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Abstract

In the filtering problem considered here, the state process is a continuous time random walk and the
observation process is an increasing process depending deterministically on the trajectory of the state
process. An explicit construction of the filter is given. This construction is then applied to a suitable
approximation of a Brownian motion and to a rescaled M/M/1 queueing model. In both these cases, the
sequence of the observation processes converges to a local time, and a convergence result for the respective
filters is given. The case of a queueing model when the observation is the idle time is also considered.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The kind of problems we are interested in arises from the following situation. Suppose that in
a queue we can observe, up to time t , whether the queue is busy or idle, but we cannot observe
the size of the queue, so that the observation process is the total time the queue has spent in 0,

I Partially supported by MURST project Metodi stocastici in finanza matematica Anno 2004 prot. 2004014572 007.
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i.e. the so called idle time (see [9]). Then the problem is to evaluate the size of the queue at time
t , given this information, i.e. to compute the conditional law (or the filter) of the queue given the
observation process up to time t . In the setup of a heavy traffic limit, the rescaled queue converges
to a reflected Brownian motion and the observation process converges to its local time. The limit
model can be constructed as (Wt + Λt ,Λt ), where Wt is a Brownian motion and

Λt = `t (W ), (1)

where

` : DR[0, ∞) → DR[0, ∞), x → `(x), such that `t (x) = − inf
s≤t

x(s) ∧ 0, (2)

is the functional involved in the solution of the Skorohod problem for x ∈ DR[0, ∞), with
x(0) ≥ 0, i.e. (z, v) = (x + `(x), `(x)) is the unique pair of functions (z, v) satisfying
z(t) = x(t) + v(t), and such that z(t) ≥ 0, for all t ≥ 0, v(0) = 0, v is nondecreasing and
increases only when z(t) = 0.

In the limit model, the corresponding filtering problem is the computation of the conditional
law of a reflected Brownian motion Wt +Λt when the observation process is its local time Λt , i.e.
the computation of the filter E[g(Wt + Λt )/FΛ

t ] for g in a sufficiently large class of functions.
The first problem is to find the exact expression for the filters, both for the limit model and

for the rescaled queue model. The second problem concerns the convergence of the latter to
E[g(Wt + Λt )/FΛ

t ].
The filter of the limit Brownian motion model is derived in [8] (Sections 4 and 6), where it is

obtained by means of a suitable sequence of processes Λn approximating the observation process
Λ. Each process Λn is proportional to a counting process, and therefore the nonlinear filtering
techniques for counting processes are used. The filter can also be derived by means of the Azéma
martingale, and this derivation is shortly discussed in [8]. For sake of completeness, we recall its
explicit expression.

Theorem 1.1. Let Wt be a Brownian motion with diffusion coefficient a2 and drift c ∈ R and let
Λt be the local time defined in (1). Let g be a bounded measurable function.

Denote

Π (s, l; g) =

∫
∞

0
g
(
−l + y

√
s
)

y exp
(

−
1
2

y2
)

dy s ≥ 0, (3)

Πa2,c(s, l; g) =

Π
(

a2s, l; g(·) exp
(

c
a2 ·

))
Π
(

a2s, l; exp
(

c
a2 ·

)) , (4)

Π̂a2,c(s; g) = Πa2,c(s, 0; g). (5)

Then

πt (g) = E
[
g(Wt )/FΛ

t

]
= Πa2,c(ζt ,Λt ; g), (6)

and

π̂t (g) = E
[
g(Wt + Λt )/FΛ

t

]
= Π̂a2,c(ζt ; g), (7)
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where FΛ
t is the history generated by Λu up to time t, ζt is the elapsed time from the last visit

to 0 for the process Wt + Λt , i.e.

ζt = γ 0
t (W + Λ) = γt (Λ), (8)

with

γ 0
t (x) = t − sup{s < t : xs = 0}, (9)

γt (x) = t − sup{s < t : xs < xt }. (10)

Note that Π1,0(s, l; g) = Π (s, l; g) = E[g(−l + W ∗
s )/Λ∗

s = 0], where W ∗ is any standard
Brownian motion and Λ∗ is the local time of its Skorohod reflection.

In this paper we start with a somehow simplified version of the motivating problem: we
consider a continuous time random walk Yt and its conditional law w.r.t. Lu = `u(Y ) up to
time t and, in analogy with the Brownian motion case, though incorrectly, in the following
we refer to L t as the local time associated to Yt . The above problem is connected with the
original one, indeed in several cases a queueing model can be represented as the reflection
Yt + L t of a continuous time random walk Yt , and the jump times of L t belong to the set
{s ≥ 0 s.t. Ys+Ls = 0}. It is worth observing that it would be more natural to refer to Ct , the time
the process Yt +L t spends in 0, as the “local time” of Yt +L t : indeed, in contrast to L t , the process
Ct has continuous paths, and the measure dCt is carried by the set {s ≥ 0 s.t. Ys + Ls = 0}.

It turns out (see Proposition 2.1) that the filter of Yt w.r.t. Lu up to time t can be expressed as
a probability measure depending deterministically on L t and γt (L), where γt is defined in (10).
We also derive a more explicit expression for the filter under the assumption that the process Yt
can be decomposed as Yt = VZt , where Z t is a renewal process and Vk is a discrete time random
walk, with Z t and Vk mutually independent. Similar results also hold for rescaled random walks.

We are interested in the situation when a sequence Xn
t of rescaled random walks converges

to a Brownian motion Wt in DR[0, +∞). Then a continuous map argument applies to show that
(Xn

t , Ln
t ) = (Xn

t , `t (Xn)) converges to (Wt ,Λt ) = (Wt , `t (W )), and analogously the systems
with the reflected random walk (Xn

t +Ln
t , Ln

t ) converge to the system with the reflected Brownian
motion (Wt + Λt ,Λt ) (see Section 5 for the details). In analogy with the second equality of (8),
we denote

ξn
t = γt (Ln) = t − sup{u ≤ t such that Ln

u < Ln
t }. (11)

the elapsed time from last jump time of Ln . Then, for random walk systems, the corresponding
filter is

πn
t (g) = E[g(Xn

t )/F Ln

t ] = Σ n(ξn
t , Ln

t ; g) (12)

with Σ n(s, l) defined in (20), while for the reflected systems the filter is

π̂n
t (g) = E[g(Xn

t + Ln
t )/F Ln

t ] = Σ̂ n(ξn
t ; g) (13)

with Σ̂ n(s) = Σ n(s, 0).
The problem whether πn

t = Σ n(ξn
t , Ln

t ) converge weakly to the filter πt = Πa2,c(ζt ,Λt ) of

the limit is strictly related to the convergence of the filters π̂n
t = Σ̂ n(ξn

t ) for the reflected random
walks to π̂t = Π̂a2,c(ζt ). Depending on the model, we select one or the other problem.

On the other hand, from a computational point of view, it is quite difficult to use the
exact expression of Σ̂ n(s) to compute the filter π̂n

t . Then it is also interesting to find a good
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approximation of the filter of the discrete system, depending on the actually observed process
Ln , so that it can be used in applications. For the reflected random walk system, a natural choice
in order to give a manageable approximation of the filter is to use the limit functional Π̂a2,c(s),
evaluated at s = ξn

t .
Approximation problems in filtering have been studied in more general situations by many

authors, among which we recall in particular Bhatt et al. in [1] and Goggin ([6,5]). Most of these
results concern diffusive models and do not apply to our case. Moreover, usually the applications
concern the problem to approximate a given signal/observation process with a suitably chosen
sequence of signal/observation processes so that the corresponding sequence of filters converges
to the filter of the original process. We start from a different point of view: the sequence of
processes is given and the problem is to show the convergence of the filters to the filter of the
state/observation limit, in the sense specified above.

The problem of weak convergence of the sequence of filters is not a trivial problem, as even
strong convergence of random variables does not imply convergence of the conditional laws.
This is clearly explained by the following simple and illuminating example (see [6]). Let ξ be a
real random variable, and (ξn, ηn) = (ξ, ξ/n). Then (ξn, ηn) converges strongly to (ξ, η), with
η = 0. Nevertheless, for any measurable function g, E(g(ξn)/ηn) = g(ξ), so that the conditional
law of ξn given ηn is the measure concentrated in ξ(ω), while E(g(ξ)/η) = E(g(ξ)), so that the
conditional law of ξ given η coincides with the (deterministic) law P ◦ ξ−1 of ξ .

In this example, although the sequence of the conditional laws of ξn given ηn does not
converge to the conditional law of the limit, it is a constant sequence and therefore is a converging
sequence. This is indeed not surprising in the light of the next general result, which is a slight
generalization of a result of Goggin [6] (the proof of Theorem 2.1, Step 1): one has only to
replace the sequence of σ -algebras used in [6] with a general sequence.

Lemma 1.2. Let Rn be a sequence of random variables with values in a Polish space, let Hn be
a sequence of σ -algebras, and let αn be a regular version of the conditional distribution of Rn
given Hn . If {Rn, n ∈ N} is tight, then {αn, n ∈ N} is tight.

Then, as far as weak convergence is concerned, for the systems converging to a Brownian motion
W , the main problem is to check whether the limit points of the sequence of filters are all equal
to the filter of W w.r.t. the local time Λ.

The first model we consider is a non-Markovian queueing model arising when a Brownian
motion W is approximated by a sequence of continuous time random walks W n , obtained with a
suitable interpolation procedure. The approximation scheme we propose for W follows some of
the ideas used in [5] to study a filter approximation problem in diffusive models, and is related to
the approximation scheme used in [8]. In this particular case, we get a strong convergence result
for the approximating filter.

The second model we consider is the case when the renewal process of the random walk is a
Poisson process, so that the reflected random walk is an M/M/1 queue. The main results are weak
convergence of the corresponding filters (see Theorem 5.2) and approximation in L p(Ω×[0, T ])-
norm (see Theorem 5.3) and are based on the weak convergence of (ξn

t , Ln
t ) to (ζt ,Λt ) (see

Proposition 5.5) and on the convergence of Σ̂ n(·) to Π̂2λ,c(·) (see Proposition 5.4), in the sense
that

lim
n→∞

Σ̂ n(sn; g) = Π̂2λ,c(s; g), (14)

for any g in a convergence determining class, whenever sn converges to s, with s > 0. We prove
the above key convergence result in Section 5.2, where we reformulate the problem in terms of
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the symmetric random walk by using a suitable change of measure and a reflection principle (see
Lemma 5.7).

It is important to note that, when we deal with a queue Qn
t = Xn

t + Ln
t , i.e. with a reflected

random walk, the previous results concern the filter w.r.t. the filtration

Gn
t = F Ln

t

generated by the local time associated with the random walk, while the motivating problem
concerns the filter of the queue w.r.t. the filtration

Hn
t = FCn

t+

generated by the idle time Cn
t , i.e. the total time spent in 0 up to t . These two problems are strictly

related: for instance (Qn
t , Cn

t ), as well as (Qn
t , Ln

t ), converges weakly to the reflected system
(Wt + Λt ,Λt ). This property, among others, allows us to extend the previous convergence and
approximation results to this situation (see Theorems 6.4 and 6.6 in the last section).

2. The model

Fix a probability space (Ω ,F, P) and consider on it a sequence {(T j , U j ), j ≥ 1} satisfying
the assumption

H The R+
× {+1, −1}-valued random variables (T j , U j ), for j ≥ 1, are identically distributed

and mutually independent.

Put τ0 = 0, τk =
∑k

j=1 T j for k ≥ 1, and consider the renewal process Z t =
∑

∞

j=1 I(τ j ≤ t)
and the random walk {V j , j ≥ 0} defined by V0 = 0, V j = V j−1 + U j , j ≥ 1.

Finally, consider the continuous time random walk

Yt = VZt =

∞∑
j=1

U j I(τ j ≤ t) =

∑
j≤Zt

U j . (15)

The solution of the Skorohod problem for the process Yt is given by the pair (Yt + L t , L t ), with

L t = `t (Y ) =

∞∑
j=1

I(σ j ≤ t), (16)

where ` is defined in (2), and the sequence of its jump times {σ j , j ≥ 0} is the subsequence of
{τ j , j ≥ 0} defined by σ0 = 0 and

σ j = inf{τk s.t. Yτk ≤ − j} = inf{t > 0 s.t. Yt ≤ − j} for j ≥ 1.

Set

Gt = F L
t = σ {Ls, s ≤ t}.

Obviously, {σ j , j ≥ 0} are stopping times w.r.t. both the histories Gt and FY
t .

Moreover, condition H implies that the process Ys+σ j −Yσ j is independent of Gσ j and is equal
in law to the process Ys , and therefore the process L t is a renewal process, with inter-arrival times
{Sh = σh − σh−1, h ≥ 1}. The following representations for the filter of Yt given Gt are then
straightforward.
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Proposition 2.1. Assume H, then the conditional law of Yt given Gt admits the following
P-a.s. representations

E[g(Yt )/Gt ] =

∞∑
j=0

E
[
g(− j + Ys+σ j − Yσ j )I

(
S j+1 > s

)]
E
[
I(S j+1 > s)

] ∣∣∣∣∣
s=t−σ j

I{σ j ≤ t < σ j+1},

=
E[g(− j + Ys)I(σ1 > s)]

E[I(σ1 > s)]

∣∣∣∣
j=L t ,s=γt (L)

,

where γt (·) is defined in (10).

Proof. The first representation can be obtained using standard techniques. For the second one, it
is enough to note that

E[g(− j + Ys+σ j − Yσ j )I(S j+1 > s)] = E[g(− j + Ys)I(σ1 > s)],

and finally that, if σ j ≤ t < σ j+1, then σ j = sup{u ≤ t s.t. Lu < L t }. �

In order to get a more explicit representation of the filter, we observe that defining recursively the
sequence {Mi , i ≥ 0} by M0 = 0 and Mi = inf{k ≥ 0 : VM0+···+Mi−1+k − VM0+···+Mi−1 = −1},
then

σ0 = 0, σh =

M1+···+Mh∑
i=1

Ti = τM1+···+Mh , h ≥ 1. (17)

Under Condition H, the sequence {Mi , i ≥ 1} is a sequence of i.i.d. random variables. Under
the further assumption,

K the random variables T1 and U1 are mutually independent, with

P(T1 ≤ t) = F(t), P(U j = 1) = p, P(U j = −1) = 1 − p = q, p ∈ (0, 1),

the sequences {T j , j ≥ 1} and {U j , j ≥ 1} are mutually independent, and clearly also {τi , i ≥ 1}

and {Mi , i ≥ 1} are mutually independent. The next result provides a more explicit expression
for the filter.

Proposition 2.2. Assume conditions H and K. Then

E[g(Yt )/Gt ] =

∞∑
k=1

E[I(M1 ≥ k)g(− j + Vk−1)](Fk−1(s) − Fk(s))

∞∑
m=1

P(M1 ≥ m)(Fm−1(s) − Fm(s))

∣∣∣∣∣∣∣∣
j=L t ,s=γt (L)

(18)

where Fk is the distribution function of τk , i.e. Fk = F∗k , the k-fold convolution of F.

Proof. Taking into account (15) and (17) and the independence of {τi , i ≥ 1} and {Mi , i ≥ 1}, it
is sufficient to observe that

E [g(− j + Ys)I (σ1 > s)] = E

[
∞∑

m=1

I (M1 = m) g
(
− j + VZs

)
I (τm > s)

]

= E

[
∞∑

m=1

m∑
k=1

I (M1 = m) g (− j + Vk−1) I (τk−1 ≤ s < τk)

]
.

�
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The state space of the process Yt being discrete, the filter E[g(Yt )/Gt ] is determined by its
discrete density νt (x), x ∈ Z, i.e. νt (x) = E [g(Yt )/Gt ] with g(z) = I{x}(z), z ∈ Z. Then

νt (x) =

∞∑
k=1

P(Vk−1 = x + j, M1 ≥ k)(Fk−1(s) − Fk(s))

∞∑
m=1

P(M1 ≥ m)(Fm−1(s) − Fm(s))

∣∣∣∣∣∣∣∣
j=L t ,s=γt (L)

,

where

P(Vk−1 = a, M1 ≥ k) =
a + 1

k

(
k

k+a+1
2

)
p

k+a−1
2 q

k−a−1
2 (19)

when k + a − 1 is even and |a| ≤ k − 1, while it is 0 otherwise. Finally, we note that the
normalization factor in (18) can also be written as

∑
∞

m=1 P(M1 = m)(1 − Fm(s)).

3. Scaling and notations

Let {X̃n, n ∈ N} be a sequence of continuous time random walks defined in (Ωn,Fn, Pn).
We assume that X̃n

t = Ṽ n
Z̃n

t
, where Ṽ n

k and Z̃n
t are defined as in Section 2 starting from a sequence

{(T̃ n
j , Ũ n

j ); j ≥ 1}. Consider the deterministic linear time-space scaling

Xn
t = bn X̃n

an t ,

where {an, n ∈ N} and {bn, n ∈ N} are suitable sequences of real positive numbers. Then the
process Ln

t = `t (Xn) can be obtained just applying the same scaling to the process L̃n
t = `t (X̃n),

i.e. Ln
t = `t (Xn) = bn L̃n

an t . We are interested in the conditional law of Xn
t w.r.t. F Ln

t = F L̃n

an t ,
i.e. the filter

πn
t (g) = E Pn

[g(Xn
t )/F Ln

t ] = E Pn
[g(bn X̃n

an t )/F L̃n

an t ],

where E Pn
denotes the expectation w.r.t. Pn . For the sake of notational convenience, we will

denote F Ln

t as Gn
t and, when unnecessary, drop the symbol Pn in the expectation, so that the

filter becomes

πn
t (g) = E[g(Xn

t )/Gn
t ].

For each n, let σ n
1 be the first exit time of the process Xn

t from the set (−bn, ∞), denote by
Σ n(s, l) the probability measure such that

Σ n(s, l; g) =
E[g(−l + Xn

s )I(σ n
1 > s)]

E[I(σ n
1 > s)]

, (20)

and assume that the sequences {(T̃ n
j , Ũ n

j ); j ≥ 1} satisfy the assumption H stated in Section 2.
Then the filter can be written in brief as

πn
t (g) = E[g(Xn

t )/Gn
t ] = Σ n(ξn

t , Ln
t ; g), (21)

where ξn
t is defined in (11).
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By taking into account that π̂n
t (g) = E[g(Xn

t + Ln
t )/Gn

t ] = E[g(Xn
t + m)/Gn

t ]|m=Ln
t
, the

filter can be written as

π̂n
t (g) = E[g(Xn

t + Ln
t )/Gn

t ] = Σ̂ n(ξn
t ; g), (22)

where

Σ̂ n(s; g) = Σ n(s, 0; g) =
E[g(Xn

s )I(σ n
1 > s)]

E[I(σ n
1 > s)]

. (23)

Remark 3.1. Note that Σ̂ n(s; g), as well as Σ n(s, l), also depends on the probability measure
Pn , i.e. Σ̂ n(s, l) = Σ̂ n

Pn (s, l). This dependence will be emphasized when necessary.

When the process X̃n
t = Ṽ n

Z̃n
t

also satisfies assumption K of Section 2, then Proposition 2.2 easily

provides the explicit expressions of Σ n(s, l):

Σ n(s, l; g) =

∞∑
k=1

E[I(M̃n
1 ≥ k)g(bn Ṽ n

k−1 − l)](F̃n
k−1(ans) − F̃n

k (ans))

∞∑
m=1

P(M̃n
1 = m)(1 − F̃n

m(ans))
, (24)

where M̃n
1 , F̃n

k have a similar meaning to M1, Fk in (18). More precisely, F̃n
1 is the distribution

function of T̃ n
1 = inf{t > 0 s.t. |X̃n

t | ≥ 1} and, if T n
1 denotes the first jump time of the process

Xn
t , then T n

1 = T̃ n
1 /an , and therefore F̃n

1 (ans) = Fn
1 (s) is the distribution function of T n

1 , and
analogously F̃n

k (ans) = Fn
k (s), where Fn

k is the k-fold convolution of Fn
1 .

We end this section by introducing the notation ωg(δ) = sup|x−y|≤δ |g(x) − g(y)| for the
modulus of continuity of a uniformly continuous function g.

4. The interpolating Brownian motion model

In this section we study the case of a continuous time random walk arising when a Brownian
motion W is approximated with a sequence of processes W n . The processes W n are defined
on the probability space of W , and are obtained pathwise by an interpolation procedure. For
this model we are able to get a strong convergence result for the filter. We start by introducing
the approximating models, then we show the convergence result. Successively, we discuss
how the approximating models W n fall into the frame of the previous sections. In particular,
when the process W is a standard Brownian motion, the processes W n correspond to the case
examined at the end of the previous section, with scaling parameters an = 22n and bn = 1/2n ,
pn = qn = 1/2, and F̃n

1 = F̃1, where

F̃1(t) = 4
+∞∑
j=0

(−1) j 1
√

2π

∫
+∞

(2 j+1)
√

t

exp
(

−
1
2

x2
)

dx . (25)

The basic idea is to approximate the state W by the stepwise interpolation of the random points
where W hits a uniform grid and consider as an approximating observation the local time of
the approximating state. This procedure is a deterministic one, therefore we describe it in the
deterministic case.
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Let z ∈ DR[0, +∞) and let h ∈ R+ be a fixed threshold. Consider the sequence {̂τ h
k (z),

k ≥ 0}:{
τ̂ h

0 (z) = 0
τ̂ h

k (z) = inf{t > τ̂ h
k−1(z) : |z(t) − z(̂τ h

k−1(z))| > h}, k ≥ 1,
(26)

and the function zh
∈ DR[0, +∞):

zh(t) =

∞∑
k=0

I
[̂τ h

k (z),̂τ h
k+1(z))

(t)z(̂τ h
k (z)). (27)

We need the following result whose proof is left to the reader.

Lemma 4.1. Let z ∈ DR[0, +∞). Then supt∈R+(|zh(t) − z(t)|) ≤ h, and (zh, `(zh)) converge
uniformly to (z, `(z)), where the functional ` is defined by (2).

Remark 4.2. When z is a continuous function, the process `(zh) admits the representation

`t (z
h) = 0 ∨ (−z0) −

∞∑
j=0

z(σ h
j (z))I

[σ h
j (z),σ h

j+1(z))
(t),

where

σ h
j (z) = inf{t s.t. z(t) − z0 ≤ − jh} = inf{̂τ h

k (z) s.t. z(̂τ h
k (z)) − z0 ≤ − jh}. (28)

When furthermore z0 = 0, then z(σ h
j (z)) = − jh and

`t (z
h) =

∞∑
j=0

jhI(σ h
j (z) ≤ t < σ h

j+1(z)) =

∞∑
j=0

hI(σ h
j (z) ≤ t). (29)

We now apply this approximating procedure to the (not necessarily standard) Brownian
motion Wt . Now fix the sequence of thresholds hn =

1
2n , and consider the stopping times

τ n
k := τ̂ h

k (W ), when using h = hn =
1
2n in (26). Then the approximating signal/observation

process (W n,Λn) is a DR2 [0, +∞)-valued process, where

W n
t =

∞∑
k=0

W (τ n
k ) I[τ n

k ,τ n
k+1)

(t), and Λn
t = `t (W n). (30)

Note that Lemma 4.1 provides the following convergence result.

Lemma 4.3. Let (W n,Λn) be defined as in (30). Then, for each t ∈ R+,

|W n
t − Wt | ≤

1
2n , (31)

and (W n,Λn) = (W n, `(W n)) converge to (W,Λ) = (W, `(W )) a.s., w.r.t. the topology of the
uniform convergence.

By (29),

Λn
t =

∞∑
j=0

1
2n I(σ n

j ≤ t), (32)
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where

σ n
j = inf

{
t s.t. Wt ≤ −

j

2n

}
= inf

{
t s.t. Λt ≥

j

2n

}
. (33)

Moreover, with the above choice of the threshold, the n-th grid is generated by considering
the dyadic intervals of rank n. Then, in the passage from the n-th grid to the (n + 1)-th grid, each
threshold is split into two parts, and therefore σ n+1

2 j = σ n
j . This property is decisive, since it guar-

antees that, for any t , {Gn
t = FΛn

t , n ∈ N} is an increasing family of σ -algebras, with Gn
t ↑ FΛ

t
(see Lemma 2.3 of [8], where the process Λn

t is defined as in (32)). The last fact allows us to show
the claimed strong convergence result, which is a slight generalization of Theorem 2.4 of [8].

Theorem 4.4. Let πt and πn
t be the filters defined in (6) and (21). Consider them as random

variables with values in the space of probability measures on R, endowed with the topology of
weak convergence. Then the sequence πn

t converges to πt almost certainly. As a consequence,
for all g ∈ Cb(R),

πn
t (g) = E[g(W n

t )/Gn
t ] → πt (g) = E[g(Wt )/FΛ

t ], a.s. and in L1. (34)

Proof. Observe that |πt (g) − πn
t (g)| is bounded above by

|E[g(Wt )/FΛ
t ] − E[g(Wt )/Gn

t ]| + |E[g(Wt )/Gn
t ] − E[g(W n

t )/Gn
t ]|.

The first term converges to zero almost certainly and in L1-sense. Indeed, as in Theorem 2.4 of
[8], we apply Doob’s convergence theorem to the discrete time martingale E[g(Wt )/Gn

t ]. For all
g uniformly continuous, with modulus of continuity ωg , the second term is bounded above by

|E[|g(Wt ) − g(W n
t )|/Gn

t ]| ≤ ωg(1/2n) → 0,

and so we get (34) for all g in a convergence determining class. Without loss of generality, we
can take this class to be denumerable, and therefore we obtain the convergence of πn

t to πt . The
convergence result (34) for all bounded and continuous g is then straightforward. �

One can get the analogous convergence results for the corresponding queueing model generated
by reflecting W n . In particular, the conditional laws defined by E[g(W n

t +Λn
t )/Gn

t ] converge a.s.
to the conditional law π̂t defined by (7).

In addition, the strong convergence of Theorem 4.4 implies the weak convergence for the
filters of any rescaled model Xn sharing the same law as W n . As an example, we can take
X̃n

= W 0 for all n, and Xn
t =

1
2n W 0

22n t
.

Now we show that the approximating model falls into the frame of the previous sections. The
sequence {(T̃ n

k , Ũ n
k ), k ≥ 1} is defined as

T̃ n
k = (τ n

k − τ n
k−1)/22n, Ũ n

k = 2n
(

Wτ n
k

− Wτ n
k−1

)
,

which clearly satisfies condition H. Then

W n
t =

1
2n Ṽ n

Z̃n
22n t

,

where Z̃n
t is the renewal process defined by the sequence of i.i.d. inter-arrival times {T̃ n

k , k ∈ N},
and Ṽ n

k = 2nWτ n
k

. Therefore, recalling (21), E[g(W n
t )/Gn

t ] = Σ n(γt (W n), `t (W n); g), with
Σ n(s, l; g) as in (23), and γt as in (10). A similar result also holds for E[g(W n

t + `t (W n))/Gn
t ].
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When the drift coefficient of W is zero, the random variables T̃ n
k have common law

F̃n(t) = P(T̃ n
k ≤ t) = F̃1(22na2t), (35)

where a2 is the diffusion coefficient and F̃1 is defined in (25), and Ũ n
k is symmetric and

independent of T̃ n
k , for each k (see e.g. [4] page 342). Therefore, Ṽ n

k = 2nWτ n
k

is a symmetric

random walk, independent of the renewal process Z̃n
t . Then condition K holds, and one can use

(24) to define Σ n(s, l).
When the drift coefficient is c 6= 0, the processes Z̃n

t and Ṽ n
k , defined as above, are not

mutually independent, so one cannot use (24). Nevertheless, (24), with F̃n as in (35) above,
could be used to get the approximate expression

π̃n
t (g) =

E P0 [g(W n
t ) exp( c

a2 W n
t )/Gn

t ]

E P0 [exp( c
a2 W n

t )/Gn
t ]

=
Σ n(s, l; g(·) exp( c

a2 ·))

Σ n(s, l; exp( c
a2 ·))

∣∣∣∣∣
s=γt (W n),l=`t (W n)

.

Indeed, from the Kallianpur Striebel formula and Girsanov Theorem

E[g(W n
t )/Gn

t ] =
E P0 [g(W n

t ) exp( c
a2 Wt )/Gn

t ]

E P0 [exp( c
a2 Wt )/Gn

t ]

where P0 is equivalent to P , and under P0 the process W has drift coefficient zero. Then

E[g(W n
t )/Gn

t ] =

E P0

[
g(W n

t ) exp( c
a2 W n

t ) exp( c
a2 (Wt − W n

t ))/Gn
t

]
E P0

[
exp( c

a2 W n
t ) exp( c

a2 (Wt − W n
t ))/Gn

t

] .

Moreover, taking into account that |Wt − W n
t | ≤

1
2n , one can get that

|E[g(W n
t )/Gn

t ] − π̃n
t (g)| ≤ 4 exp

(
2
|c|

a2

1
2n

)
|c|

a2

1
2n ‖g‖∞. (36)

5. The M/M/1 queueing model

In this section we consider a random walk with exponential inter-arrival times, and the M/M/1
queue, with arrival intensity λn and service potential µn , generated by reflecting the random
walk. We use the techniques introduced in Section 2 to derive the filter of the M/M/1 queue (and
therefore of the random walk) with respect to the local time associated with the random walk.
Moreover, under a suitable set of conditions, which are related to the heavy traffic conditions, we
also get the weak limit of the filter of the rescaled system (Theorem 5.2) and an approximation
for the filter (Theorem 5.3).

5.1. Description of the model and main results

The sequence of random walks we consider is defined by means of the same rule as in (15),
namely for each n ∈ N

X̃n
t = Ṽ n

Z̃n
t

=

Z̃n
t∑

j=1

Ũ n
j ,

where



596 G. Nappo, B. Torti / Stochastic Processes and their Applications 116 (2006) 585–610

A1 Z̃n
t is a Poisson process with intensity λn + µn ;

A2 Ṽ n
j is defined by Ṽ n

j = Ṽ n
j−1 + Ũ n

j , where {Ũ n
j , j ∈ N} is a sequence of i.i.d. random

variables with Pn(Ũ n
k = +1) =

λn
λn+µn

and Pn(Ũ n
k = −1) =

µn
λn+µn

;

A3 {Ũ n
k , k ∈ N} and Z̃n

t are mutually independent.

In this case, the inter-arrival times T̃ n
k of the renewal process Z̃n

t are exponential random
variables with expectation 1/(λn + µn). Therefore we are in the situation discussed at the end
of Section 3, with pn = λn/(λn + µn), F̃n

1 the distribution function of an exponential random
variable of parameter λn + µn , and moreover the scaling parameters are an = n and bn =

√
n,

and then Fn
k is the gamma distribution function with parameter (k, n(λn + µn)).

The conditions C1, C2, and C3 are defined as follows:

C1 λn, µn > 0;
C2 (λn, µn) →

n→+∞
(λ, λ);

C3
√

n(λn − λ) →
n→+∞

c(1)
√

n(µn − λ) →
n→+∞

c(2).

Condition C1 avoids considering pure birth or pure death processes, and C3 clearly implies
condition C2 and condition

C3*
√

n(λn − µn) →
n→+∞

c = c(1) − c(2).

We recall that, when λn < µn , the set of conditions C1, C2, C3* are known in the
literature as the heavy traffic conditions, and in this case c ≤ 0. These conditions guarantee the
existence of the diffusive limit of the rescaled system, more precisely the sequence of processes
Xn

t = X̃n
nt/

√
n converges weakly in DR[0, +∞) to a Brownian motion Wt , with diffusion

coefficient 2λ and drift coefficient c.

Remark 5.1. It is interesting to note that conditions C1, C2, C3 are equivalent to the weak
convergence in DR2 [0, +∞) of the processes (Xn

t , Zn
t ), where Zn

t = (Z̃n
nt − 2λnt)/

√
n, to a

pair of independent Brownian motions (Wt , Bt ) with drift c = c(1) − c(2) and d = c(1) + c(2)

respectively, and both with variance 2λ. Indeed, the processes X̃n
t and Z̃n

t can be represented as

X̃n
t = Ãn

t − Ñ n
t , Z̃n

t = Ãn
t + Ñ n

t (37)

where, if τ̃ n
k are the jump times of Z̃n ,

Ãn
t =

∞∑
k=0

I(Ũ n
k = 1)I(τ̃ n

k ≤ t) (38)

Ñ n
t =

∞∑
k=0

I(Ũ n
k = −1)I(τ̃ n

k ≤ t), (39)

so that

Xn
t =

Ãn
nt − Ñ n

nt
√

n
=

Ãn
nt − nλn t

√
n

−
Ñ n

nt − nµn t
√

n
+

√
n(λn − µn)t,

Zn
t =

Ãn
nt − nλn t

√
n

+
Ñ n

nt − nµn t
√

n
+

√
n(λn + µn − 2λ)t.

By Watanabe’s Theorem (see, for instance, [2]) the processes Ãn and Ñ n are mutually
independent Poisson processes with intensities λn and µn , respectively. As a consequence the
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processes ( Ãnt −nλn t
√

n
,

Ñnt −nµn t
√

n
) converge weakly to a pair of independent Brownian motions with

zero drift and diffusion coefficient 2λ.

The solution of the Skorohod problem for the process X̃n
t is the pair (Q̃n

t , L̃n
t ), where

Q̃n
t = X̃n

t + L̃n
t

is a M/M/1 queue (see, for instance, [2]), and L̃n
t is the local time associated with the process

X̃n
t . Then, thanks to the weak convergence of Xn , a continuous map argument applies, showing

that

(Xn
t , Qn

t , Ln
t ) =

(
X̃n

nt
√

n
,

Q̃n
nt

√
n

,
L̃n

nt
√

n

)
⇒ (Wt , Wt + Λt ,Λt ), (40)

where Λt = `t (W ) is the local time of the Skorohod reflection of Wt . Indeed, the functional `t
is continuous with respect to the topology of uniform convergence on bounded intervals of time,
and Xn

t converges to Wt with respect to this topology, since Wt has continuous trajectories.
The main results are stated in the following theorems, which are proven at the end of this

subsection. We recall (see (12) and (13)) that πn
t and π̂n

t denote the filters of Xn
t and of Qn

t given
the filtration Gn

t , respectively, where, as in Section 3, Gn
t denotes the filtration generated by Ln

t .

Theorem 5.2. Assume A1, A2, A3 and C1, C2, C3. Then, for any t ≥ 0, πn
t converge weakly to

πt , and π̂n
t converge weakly to π̂t , as random variables with values in the space of probability

measures endowed with the topology of weak convergence.
In particular, for any t ≥ 0, and for any bounded continuous function g

πn
t (g) = E[g(Xn

t )/Gn
t ] ⇒ πt (g) = E[g(Wt )/FΛ

t ] (41)

and

π̂n
t (g) = E[g(Qn

t )/Gn
t ] ⇒ π̂t (g) = E[g(Wt + Λt )/FΛ

t ]. (42)

As explained in the introduction, it is interesting to find a good approximation for the filter
π̂n

t = Σ̂ n(ξn
t ) which is, at the same time, simpler to handle and depends on the actually observed

trajectory. A natural candidate is Π̂2λ,c(ξ
n
t ), where Π̂2λ,c(s) is defined in (5). We prove that this

natural candidate is an L p(Ω × [0, T ])-norm approximation of the filter π̂n
t .

Theorem 5.3. Under the same assumptions of Theorem 5.2, for all g bounded and continuous,
and for each T > 0, p > 0,∫ T

0
E |Σ̂ n(ξn

t ; g) − Π̂2λ,c(ξ
n
t ; g)|pdt −→

n→∞
0.

The proofs of the previous theorems are based on the representations for πn
t = Σ n(ξn

t , Ln
t )

and π̂n
t = Σ̂ n(ξn

t ), respectively, and the results of Propositions 5.4 and 5.5 below. The first result
is the key convergence result (14) announced in the Introduction.

Proposition 5.4. Under the same assumptions of Theorem 5.2, Σ̂ n(s; g) converge pointwise to
Π̂2λ,c(s; g) for every bounded continuous function g : R+

→ R and s ≥ 0. Moreover the
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convergence is uniform on bounded intervals contained in (0, ∞), i.e. whenever sn → s, with
s > 0,

Σ̂ n(sn; g) −→
n→∞

Π̂2λ,c(s; g). (43)

Proof. The proof of this key result is postponed to the next subsection. �

The second result concerns the weak convergence of ξn
t = γt (Ln) to ζt = γ 0

t (W + Λ) =

γt (Λ), with γ 0
t and γt defined in (9) and (10), respectively. However, we show a slightly stronger

result concerning the weak convergence of γ 0
t (Xn

+ Ln) = γ 0
t (Qn) to ζt . This stronger result is

used later in Section 6.

Proposition 5.5. Assume A1, A2, A3 and C1, C2, C3*. Then, for each t > 0,

(γ 0
t (Qn), γt (Ln), Ln

t ) ⇒ (ζt , ζt ,Λt ).

Proof. Define

ηn
t = sup{s < t : Ln

s < Ln
t }, ηt = sup{s < t : Λs < Λt },

βn
t = sup{s < t : Qn

s = 0}, βt = sup{s < t : Ws + Λs = 0},

with ηn
t = t , ηt = t , βn

t = t and βt = t when the corresponding sets are empty. Note that

ηn
t = sup{s < t : Xn

t − Xn
s < Qn

t − Qn
s },

ηt = sup{s < t : Wt − Ws < Wt + Λt − Ws − Λs}.

Applying the Skorohod representation theorem, we can assume that all the processes live on the
same probability space (Ω̄ , F̄, P̄), and that

sup
s≤t

(|Xn
s − Ws | + |Qn

s − Ws − Λs |) → 0 P̄-a.s. (44)

This implies that Ln
→ Λ uniformly in [0, t], P̄-a.s., and

lim inf
n→∞

ηn
t ≥ ηt .

Then, since γ 0
t (Qn) = t − βn

t and γt (Ln) = t − ηn
t , the result is achieved once we prove that the

sequence (βn
t , ηn

t ) converges P̄-a.s. to (ηt , ηt ) and ζt = t − ηt . Let β∞
t = lim supn→∞ βn

t and
note that Qn(βn

t ) assumes only the values 0 or 1
√

n
. Then, by (44), Wβ∞

t
+ Λβ∞

t
= 0. It follows

that

lim sup
n→∞

βn
t ≤ βt .

Moreover, (i) if ηn
t < t, then Qn(ηn

t ) = 0, and (ii) if ηn
t = t, then βn

t = t . Therefore

ηn
t ≤ βn

t for all t, P̄-a.s.,

and then

ηt ≤ lim inf
n→∞

ηn
t ≤ lim sup

n→∞

βn
t ≤ βt , for all t, P̄-a.s.

The proof is achieved since P̄(ηt = βt ) = 1, and then ζt = γ 0
t (W+Λ) = t−βt = t−ηt = γt (Λ).

�
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Remark 5.6. In the Skorohod space (Ω̄ , F̄, P̄) used in the proof of Proposition 5.5, choose
a jointly measurable version of ξn

t = γt (Ln) = t − ηn
t . Then M = {(ω, t) ∈ Ω ×

[0, T ] s.t. ξn
t (ω) 6→ ζt (ω)} is a zero dP̄ × dt-measure set. Moreover, a similar result holds

for γ 0
t (Qn) = t − βn

t , namely M0 = {(ω, t) ∈ Ω × [0, T ] s.t. γ 0
t (Qn)(ω) 6→ ζt (ω)} is a zero

dP̄ × dt-measure set.

We are now ready to prove Theorems 5.2 and 5.3.

Proof of Theorem 5.2. The weak convergence for filters of the reflected random walk follows,
since we can use the Skorohod representation probability space as in Proposition 5.5, and in this
space, for each t > 0, P̄(ξn

t = γt (Ln) → ζt ) = 1 and, on the other hand, P̄{ω : ζt (ω) > 0} = 1,
as observed in Remark 5.6. As a consequence, taking into account the key convergence result of
Proposition 5.4,

P̄(Σ̂ n(ξn
t ; g) −→

n→∞
Π̂2λ,c(ζt ; g), for every g : R+

→ R bounded and continuous) = 1,

and the above property is equivalent to showing that π̂n
t converges weakly to π̂t .

The proof of the weak convergence for the filter of the random walk is similar, since the
convergence of Σ n(sn, ln; g) to Π2λ,c(s, l; g) whenever (sn, ln) converges to (s, l), with s > 0,
is just a slight extension of Proposition 5.4, that is, for any g : R+

→ R bounded and uniformly
continuous,

Σ n(sn, ln; g) −→
n→∞

Π2λ,c(s, l; g). (45)

Indeed, on the one hand |Σ n(sn, ln; g) − Σ n(sn, l; g)| ≤ ωg(|ln − l|) and therefore converge to
zero, and on the other hand, Σ n(sn, l; g) = Σ̂ n(sn; gl) converge to Π (s, l; g) = Π̂ (s; gl), where
gl(x) = g(−l + x). The set of bounded and uniformly continuous functions is a convergence
determining class, and then (45) follows for all bounded continuous functions g. Then, again
using the Skorohod representation space, we get that P̄((ξn

t , Ln
t ) → (ζt ,Λt ), ζt > 0) = 1, and

P̄(Σ n(ξn
t , Ln

t ; g) −→
n→∞

Π2λ,c(ζt ,Λt ; g),

for every g : R+
→ R bounded and continuous) = 1.

Therefore, πn
t converge weakly to πt , and Theorem 5.2 is completely achieved. �

Proof of Theorem 5.3. The limit we are looking for depends only on the distribution of ξn
t ,

therefore using the Skorohod representation space (Ω̄ , F̄, P̄), as in the proof of Proposition 5.5,
the thesis is equivalent to∫ T

0
E P̄

|Σ̂ n(ξn
t ; g) − Π̂2λ,c(ξ

n
t ; g)|pdt −→

n→∞
0.

As observed in Remark 5.6, we can assume that ξn
t (ω) converge to ζt (ω) dP̄ × dt-a.e., and then

by Proposition 5.4 we get

Σ̂ n(ξn
t ; g) −→

n→∞
Π̂2λ,c(ζt ; g) and Π̂2λ,c(ξ

n
t ; g) −→

n→∞
Π̂2λ,c(ζt ; g) (46)

for each (ω, t) such that ζt (ω) > 0.
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The observation that {(ω, t) ∈ Ω × [0, T ] such that ζt (ω) = 0} is a zero measure set with
respect to dP̄ × dt , and an easy application of the dominated convergence theorem, imply that∫ T

0
E P̄

[|Σ̂ n(ξn
t ; g) − Π̂2λ,c(ζt ; g)|p

] → 0, for any p > 0

and ∫ T

0
E P̄

[|Σ̂ n(ξn
t ; g) − Π̂2λ,c(ξ

n
t ; g)|p

] → 0, for any p > 0. � (47)

5.2. The key result

In this subsection our aim is to prove Proposition 5.4, i.e. the key result (14) under conditions
A1, A2, A3 and C1, C2, C3.

Without loss of generality, we can assume that all the processes involved are defined on
the same measurable space (Ω ,F), but with different probability measures Pn . Moreover, we
can assume that: (i) the processes defined in (37) are the same for all n, namely we can take
X̃n

t = X̃ t = ṼZ̃t
and Z̃n

t = Z̃ t , with Ṽk =
∑k

j=1 Ũ j ; (ii) the measures Pn are all absolutely
continuous with respect to a given measure P (see (48) below); and, finally, (iii) under the
measure P , the process Z̃ t is a Poisson process Z̃ t of intensity 2λ and Ṽk is a symmetric random
walk.

Starting from the processes X̃ t and Z̃ t , and in analogy with (38) and (39) of Remark 5.1, we
can define the process Ãt as the process counting the positive jumps of X̃ t , and the process Ñt as
the process counting the negative jumps of X̃ t .

On (Ω ,F) we consider the filtration {Fn
t , t ∈ [0, T ]} generated by the time-rescaled

processes ( Ân
t , N̂ n

t ) = ( Ãnt , Ñnt ), and the probability measure Pn , absolutely continuous with
respect to P , such that

dPn

dP

∣∣∣∣
Fn

t

= Ln
t =

(
λn

λ

) Ân
t

exp{−n(λn − λ)t}

(
λn

λ

)N̂ n
t

exp{−n(µn − µ)t}. (48)

Under the measure P , the processes Ân
t , N̂ n

t are mutually independent Poisson processes with
intensities nλ, nλ, while (see [2], Chapter VIII), under Pn the processes, Ân

t , N̂ n
t are mutually

independent Poisson processes with intensities nλn , nµn . Finally note that, in the probability
space (Ω ,F, Pn), the conditions A1, A2, A3 are satisfied with Z̃n

t = Z̃ t = Ãt + Ñt , Ũ n
j = Ũ j .

From now to the end of this section, we denote by E P and E Pn
the expectations with respect

to the probability measures P and Pn , respectively. Then, by the Kallianpur Striebel formula, we
get

E Pn
[g(Xn

t )/Gn
t ] =

E P
[g(Xn

t )Ln
t /Gn

t ]

E P [Ln
t /Gn

t ]
. (49)

Moreover, setting X̂n
t = Ân

t − N̂ n
t , and Ẑn

t = Ân
t + N̂ n

t , the rescaled processes are Xn
t =

X̂n
t√
n

and

Zn
t =

Ẑn
t −2nλt
√

n
, and under the measure P the sequence of processes (Xn

t , Zn
t ) converges weakly

in DR2([0, ∞)) to two independent Brownian motions (Wt , Bt ) := (W A
t − W N

t , W A
t + W N

t ).
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Indeed,

Xn
t =

X̂n
t

√
n

=
Ãnt − Ñnt

√
n

=
Ãnt − nλt

√
n

−
Ñnt − nλt

√
n

⇒ W A
t − W N

t ,

Zn
t =

Ẑn
t − 2nλt

√
n

=
Ãnt − nλt

√
n

+
Ñnt − nλt

√
n

⇒ W A
t + W N

t ,

where W A
t and W N

t are clearly independent Brownian motions (the last property implies the
independence of W and B). Therefore it is natural to get an alternative expression of Ln

t in terms
of the processes Xn

t and Zn
t . Taking into account that Ân

t = (Ẑn
t + X̂n

t )/2, N̂ n
t = (Ẑn

t − X̂n
t )/2,

and that

log(Ln
t ) = log

(
λn

λ

)
Ân

t − n(λn − λ)t + log
(µn

λ

)
N̂ n

t − n(µn − λ)t,

we get immediately that

log(Ln
t ) = cn Xn

t + dn Zn
t + en t, (50)

where

cn =
1
2

√
n

[
log

(
λn

λ

)
− log

(µn

λ

)]
(51)

dn =
1
2

√
n

[
log

(
λn

λ

)
+ log

(µn

λ

)]
(52)

en = n

[
log

(
λn

λ

)
+ log

(µn

λ

)]
λ − n (λn + µn − 2λ) . (53)

Therefore, (49) can be rewritten as

E Pn [
g(Xn

t )/Gn
t

]
=

E P
[
g(Xn

t ) exp(cn Xn
t ) exp(dn Zn

t )/Gn
t

]
E P

[
exp(cn Xn

t ) exp(dn Zn
t )/Gn

t
] . (54)

Under conditions C1, C2 and C3, the sequence (cn, dn) converges to (c̄, d̄), where c̄ = c/(2λ)

(see Lemma 5.9 at the end of the section). If we substitute the formal limits in the right hand side
of the above expression, we get

E
[
g(Wt ) exp(c̄Wt ) exp(d̄ Bt )/FΛ

t

]
E
[
exp(c̄Wt ) exp(d̄ Bt )/FΛ

t
] =

E
[
g(Wt ) exp(c̄Wt )/FΛ

t

]
E
[
exp(c̄Wt )/FΛ

t
] = Π̂2λ,c(ζt ; g), (55)

where the first equality holds since FΛ
t ⊂ FW

t and the processes W and B are independent,
while the second equality follows by the fact that Wt has drift zero and diffusion coefficient 2λ,
by the value of the limit c̄ and by again using the Kallianpur–Striebel formula.

The above considerations lead to a heuristic proof of our main result. However, we do not
formalize the above heuristic reasoning to get the proof, but we use the following expression for
the filter of the queue

E Pn [
g(Qn

t )/Gn
t

]
=

E P
[
g(Xn

s ) exp(cn Xn
s ) exp(dn Zn

s )I(σ n
1 > s)

]
E P

[
exp(cn Xn

s ) exp(dn Zn
s )I(σ n

1 > s)
] ∣∣∣∣∣

s=ξn
t

. (56)
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The above expression can be obtained easily by taking into account (22) and (23), the definition
(48) of Pn by means of (50), namely using the notations of Remark 3.1, E Pn

[g(Qn
t )/Gn

t ] =

Σ̂ n
Pn (ξ

n
t ; g), and

Σ̂ n
Pn (s; g) =

E Pn [
g(Xn

s )I
(
σ n

1 > s
)]

E Pn [I(σ n
1 > s)

] =
E P

[
Ln

s g(Xn
s )I

(
σ n

1 > s
)]

E P
[
Ln

s I(σ n
1 > s)

]
=

E P
[

g(Xn
s ) exp(cn Xn

s ) exp(dn Zn
s )I(σ n

1 > s)
]

E P
[
exp(cn Xn

s ) exp(dn Zn
s )I(σ n

1 > s)
] . (57)

In order to get the limit of the previous filter, the idea is to show the convergence of the function
Σ̂ n

Pn (s; g), and then a first essential step consists of evaluating

E P [ f (Xn
s ) exp(dn Zn

s )I(σ n
1 > s)

]
,

either for f (x) = gn(x) = g(x) exp(cn x) or for f (x) = exp(cn x), and this can be found in the
following lemma, which is based on the reflection principle.

Lemma 5.7. Let f be a function with continuous derivative f ′. Then

E P [ f (Xn
s ) exp(dn Zn

s )I(σ n
1 > s)

]
= E P

[
2

√
n

I(Xn
s ≥ 2/

√
n) f ′(Xn

s − 2θn
f /

√
n) exp(dn Zn

s )

]
+ E P [I(0 ≤ Xn

s < 2/
√

n) f (Xn
s ) exp(dn Zn

s )
]
,

where θn
f is a random variable with values in (0, 1).

Proof. It is sufficient to prove that

E P
[ f (Xn

s ) exp(dn Zn
s )I(σ n

1 > s)] = E P
[ f (Xn

s )I(Xn
s ≥ 0) exp(dn Zn

s )I(σ n
1 > s)]

= E P
[ f̃ (Xn

s ) exp(dn Zn
s )] − E P

[ f̃ (Xn
s ) exp(dn Zn

s )I(σ n
1 ≤ s)]

= E P
[{

f̃ (Xn
s ) − f̃

(
Xn

s −
2

√
n

)}
exp(dn Zn

s )

]
, (58)

where f̃ (x) = f (x)I(x ≥ 0), and where we apply the reflection principle in order to
get the last equality. Indeed, if X̄n

s is the process obtained by reflecting Xn
s at time σ n

1 ,
i.e. if X̄n

s = ( Ān
s − N̄ n

s )/
√

n where ( Ān
s , N̄ n

s ) is defined as ( Ân
s , N̂ n

s ) for s < σ n
1 and as

( Ân
σ n

1
+ (N̂ n

s − N̂ n
σ n

1
), N̂ n

σ n
1

+ ( Ân
s − Ân

σ n
1
)) for s ≥ σ n

1 , then, on the one hand,

f (Xn
s )I(Xn

s ≥ 0) exp(dn Zn
s )I(σ n

1 ≤ s)

= f (−X̄n
s − 2/

√
n)I(X̄n

s ≤ −2/
√

n) exp(dn Zn
s )I(σ̄ n

1 ≤ s)

= f (−X̄n
s − 2/

√
n)I(X̄n

s ≤ −2/
√

n) exp(dn Zn
s ), (59)

since

(i) σ n
1 ≤ s if and only if σ̄ n

1 ≤ s, where σ̄ n
1 = inf{u such that X̄n

u ≤ −1/
√

n},

(ii) if σ̄ n
1 ≤ s, then Xn

s + 1/
√

n = −1/
√

n − X̄n
s , and therefore, when σ̄ n

1 ≤ s,

(iii) Xn
s ≥ 0 if and only if −2/

√
n ≥ X̄n

s , which implies σ̄ n
1 ≤ s.
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On the other hand, (−X̄n
s , Zn

s ) has the same law as (Xn
s , Zn

s ) under P , so that (58) follows by
(59). �

We are now ready to prove the main result of this subsection.

Proof of Proposition 5.4. We start with the case sn = s > 0. The idea is to prove the following
chain of equalities:

lim
n→∞

Σ n
Pn (s; g) = lim

n→∞

√
n E P

[
g(Xn

s ) exp(cn Xn
s ) exp(dn Zn

s )I(σ n
1 > s)

]
√

n, E P
[
exp(cn Xn

s ) exp(dn Zn
s )I(σ n

1 > s)
]

=

∫
∞

0 g(x) exp(c̄x) x
2λs exp

{
−

1
2

x2

2λs

}
dx∫

∞

0 exp(c̄x) x
2λs exp

{
−

1
2

x2

2λs

}
dx

=
Π
(
2λs, 0; g(·) exp( c

2λ
·)
)

Π
(
2λs, 0; exp( c

2λ
·)
) = Π̂2λ,c(s; g),

where c̄ = limn cn = c/(2λ). The first equality is immediately obtained by multiplying the
numerator and the denominator of (57) by

√
n. So we need only to prove the second equality,

since the others are obvious.
Without loss of generality, we can assume that g has a continuous bounded derivative. Then,

by Lemma 5.7, we need to evaluate the limit of

√
nE P

[
2

√
n

I(Xn
s ≥ 2/

√
n)g′

n(Xn
s − 2θg/

√
n) exp(dn Zn

s )

]
(60)

+
√

nE P [I(0 ≤ Xn
s < 2/

√
n)gn(Xn

s ) exp(dn Zn
s )
]
, (61)

when gn(x) = g(x) exp(cn x), for the numerator, and then the limit of the denominator follows
taking g(x) = 1. Recalling that (under P) (Xn

t , Zn
t ) converge weakly in DR2([0, ∞)) to two

independent Brownian motions (Wt , Bt ), the limit of (60) is

2E
[
I(0 < Ws < ∞) f ′(Ws) exp(d̄ Bs)

]
= 2E

[
I(0 < Ws < ∞) f ′(Ws)

]
E
[
exp(d̄ Bs)

]
,

with f (x) = g(x) exp(c̄x). By standard computations, using the formula for integration by parts,

E[I(0 < Ws < ∞) f ′(Ws)]

=
1

√
2π

√
2λs

(
−g(0) +

∫
∞

0
g(x) exp

( c

2λ
x
) x

2λs
exp

{
−

1
2

x2

2λs

}
dx

)
.

Furthermore, by Lemma 5.8 below, the addend (61) converge to

2
√

2π
√

2λs
g(0)E[exp(d̄ Bs)].

Then the result is achieved for any constant sequence sn = s. The case of sn converging to s > 0
is achieved in a similar way, using the weak convergence of (Xn

s , Zn
s ) to (Ws, Bs) in the uniform

norm on bounded intervals, and again by Lemma 5.8. �

Lemma 5.8. Let g : R+
→ R be a bounded continuous function, and let

qn(s) := E P [I(0 ≤ Xn
s < 2/

√
n)g(Xn

s ) exp(cn Xn
s ) exp(dn Zn

s )
]
.
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Then

lim
n→∞

√
nqn(sn) =

2
√

2π
√

2λs
g(0)E P

[exp(d̄ Bs)], (62)

whenever sn → s, with s > 0.

Proof. We start with the symmetric case, i.e. when λn = µn = λ, since the proof is technically
simpler. Indeed, in this case, cn = dn = 0, and therefore (62) is achieved by proving that

lim
n→∞

√
n P(Xn

sn
∈ [0, 2/

√
n)) =

2
√

2π
√

2λs
.

Without loss of generality, we can assume λ =
1
2 . Otherwise, we can use the deterministic change

of time t/(2λ) instead of t and consider the sequence of processes Xn
t/(2λ), which converges to

a standard Brownian motion. Let Fn
s denote the distribution function of Xn

s . Then, as an easy
consequence of the Berry–Esseen theorem, we get

sup
x∈Γn

∣∣∣∣Fn
s (x) − Φ

(
x

√
s

)∣∣∣∣ = o

(
1

√
ns

)
, (63)

where Γn = {
1

√
n

(
z +

1
2

)
, z ∈ Z}, and Φ(x) is the distribution function of a standard normal

random variable. Clearly, P(Xn
sn

∈ [0, 2/
√

n)) is equal to P(Xn
sn

∈ (− 1
√

n
, 3

2
1

√
n
]), and therefore

to

Φ
(

3
2

1
√

nsn

)
− Φ

(
−

1
2

1
√

nsn

)
+ o

(
1

√
nsn

)
'

2
√

nsn
Φ′(γn) + o

(
1

√
nsn

)
,

where γn ∈ (− 1
2

1
√

nsn
, 3

2
1

√
nsn

). Moreover, as sn → s and s > 0, there exists n̄ such that sn ≥
1
2 s,

for any n > n̄, and then o( 1
√

nsn
) = o( 1

√
n
), and we obtain the limit (62) in the symmetric case.

We now switch to the general case. First of all, we observe that

qn(s) =

∞∑
h=0

P( Ãns = h)P(Ñns = h)g(0)ecn0e
dn

2h−2nλs
√

n

+

∞∑
h=0

P( Ãns = h + 1)P(Ñns = h)g(1/
√

n)e
cn

1
√

n e
dn

2h+1−2nλs
√

n ,

and that
√

n qn(sn) has the same behaviour as g(0)
√

nq̄n(sn), where

q̄n(s) :=

∞∑
h=0

P( Ãns = h)P(Ñns = h)e
dn

2h−2nλs
√

n

+

∞∑
h=0

P( Ãns = h + 1)P(Ñns = h)e
dn

2h+1−2nλs
√

n ,

as can be immediately seen from

min(g(0), g(1/
√

n))
√

nq̄n(s) ≤
√

nqn(s) ≤ e
cn

1
√

n max(g(0), g(1/
√

n))
√

nq̄n(s).
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Taking into account that Z̃ns = Ãns + Ñns is a Poisson random variable of parameter 2λns, one
can see that

P( Ãns = h)P(Ñns = h) = P(Z̃ns = 2h)
(2h)!

h! h!

1

22h

and that

P( Ãns = h + 1)P(Ñns = h) = P(Z̃ns = 2h + 1)
(2h + 1)!

(h + 1)! h!

1

22h+1 .

Then, setting

r(k) =
k!

(k − [k/2])! [k/2]!

1
2k ,

we can rewrite

q̄n(s) =

∞∑
k=0

P(Z̃ns = k)e
dn

k−2nλs
√

n r(k)

= E P

[
r(Z̃ns) exp

(
dn

Z̃ns − 2nλs
√

n

)]
= E P

[
r(Z̃ns) exp(dn Zn

s )
]
.

Now, from the Stirling formula, r̂(m) =
√

mr(m) converge to 2/
√

2π as m increases to
infinity, and therefore we rewrite

√
nq̄n(s) =

√
n P(Z̃ns = 0) + E P

I(Z̃ns > 0)r̂(Z̃ns)
1√

Z̃nsn /n
exp(dn Zn

s )

 .

We are interested in the asymptotic behaviour of
√

nq̄n(sn), and first of all we note that the
sequence n P(Zn

sn
= 0) converges to zero, as can be seen by direct calculations. Then we observe

that, for each T > 0, from the Kolmogorov inequality:

P

(
sup
s≤T

∣∣∣∣1n Z̃ns − 2λs

∣∣∣∣ ≥ ε

)
≤

Var(Z̃nT )

n2ε2 =
2nλT

n2ε2 .

Furthermore, Zn
s converge weakly to Bs in DR([0, ∞)) w.r.t. the topology of uniform

convergence on bounded intervals, the limit process having continuous paths. Therefore the
pair (Z̃ns/n, Zn

s ) converges in DR([0, ∞)) × DR([0, ∞)), each component endowed with the
topology of uniform convergence, and then (Z̃ns/n, Zn

s ) converges in distribution to (2λs, Bs) in
the space DR2([0, ∞)) endowed with the topology of uniform convergence on bounded intervals.

From the Skorohod theorem, we can assume w.l.o.g. that the above pair converges P-a.s., and
uniformly on bounded intervals. Then,

r̂(Z̃nsn ) I(Z̃nsn > 0)
1√

Z̃nsn /n
exp(dn Zn

sn
) →

2
√

2π

1
√

2λs
exp(d̄ Bs) P-a.s. (64)

whenever sn → s, with s > 0. The above convergence is equivalent to the uniform convergence
on bounded and compact intervals of (0, ∞), and its proof is straightforward. We only observe

that, if we set hn(s) =

√
Z̃ns/n, then, for any T > 0, hn(s) converge to h(s) =

√
2λs

uniformly in [0, T ], and therefore, for any h > 0, 1/hn(s) converge to 1/h(s) uniformly in
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the set {s, such that h(s) ≥ h}. The thesis follows, as the sequence on the left-hand side of (64)
is uniformly integrable. Indeed

sup
n

E P
[(

√
n r(Z̃nsn ) exp(dn Zn

sn
))2

] ≤ L < ∞,

since supm r̂(m) =
√

m r(m) ≤ L ′ < ∞, and

E P

[
I(Z̃nsn > 0)

n

Z̃nsn

exp(2dn Zn
sn

)

]

= exp(−2dn/
√

n)
1

2λsn

∞∑
k=1

k + 1
k

exp
(

2dn
k + 1 − 2λns

√
n

)
(2λnsn)k+1

(k + 1)!
e−2λnsn

≤ exp(−2dn/
√

n)
1

λsn
E P

[exp(2dn Zn
sn

)]. �

We end this section with the statement of the elementary technical lemma, which has been
used in the proof of the previous results.

Lemma 5.9. If condition C3 holds, then

lim
n→∞

(cn, dn, en) = (c̄, d̄, ē), (65)

where cn , dn and en are defined in (51)–(53), and where

c̄ =
c

2λ
=

c(1) − c(2)

2λ
, d̄ =

d

2λ
=

c(1) + c(2)

2λ
, ē = −(c2(1) + c2(2))/2λ.

6. The M/M/1 queueing model: Observing the idle time process

In this section we are interested in the conditional law of the M/M/1 queue Q̃n
t = X̃n

t + L̃n
t ,

when the observation process is the idle time process, i.e.

C̃n
t =

∫ t

0
I(Q̃n

s = 0) ds,

the cumulative time the queue has spent in 0, up to t .
Equivalently, one can also consider, as an observation process, the bivariate point process

( Ĩ n
t , B̃n

t ), where Ĩ n
t is the process that counts the times when the system starts an idle period and

B̃n
t is the process that counts the times when the system starts a busy period, that is

Ĩ n
t =

∫ t

0
I(Q̃n

s− = 1) dÑ n
s , (66)

B̃n
t =

∫ t

0
I(Q̃n

s− = 0) d Ãn
s . (67)

Indeed the filtration generated by the idle time process C̃n
t and the filtration generated by the

observation process ( Ĩ n
t , B̃n

t ) coincide, or more precisely F C̃n

t+ = F Ĩ n ,B̃n

t .
Our first aim is to study the conditional law

E[g(Q̃n
t )/H̃n

t ], (68)
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where, for notational convenience, we denote

H̃n
t = F Ĩ n ,B̃n

t = F C̃n

t+ ,

and the explicit expression for the filter (68) in terms of γ 0
t (Q̃n) is given in (75).

Then we consider the rescaled processes

Qn
t :=

Q̃n
nt

√
n

, I n
t :=

Ĩ n
nt

√
n
, Bn

t :=
B̃n

nt
√

n
, Cn

t :=
√

nµnC̃n
nt , (69)

and the conditional law of the rescaled queue

E[g(Qn
t )/Hn

t ], (70)

where Hn
t is the filtration generated by the rescaled observation:

Hn
t = H̃n

nt = F I n ,Bn

t = FCn

t+ . (71)

We are interested in the limit behaviour of the filter (70) under the same assumptions A1, A2,
A3 and conditions C1, C2, C3 of Section 5. Under these assumptions, we already know that Qn

t
converge weakly to a Brownian motion Wt with diffusion coefficient 2λ and drift coefficient c.
If one defines X̄n

t := Qn
t − Cn

t , then clearly Qn
t = X̄n

t + Cn
t , and therefore, since by definition

Cn
t increases only when Qn

t = 0, the pair
(
Qn

t , Cn
t

)
is the solution of the Skorohod problem

corresponding to X̄n
t . Moreover,

(X̄n
t , Qn

t , Cn
t ) ⇒ (Wt , Wt + Λt ,Λt ),

where, as usual, Λt is defined as in (1) (for a deeper investigation of these results, we refer to
Kurtz [7]). It is therefore natural to expect that E[g(Qn

t )/Hn
t ] converges weakly to E[g(Wt +

Λt )/FΛ
t ] = Π̂2λ,c(ζt ; g). This result is proven in Theorem 6.4. Moreover, Π̂2λ,c(γ

0
t (Qn); g) is a

good approximation of the filter for the rescaled model (see Theorem 6.6).
Let {σ Bn

k , k ∈ N} and {σ I n
k , k ∈ N} be the jump times of the process Ĩ n

t and the process B̃n
t ,

respectively. Under the assumption Q̃n
0 = 0, it easy to verify that

σ Bn
k < σ I n

k < σ Bn
k+1 < σ I n

k+1, for each k ≥ 1,

and that Qn
t = 0 when σ I n

k ≤ t < σ Bn
k+1, for k ≥ 0, while Qn

t > 0 otherwise.
We start by observing some regenerative properties of the above jump times, which are

fundamental in the sequel. The first one is due to the strong Markov property for the process
Q̃n

t , and is given by the following lemma.

Lemma 6.1. For each k ∈ N, the processes Q̃ I n
k,t = Q̃n

t+σ I n
k

− Q̃n
σ I n

k
and Q̃ Bn

k,t = Q̃n
t+σ Bn

k
− Q̃n

σ Bn
k

are independent of F Q̃n

σ I n
k

and F Q̃n

σ Bn
k

, respectively. Moreover, the process Q̃ I n
k,t has the same law as

the process Q̃n
t .

The process Ĩ n
t is a renewal process, and B̃n

t is a delayed renewal process, i.e. the random
variables σ Bn

k+1 − σ Bn
k are mutually independent for k ≥ 0 and identically distributed for k ≥ 1.

Also, {σ I n
k − σ Bn

k }k≥1 is a sequence of mutually independent random variables.
In the setting of this section, the above considerations and Lemma 6.1 guarantee that the filter

of Q̃n
t given H̃n

t admits a representation similar to that given in Proposition 2.1. The proof of
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the following proposition is left to the reader. However, we point out that, since the processes
involved are all Markovian, the proof could be given by the techniques used in [3].

Proposition 6.2. The conditional law of Q̃n
t given H̃n

t admits the following representation:

E
[
g(Q̃n

t )/H̃n
t

]
= I(Q̃n

t = 0)g(0) + I(Q̃n
t > 0)

×

∞∑
j=1

E

[
g(Q̃n

s+σ Bn
j

− Q̃n
σ Bn

j
+ 1) I(σ I n

j − σ Bn
j > s)

]
s=t−σ Bn

j

E
[
I(σ I n

j − σ Bn
j > s)

]
s=t−σ Bn

j

I{σ Bn
j ≤ t < σ I n

j }. (72)

It is important to note that

σ I n
j − σ Bn

j = inf{u ≥ 0 : Q̃ Bn
j,u + 1 = 0}, (73)

and that the process Q̃ Bn
j,s + 1 for s < σ I n

j − σ Bn
j behaves like the continuous time random walk

X̃n
s + 1 for s < σ̃ n

1 = inf{u ≥ 0 : X̃n
u = −1}, and hence

E[g(Q̃ Bn
j,s + 1) I(σ I n

j − σ Bn
j > s)]

E[I(σ I n
j − σ Bn

j > s)]
=

E[g(X̃n
s + 1) I(σ̃ n

1 > s)]

E[I(σ̃ n
1 > s)]

. (74)

As a consequence and observing that, by definition (9),

γ 0
t (Q̃n) = t − sup{s < t such that Q̃n

s = 0} =

∞∑
j=1

(t − σ Bn
j ) I{σ Bn

j ≤ t < σ I n
j },

we can rewrite (72) as

E[g(Q̃n
t )/H̃n

t ] = I(Q̃n
t = 0)g(0) + I(Q̃n

t > 0)
E
[
g(X̃n

s + 1) I(σ̃ n
1 > s)

]
E
[
I(σ̃ n

1 > s)
]

∣∣∣∣∣∣
s=γ 0

t (Q̃n)

. (75)

The above considerations leads us to state the following result.

Theorem 6.3. Consider the rescaled process Qn
t , the rescaled observation processes I n

t and Bn
t ,

defined in (69), and the history generated by (I n
u , Bn

u ) for u ≤ t , i.e. Hn
t defined in (71). Then

E[g(Qn
t )/Hn

t ] = I(Qn
t = 0)g(0) + I(Qn

t > 0)Σ̄ n(γ 0
t (Qn); g), (76)

where Σ̄ n(s; g) = Σ̂ n(s; gn), with Σ̂ n(s) the probability defined in (23), and gn(x) = g(x+
1

√
n
).

Proof. Equality (75) implies

E[g(Qn
t )/Hn

t ] = I(Qn
t = 0)g(0) + I(Qn

t > 0)
E
[
g
(

Xn
s +

1
√

n

)
I(σ n

1 > s)
]

E[I(σ n
1 > s)]

∣∣∣∣∣∣
s=γ 0

t (Qn)

and clearly

E
[
g
(

Xn
s +

1
√

n

)
I
(
σ n

1 > s
)]

E
[
I
(
σ n

1 > s
)] = Σ̂ n(s; gn). �
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As a consequence of the above theorem, the conditional law of Qn
t given Hn

t can be written as

I
(
Qn

t = 0
)
[δ{0} − Σ̄ n(γ 0

t (Qn))] + Σ̄ n(γ 0
t (Qn)).

Moreover, for any g uniformly continuous,

Σ̄ n(γ 0
t (Qn); g) = Σ̂ n(γ 0

t (Qn); g) + ε(n, g), (77)

with |ε(n, g)| ≤ ωg(1/
√

n). We are now ready to prove the main result of this section.

Theorem 6.4. Assume conditions C1, C2, C3 and A1, A2, A3. Then, for any t ≥ 0, the sequence
of measure-valued random variables defined by (70) converge weakly to π̂t , on the space of
probability measures endowed with the topology of weak convergence. In particular, for any
bounded and continuous function g,

E[g(Qn
t )/Hn

t ] ⇒ E[g(Wt )/FΛ
t ] = Π̂2λ,c(ζt ; g), for any t ≥ 0.

Proof. As in the proof of Theorem 5.2, using (77) it is possible to show that, in the Skorohod
space of Proposition 5.5,

P̄(Σ̄ n(γ 0
t (Qn); g) −→

n→∞
Π̂2λ,c(ζt ; g), for every g : R+

→ R bounded and continuous)

= 1,

since, in that space γ 0
t (Qn), converges to ζt almost certainly. On the other hand, the total

variation of the measure δ{0} − Σ̄ n(γ 0
t (Qn)) is at most 2, so the result is achieved once we

prove that I(Qn
t = 0) converges to zero in probability. Indeed, as recalled in (40), the sequence

Qn
t converges weakly to a reflected Brownian motion Wt + Λt . Then the above convergence

can be obtained by noting that the function I(x = 0) has a discontinuity point at x = 0,
P(Wt + Λt = 0) = 0, and that I(Qn

s = 0) converges to zero by the continuous mapping
theorem. �

Remark 6.5. As already observed at the beginning of this section,

(X̄n
t , Qn

t , Cn
t ) ⇒ (Wt , Wt + Λt ,Λt ),

where X̄n
t := Qn

t − Cn
t . Thanks to the continuity of the limit processes, the convergence can be

considered in the space DR3 [0, ∞) endowed with the topology of the uniform convergence on
compact sets. Moreover, it is interesting to note that γ 0

t (Qn) = γt (Cn) ⇒ γt (Λ) = ζt ,
Then, similarly to Proposition 5.5, it is possible to prove that

(γ 0
t (Qn), γt (C

n), Cn
t ) ⇒ (γ 0

t (Wt + Λt ), γ
0
t (Λt ),Λt ) = (ζt , ζt ,Λt ),

and therefore an alternative proof of the previous theorem can be achieved by using these
properties.

We end this section by noting that, even in this new situation, it is possible to give the same
approximation for the filter as in Theorem 5.3, namely, for E[g(Qn

t )/Hn
t ], the following result

holds.

Theorem 6.6. For all g bounded and continuous and for each T > 0, p > 0,∫ T

0
E |E[g(Qn

t )/Hn
t ] − Π̂2λ,c(γ

0
t (Qn); g)|pdt −→

n→∞
0.



610 G. Nappo, B. Torti / Stochastic Processes and their Applications 116 (2006) 585–610

Proof. Note that, by (77),

|E[g(Qn
t )/Hn

t ] − Π̂2λ,c(γ
0
t (Qn); g)|p

= |I(Qn
t = 0)g(0) + I(Qn

t > 0)Σ̂ n(γ 0
t (Qn); g) + ε(n, g) − Π̂2λ,c(γ

0
t (Qn); g)|p

≤ C(p)|I(Qn
t = 0) (g(0) + Σ̂ n(γ 0

t (Qn); g)) + ε(n, g)|p

+ C(p)|Σ̂ n(γ 0
t (Qn); g) − Π̂2λ,c(γ

0
t (Qn); g)|p,

where C(p) is a suitable constant. Then

E[|E[g(Qn
t )/Hn

t ] − Π̂2λ,c(γ
0
t (Qn); g)|p

]

≤ C(p)E[|I(Qn
t = 0)2‖g‖∞ + ε(n, g)|p

]

+ C(p)E[|Σ̂ n(γ 0
t (Qn); g) − Π̂2λ,c(γ

0
t (Qn); g)|p

].

The thesis follows, since both the addends on the right hand side of the previous inequality
converge to zero. The first addend converges to zero by the bounded convergence theorem. To
prove that the second addend converges to zero, one just has to substitute ξn

t with γ 0
t (Qn) in the

proof of Theorem 5.3. �
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