ uses only 1.5 times more seconds than ‘DIRECT’.
When a comparison is made between algorithms that converge successfully to

the required solutions, the function evaluations required by the ‘adaptive FA’ are
in general slightly larger than those of ‘SA’ (with the setting npenfmax =5000).
However, the average times with ‘SA’ are mostly superior to those of the ‘adaptive
FA’. Furthermore, the ‘adaptive FA’ successfully solves almost three times more
instances than ‘SA’.

5. Conclusions

This article describes a penalty approach for solving MINLP problems that relies
on a continuous reformulation of the MINLP problem by converting it to a finite
sequence of nonlinear penalty problems with only continuous variables. For the two
newly proposed penalty terms, ‘tanh’-based and ‘asinh’-based, we prove that the
penalty problem and the MINLP problem are equivalent in the sense that they
have the same minimizers. In the penalty-based algorithm, the global minimizer of
the nonlinear penalty function is computed by a firefly algorithm. A variant of FA,
coined ‘adaptive FA’, is proposed aiming to reduce control parameter dependence.
The numerical experiments carried out to compare the quality of the produced

solutions, as well as the convergence speed of the algorithm, show that the hyper-
bolic tangent penalty produces slightly better results than the other two penalties
in comparison, in terms of solution quality and average percentage of successful
runs. Furthermore, the proposed ‘adaptive FA’-penalty algorithm compares favor-
ably with the penalty algorithm when the DIRECT deterministic solver or the
stochastic simulated annealing solver are invoked.

Acknowledgments

The authors wish to thank two anonymous referees for their careful reading of the
manuscript and their valuable comments and suggestions to improve the paper.
This work has been supported by FCT (Fundação para a Ciência e Tecnolo-

gia, Portugal) in the scope of the projects: PEst-UID/CEC/00319/2013 and PEst-
OE/MAT/UI0013/2014.



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 17

Appendix A.

Proof of Property 2.5: According to Theorem 2.4, to prove that penalty P t can
be used in problem (3), we have to show that the penalty term (10) satisfies As-
sumptions 2.2 and 2.3. We assume that f satisfies Assumption 2.1.

Proof : For all x, y ∈ W , P t(x; ε) =
1

ε

∑
j∈Id

tanh(ε) = |Id|
1

ε
tanh(ε) = P t(y; ε) and

Assumption 2.2 is satisfied.
To prove that Assumption 2.3 is also satisfied, the reasoning used in [32] is

extended to our penalty term. Thus, the behavior of the term related to xj (for
j ∈ Id)

P t
j (xj ; ε) =

1

ε
min

lj≤di≤uj

di∈Z

tanh (|xj − di|+ ε) ,

in a neighborhood of zj (z ∈ W ) is analyzed in the following three cases, where ρ
is a sufficiently small positive constant:

(i) zj = di and di < xj < di + ρ;
(ii) zj = di and di − ρ < xj < di;
(iii) zj = xj = di.

Case (i): Using the mean theorem

P t
j (xj ; ε)− P t

j (zj ; ε) =
1

ε cosh2 ((x̃j − di) + ε)
|xj − zj | ≥

1

ε cosh2 (ρ+ ε)
|xj − zj |

where x̃j ∈ (di, xj). We may choose ρ and ε such that

1

ε cosh2 (ρ+ ε)
≥ L̄ (A1)

and obtain

P t
j (xj ; ε)− P t

j (zj ; ε) ≥ L̄|xj − zj |. (A2)

For Case (ii) and using the mean theorem, we get

P t
j (xj ; ε)− P t

j (zj ; ε) =
1

ε cosh2 ((di − x̃j) + ε)
|xj − zj | ≥

1

ε cosh2 (ρ+ ε)
|xj − zj |

where x̃j ∈ (xj , di). Relation (A2) is also obtained in this case.
When considering Case (iii), we get P t

j (xj ; ε)−P t
j (zj ; ε) = 0 by Assumption 2.2.

Thus, for ρ and ε satisfying (A1), we have

P t(x; ε)− P t(z; ε) ≥ L̄
∑
j∈Id

|xj − zj | = L̄∥x− z∥1 ≥ L̄∥x− z∥∞

for all z ∈ C with zj ∈ Z for j ∈ Id, and zi = xi for i ∈ I\Id, and for all x such
that ∥x− z∥∞ < ρ.
Condition (6) in Assumption 2.3 holds if we define S as the union of the neigh-

borhoods S(z) = {x ∈ Rn : ∥x− z∥∞ < ρ} of all z ∈W .



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

18 Firefly Penalty-based Algorithm for MINLP

To prove (7) and (8), let {ε(k)} be an infinite sequence that converges to 0 as
k → ∞ (where k represents the iteration counter of the algorithm) and let x̄ be
defined by x̄l = dl ± ρ, where ll ≤ dl ≤ ul, dl ∈ Z,

x̄i = di where li ≤ di ≤ ui, di ∈ Z for all i ̸= l, where i, l ∈ Id
li ≤ x̄i ≤ ui, x̄i ∈ R for i ∈ I\Id

(A3)

and for any z ∈W , we have

limk→∞
(
P t(x̄; ε(k))− P t(z; ε(k))

)
= limk→∞

(
1

ε(k)
tanh(ρ+ ε(k))

+
1

ε(k)
(|Id| − 1) tanh(ε(k))− 1

ε(k)
|Id| tanh(ε(k))

)
= limk→∞

1

ε(k)

(
tanh(ρ+ ε(k))− tanh(ε(k))

)
= +∞.

Furthermore, for all x ∈ C\S and all ε > 0 we have

P t(x; ε)− P t(x̄; ε) =
1

ε

∑
j∈Id

min
lj≤di≤uj

di∈Z

tanh (|xj − di|+ ε)− 1

ε

∑
j∈Id

min
lj≤di≤uj

di∈Z

tanh (|x̄j − di|+ ε)

=
1

ε

∑
j∈Id

min
lj≤di≤uj

di∈Z

tanh (|xj − di|+ ε)− 1

ε
tanh(ρ+ ε)− 1

ε
(|Id| − 1) tanh(ε)

=
1

ε

∑
j ̸=l̄∈Id

min
lj≤di≤uj

di∈Z

tanh (|xj − di|+ ε)− 1

ε
(|Id| − 1) tanh(ε)

+
1

ε
tanh

(
|xl̄ − d̄|+ ε

)
− 1

ε
tanh(ρ+ ε)

≥ 0

since the hyperbolic tangent is strictly increasing, |xl̄− d̄| ≥ ρ where d̄ is the integer
feasible value nearest to xl̄. �

Proof of Property 2.6: According to Theorem 2.4, to prove that penalty P a can be
used in problem (3) we show that the penalty term (11) satisfies Assumptions 2.2
and 2.3. We assume that f satisfies Assumption 2.1.

Proof : For all x, y ∈ W , P a(x; ε) =
∑
j∈Id

asinh(ε) = |Id| asinh(ε) = P a(y; ε) and

Assumption 2.2 is satisfied.
To prove that Assumption 2.3 is also satisfied, the behavior of

P a
j (xj ; ε) = min

lj≤di≤uj

di∈Z

asinh

(
1

ε
|xj − di|+ ε

)

(for j ∈ Id) in a neighborhood of a feasible zj is analyzed using the three previously
referred cases (see the proof of Property 2.5). Let ρ > 0 be a sufficiently small value.
Case (i): Using the mean theorem

P a
j (xj ; ε)−P a

j (zj ; ε) =
1

ε

√
1 +

(
1

ε
(x̃j − di) + ε

)2
|xj−zj | ≥

1

ε

√
1 +

(
1

ε
ρ+ ε

)2
|xj−zj |



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 19

where x̃j ∈ (di, xj). Choosing ρ and ε such that

1

ε

√
1 +

(
1

ε
ρ+ ε

)2
≥ L̄ (A4)

we obtain

P a
j (xj ; ε)− P a

j (zj ; ε) ≥ L̄|xj − zj |. (A5)

Similarly for Case (ii), we have

P a
j (xj ; ε)− P a

j (zj ; ε) =
1

ε

√
1 +

(
1

ε
(di − x̃j) + ε

)2
|xj − zj |

≥ 1

ε

√
1 +

(
1

ε
ρ+ ε

)2
|xj − zj |

≥ L̄|xj − zj |

where x̃j ∈ (xj , di). For Case (iii), we obtain P
a
j (xj ; ε)−P a

j (zj ; ε) = 0, and we may
conclude that for ρ and ε satisfying (A4), we get

P a(x; ε)− P a(z; ε) ≥ L̄
∑
j∈Id

|xj − zj | = L̄∥x− z∥1 ≥ L̄∥x− z∥∞

for all z ∈ C (where zj ∈ Z for j ∈ Id, and zi = xi for i ∈ I\Id) and for all x such
that ∥x− z∥∞ < ρ.
If S is defined as the union of the neighborhoods S(z) = {x ∈ Rn : ∥x−z∥∞ < ρ}

of all z ∈W , then condition (6) in Assumption 2.3 is satisfied.
To prove (7) and (8), we consider the infinite sequence {ε(k)} converging to 0

(for k → ∞), the point x̄ defined by (A3) and z ∈W . Then,

limk→∞
(
P a(x̄; ε(k))− P a(z; ε(k))

)
= limk→∞

(
asinh

(
1

ε(k)
ρ+ ε(k)

)
+(|Id| − 1) asinh(ε(k))− |Id| asinh(ε(k))

)
= limk→∞

(
asinh

(
1

ε(k)
ρ+ ε(k)

)
− asinh(ε(k))

)
= +∞



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

20 Firefly Penalty-based Algorithm for MINLP

Furthermore, for all x ∈ C\S and all ε > 0 we have

P a(x; ε)− P a(x̄; ε) =
∑
j∈Id

min
lj≤di≤uj

di∈Z

asinh

(
1

ε
|xj − di|+ ε

)
−
∑
j∈Id

min
lj≤di≤uj

di∈Z

asinh

(
1

ε
|x̄j − di|+ ε

)
=
∑
j∈Id

min
lj≤di≤uj

di∈Z

asinh

(
1

ε
|xj − di|+ ε

)
− asinh

(
1

ε
ρ+ ε

)
−(|Id| − 1) asinh(ε)

=
∑

j ̸=l̄∈Id

min
lj≤di≤uj

di∈Z

asinh

(
1

ε
|xj − di|+ ε

)
− (|Id| − 1) asinh(ε)

+ asinh

(
1

ε
|xl̄ − d̄|+ ε

)
− asinh

(
1

ε
ρ+ ε

)
≥ 0

for the monotonically increasing inverse hyperbolic sine function, where |xl̄− d̄| ≥ ρ
and d̄ is the integer feasible value nearest to xl̄. �

Appendix B.

The collection of problems used in this study is listed below. They come from well-
known test problems in continuous optimization and have been suitably modified
by considering that at least one of the variables assumes only integer values [6, 30]:

Ackley (ACK n) (with x∗ = (0, . . . , 0) and f∗ = 0):

min −20 exp

−0.2

√√√√ 1
n

n∑
i=1

x2i

− exp

(
1
n

n∑
i=1

cos(2πxi)

)
+ 20 + e

xi ∈ {−30, . . . , 30} , i = 1, . . . , n

a) n = 5; b) n = 10; c) n = 20

Aluffi-Pentini (AP) (with x∗ = (−1.0465, 0) and f∗ ≈ −0.3523):
min 0.25x41 − 0.5x21 + 0.1x1 + 0.5x22

x1 ∈ [−10, 10] and x2 ∈ {−10, . . . , 10}
Beale (Bea) (with x∗ = (3, 0.5) and f∗ = 0):

min (1.5− x1(1− x2))
2 + (2.25− x1(1− x22))

2 + (2.625− x1(1− x32))
2

x1 ∈ {−5, . . . , 5} and x2 ∈ [−4.5, 4.5]

Becker-Lago (BL) (with x∗ = (∓5,∓5) and f∗ = 0):
min (|x1| − 5)2 + (|x2| − 5)2

xi ∈ {−10, . . . , 10} , i = 1, 2

Bohachevsky 1 (BF1) (with x∗ = (0, 0) and f∗ = 0):
min x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

xi ∈ {−50, . . . , 50} , i = 1, 2

Bukin (Buk) (with x∗ = (−10, 1) and f∗ = 0):

min 100
√
|x2 − 0.01x21|+ 0.01 |x1 + 10|

x1 ∈ {−15,−5} and x2 ∈ {−3, . . . , 3}
Dekkers-Aarts (DA) (with x∗ = (0,∓15) and f∗ = −24777):

min 105x21 + x22 − (x21 + x22)
2 + 10−5(x21 + x22)

4

xi ∈ {−20, . . . , 20} , i = 1, 2



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco and E.M.G.P. Fernandes 21

Table B1.: Data for Problem 14

(i) aij ci
(j) 1 2 3 4

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Dixon-Price (DP n) (with x∗ = (0, . . . , 0) and f∗ = 0):

min (x1 − 1)2 +
n∑

i=2

i(2x2i − xi−1)
2

x1 ∈ {−10, . . . , 10} and xi ∈ [−10, 10] , i = 2, . . . , n

a) n = 2; b) n = 4

Himmelblau (Him) (with x∗ = (3, 2) and f∗ = 0):
min (x21 + x2 − 11)2 + (x1 + x22 − 7)2

xi ∈ {−5, . . . , 5} , i = 1, 2

Levy-Montalvo 2 (LM2 n) (with the global (1, 1, . . . , 1) and f∗ = 0):

min 0.1

(
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]

)
xi ∈ {−5, . . . , 5} , i = 1, . . . , n

a) n = 5; b) n = 10; c) n = 20

Neumaier 2 (NF2) (with x∗ = (1, 2, 2, 3) and f∗ = 0):

min

4∑
j=1

(
bj −

4∑
i=1

xji

)2

xi ∈ {0, . . . , 4} , i = 1, 2, 3, 4
where b = (8, 18, 44, 114)

Rastrigin (RG n) (with x∗ = (0, . . . , 0) and f∗ = 0):

min

n∑
i=1

(
x2i − 10 cos(2πxi)

)
+ 10n

xi ∈ {−5, . . . , 5} , i = 1, . . . , n

a) n = 5; b) n = 10; c) n = 20

Shekel 10 (S10) (the global is located at (4, 4, 4, 4) with f∗ ≈ −10.5319)

min −
10∑
j=1

1
4∑

i=1

(xj − aij)
2 + ci

xi ∈ {0, . . . , 10} , i = 1, 2, 3, 4
Sum Squares (SS n) (with the global (0, 0, . . . , 0) and f∗ = 0):

min
n∑

i=1

ix2i

xi ∈ {−5, . . . , 10} , i = 1, . . . , n

a) n = 5; b) n = 10



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

22 Taylor & Francis and I.T. Consultant

References

[1] K. Abhishek, S. Leyffer, J.T. Linderoth, FilMINT: An outer approximation-based solver for convex
mixed-integer nonlinear programs, INFORMS Journal on Computing, 22(4) (2010), pp. 555-567.

[2] M.A. Abramson, C. Audet, J.W. Chrissis, J.G. Walston, Mesh adaptive direct search algorithms for
mixed variable optimization, Optimization Letter, 3(1) (2009), pp. 35–47.

[3] M.A. Abramson, C. Audet, J.E. Dennis Jr., Filter pattern search algorithms for mixed variable con-
strained optimization problems, Pacific Journal on Optimization, 3(3) (2007), pp. 477–500.

[4] C.S. Adjiman, I.P. Androulakis, C.A. Floudas, A global optimization method, αBB, for general twice-
differentiable constrained NLPs – II. Implementation and computational results, Computers & Chem-
ical Engineering, 22(9) (1998), pp. 1159–1179.

[5] M.M. Ali, M. Golalikhani, An electromagnetism-like method for nonlinearly constrained global opti-
mization, Computers & Mathematics with Applications, 60(8) (2010), pp. 2279–2285.

[6] M.M. Ali, C. Khompatraporn, Z.B. Zabinsky, A numerical evaluation of several stochastic algorithms
on selected continuous global optimization test problems, Journal of Global Optimization, 31 (2005),
pp. 635–672.

[7] M.M. Ali, W.X. Zhu, A penalty function-based differential evolution algorithm for constrained global
optimization, Computational Optimization and Applications, 54(3) (2013), pp. 707–739.

[8] S. Arora, S. Singh, The firefly optimization algorithm: convergence analysis and parameter selection,
International Journal of Computer Applications, 69(3) (2013), pp. 48–52.

[9] C. Audet, J.E. Dennis Jr., Pattern search algorithms for mixed variable programming, SIAM Journal
on Optimization, 11(3) (2001), pp. 573–594.

[10] P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, Branching and bounds tightening techniques for
non-convex MINLP, Optimization Methods and Software, 24(4) (2009), pp. 597–634.

[11] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, A. Wächter, An algorithmic framework for convex mixed integer nonlinear
programs, Discrete Optimization, 5(2) (2008), pp. 186–204.

[12] P. Bonami, G. Cornuéjols, A. Lodi, F. Margot, A feasibility pump for mixed integer nonlinear pro-
grams, Mathematical Programming, 119(2) (2009), pp. 331–352.

[13] P. Bonami, J. Lee, S. Leyffer, A. Wächter, More branch-and-bound experiments in convex nonlinear
integer programming, Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics
and Computer Science Division, 2011.

[14] S. Burer, A.N. Letchford, Non-convex mixed-integer nonlinear programming: a survey, Surveys in
Operations Research and Management Science, 17 (2012), pp. 97–106.

[15] Y. Changjun, K.L. Teo, Y. Bai, An exact penalty function method for nonlinear mixed discrete
programming problems, Optimization Letters, 7(1) (2013), pp. 23–38.

[16] L. Costa, I.A.C.P. Esṕırito Santo, E.M.G.P. Fernandes, A hybrid genetic pattern search augmented La-
grangian method for constrained global optimization, Applied Mathematics and Computation, 218(18)
(2012), pp. 9415–9426.

[17] M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes, An artificial fish swarm algorithm based hyper-
bolic augmented Lagrangian method, Journal of Computational and Applied Mathematics, 259(Part
B) (2014), pp. 868–876.

[18] M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco, E.M.G.P. Fernandes, Heuristic-based firefly algorithm
for bound constrained nonlinear binary optimization, Advances in Operations Research 2014, Article
ID 215182, (2014) 12 pages.

[19] C. D’Ambrosio, A. Frangioni, L. Liberti, A. Lodi, A storm of feasibility pumps for nonconvex MINLP,
Mathematical Programming, Series B, 136(2) (2012), pp. 375–402.

[20] K. Deb, S. Srivastava, A genetic algorithm based augmented Lagrangian method for constrained op-
timization, Computational Optimization and Applications, 53(3) (2012), pp. 869–902.

[21] G. Di Pillo, S. Lucidi, F. Rinaldi, An approach to constrained global optimization based on exact
penalty functions, Journal of Global Optimization, 54(2) (2012). pp. 251–260.

[22] Sh.M. Farahani, A.A. Abshouri, B. Nasiri, M.R. Meybodi, A Gaussian firefly algorithm, International
Journal of Machine Learning and Computing, 1(5) (2011), pp. 448–453.

[23] I. Fister, I. Fister Jr., X.-S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm and
Evolutionary Computation, 13 (2013), pp. 34–46.

[24] L. Guo, G.-G. Wang, H. Wang, D. Wang, An effective hybrid firefly algorithm with harmony search
for global numerical optimization, The Scientific World Journal, Volume 2013, Article ID 125625, 9
pages.

[25] R. Hemmecke, M. Koppe, J. Lee, R. Weismantel, Nonlinear Integer Programming, in M. Jünger, T.
Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, L. Wolsey (Eds.), 50
Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys, Springer-
Verlag (2009) ISBN 3540682740.

[26] L. Ingber, Very fast simulated re-annealing, Mathematical and Computer Modelling, 12 (1989), pp.
967–973.

[27] D.R. Jones, The DIRECT global optimization algorithm, In: C. Floudas, P. Pardalos, (eds.) Encyclo-
pedia of Optimization, pp. 431–440. Kluwer, Dordrecht (2001)

[28] X. Lin, Y. Zhong, H. Zhang, An enhanced firefly algorithm for function optimisation problems, In-
ternational Journal of Modelling, Identification and Control, 18(2) (2013), pp. 166–173.

[29] G. Liuzzi, S. Lucidi, V. Piccialli, A partition-based global optimization algorithm, Journal of Global
Optimization, 48(1) (2010), pp. 113–128.

[30] G. Liuzzi, S. Lucidi, F. Rinaldi, Derivative-free methods for bound constrained mixed-integer opti-
mization, Computational Optimization and Applications, 53(2) (2012), pp. 505–526.

[31] G. Liuzzi, S. Lucidi, F. Rinaldi, Derivative-free methods for mixed-integer constrained optimization
problems, Journal of Optimization Theory and Applications, 164(3) (2015), pp. 933–965.

[32] S. Lucidi, F. Rinaldi, Exact penalty functions for nonlinear integer programming problems, Journal



July 21, 2015 17:12 Optimization MIbNLP-aFA˙revised

Optimization 23

of Optimization Theory and Applications, 145(3) (2010), pp. 479–488.
[33] S. Lucidi, F. Rinaldi, An exact penalty global optimization approach for mixed-integer programming

problems, Optimization Letters, 7(2) (2013), pp. 297–307.
[34] A. Manju, M.J. Nigam, Firefly algorihtm with fireflies having quantum behavior, in Institute of Elec-

trical and Electronics Engineers, 2012 ICRCC, India, December 2012, pp. 117–119.
[35] W. Murray, K.-M. Ng, An algorithm for nonlinear optimization problems with binary variables, Com-

putational Optimization and Applications, 47(2) (2010), pp. 257–288.
[36] H.S. Ryoo, N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications

in process design, Computers and Chemical Engineering, 19(5) (1995), pp. 551–566.
[37] R.A. Shandiz, N. Mahdavi-Amiri, An exact penalty approach for mixed integer nonlinear programming

problems, American Journal of Operations Research, 1(3) (2011), pp. 185–189.
[38] M. Tawarmalani, N.V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Math-

ematical Programming, Series B, 103(2) (2005), pp. 225–249.
[39] S.L. Tilahun and H.C. Ong, Modified firefly algorithm, Journal of Applied Mathematics, Volume 2012

(2012), Article ID 467631, 12 pages.
[40] X.-S. Yang, Firefly algorithms for multimodal optimization, in O. Watanabe, T. Zeugmann (Eds.)

Stochastic Algorithms: Foundations and Applications (SAGA 2009) Lecture Notes in Computer Sci-
ences, Vol. 5792, (2009), pp. 169–178.

[41] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimization, International Journal
of Bio-Inspired Computation, 2(2) (2010), pp. 78–84.

[42] X.-S. Yang, X. He, Firefly algorithm: recent advances and applications, International Journal of Swarm
Intelligence, 1(1) (2013), pp. 36–50.

[43] S. Yu, S. Yang, S. Su, Self-adaptive step firefly algorithm, Journal of Applied Mathematics, Volume
2013 (2013), Article ID 832718, 8 pages.


