
Contents Provider-Assisted Dynamic Voltage Scaling for
Low Energy Multimedia Applications �

Eui-Young Chung
CSL Stanford University

eychung@stanford.edu

Luca Benini
DEIS, University of Bologna

lbenini@deis.unibo.it

Giovanni De Micheli
CSL Stanford University

nanni@stanford.edu

ABSTRACT
This paper presents a new concept of DVS (Dynamic Volt-
age Scaling) for multimedia applications. Many multime-
dia applications have a periodic property, but each period
shows a large variation in terms of its execution time. Exact
estimation of such variation is a crucial factor for low en-
ergy software execution with DVS technique. Previous DVS
techniques focused only on end users (client sites) and their
quality heavily depends on the accurateness of the worst case
execution time estimation. This paper proposes that con-
tents providers (server sites) supply the information of the
execution time variations in addition to the content itself.
This makes it possible to perform DVS independent to worst
case execution time estimation. The extra work required to
the contents provider for this purpose is fully compensated
by the bene�ts for the end users because single content is
often provided to many users. Experimental results show
that our method greatly reduces the energy consumption of
client systems compared to previous DVS techniques.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineer-
ing

General Terms
Algorithms, Management

Keywords
DVS(Dynamic Voltage Scaling), contents provider, low-power,
worst case execution time, characterization, multimedia

1. INTRODUCTION
Energy consumption has become one of the most impor-

tant constraints on modern system design, especially for
portable and battery powered embedded system. Processor-
based architecture is one of the common choices in portable
embedded system design due to its exibility and time-to-
market constraint. In this architecture, the most critical
component in energy consumption is the processor because
a large fraction of overall computations is performed by the
programs running on the processor.
DVS (Dynamic Voltage Scaling) is one of the most promis-

ing techniques to reduce the processor energy consumption
by adjusting the clock frequency and/or supply voltage level,

�This research was supported in part by GSRC and NSF
under contract CCR-9901190.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02,August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

while meeting the required throughput constraint. DVS ba-
sically exploits the idle interval (slack time) of the processor
for energy reduction, thus the variation of idle interval criti-
cally a�ects the e�ectiveness of DVS algorithm. In practice,
the idle interval depends on not only the application pro-
gram running on the processor, but also the type of workload
processed by the application program.
The multimedia application programs such as MPEG

decoder, one of the most common programs executed on
portable embedded systems, show the large variation of idle
interval depending on the characteristic of the workload.
For example, MPEG decoder periodically processes a pic-
ture frame, but the processing time of each frame varies
depending on the frame type, picture size and so on. For
example, the worst case, P-type frame decoding takes 1.6
times longer than the worst case I-type frame decoding and
3.7 times longer than the best case P-type decoding in [8].
Previous work on DVS can be classi�ed into two cate-

gories. The �rst category considered hard real-time con-
straint applications for DVS, while soft real-time constraint
applications were considered in the second category.
The �rst generation of hard real-time DVS techniques

mostly focused on OS level multi-task scheduling problem
for energy reduction [18, 9, 11]. In these methods, they as-
sume that each task has a �xed amount of execution time
regardless of the workload characteristics, therefore the full
potential of energy reduction cannot be exploited when the
execution time of each task varies signi�cantly. This prob-
lem was partially solved by enhancing the �xed priority
scheduling algorithm to consider both best case execution
time and worst case execution time of each task in [15].
While these approaches controlled the clock frequency and

supply voltage in task level (appropriate for OS level imple-
mentation), the second generation hard real-time DVS tech-
niques proposed the �ner grain control of clock frequency
and supply voltage (appropriate for application program
level implementation) to exploit the variation of slack time
more eÆciently. In [10], the timeslot concept was introduced.
They sliced a task into several pieces called timeslots, which
enables to adjust the processor speed (clock frequency and
supply voltage) in the middle of a task execution. Another
technique in this category is the compiler assisted voltage
scheduling technique proposed in [16]. This technique �rst
builds the control ow graph of the given program and iden-
ti�es the worst case execution time path using static timing
analysis. Then, the processor can be slowed down when it
executes non timing-critical paths of the control ow graph.
They showed the applicability of this technique only for sin-
gle procedure, but inter procedural analysis is required when
multiple procedures are involved.
Recently, the second category, soft real-time DVS tech-

niques, has been received large attention to achieve higher

degree of energy reduction [5, 12].They adopt idle length
prediction schemes and select optimal voltage and frequency
pair based on the prediction result. Most of the techniques
in this category made a prediction based on the ratio of
idle time to busy time. But these techniques often miss the
deadline due to the inaccuracy of the prediction.
The most critical common assumption of previous tech-

niques is that the worst case execution time of a task (times-
lot or path in a control ow graph) is known a priori or pre-
dicted accurately. Hard real-time DVS techniques claimed
that the worst case execution time could be obtained by
pro�ling (simulation, measurement or static timing analy-
sis). Namely, they de�ned single worst case execution time
for each application. But in some application programs
like MPEG decoder, the worst case execution time shows
a large variation depending on the video clips (workloads).
Soft real-time DVS techniques also have the problem of pre-
diction quality, especially when the workload has the non-
stationary property in the ratio of idle time to busy time.
In this paper, we propose a new concept of DVS for MPEG

decoder to overcome such ineÆciency with the help of con-
tents provider. Our method is a soft real-time DVS tech-
nique based on the prediction, but di�ers from the previous
soft real-time DVS techniques because the information used
for prediction is supplied by contents providers, which guar-
antees the high quality of prediction even when the workload
shows the non-stationarity. The contents provider supplies
the decoding time information of each frame in conjunc-
tion with the video clips. The timing information should be
architecture independent to consider various types of archi-
tectures in client sites. The MPEG decoder in client site
performs DVS by translating the architecture independent
timing information into architecture dependent timing infor-
mation. Timing characterization, the extra work required to
the contents provider is compensated by the energy reduc-
tion in client sites because it is typical that single content is
provided to more than thousands of users.

2. MOTIVATION
2.1 Multimedia streaming environment
In this paper, we consider the real-time MPEG video

streaming environment, i.e. real-time transmission of stored
data. Typical MPEG streaming environment consists of two
parts - servers and clients as shown in Figure 1. In download
mode (or o�-line mode) MPEG environment, the server is
replaced by fully downloaded video clip or DVD title and
data is read from the disk instead of the network. The ma-
jor issues in this streaming environment can be classi�ed
into six areas - video compression, application-layer QOS
control, continuous media distribution services, streaming
servers, media synchronization mechanisms, and protocols
for streaming media [17]. Some of previous techniques tar-
geting multimedia environment regarded the energy reduc-
tion as a QOS problem. Thus, they requested the server
system to help the energy reduction of the client systems.
For example, data �delity such as picture size is controlled
depending on the remaining battery capacity [4].
On the other hand, many previous DVS techniques only

have focused on the client site and the biased focus causes
the inaccurate worst case frame decoding time estimation
because client site has no knowledge of future frames to be
decoded. The environment shown in Figure 1 does not im-
pose any timing constraints on the encoding process, which

server

machine

data disk

system A

system B

system Z

…
…

.

MPEG

encoder

MPEG
video clip

contents

provider

server

site

client

site

network

transmission

Figure 1: MPEG streaming environment

MPEG size frame decoding time (ms) var-
clips best average worst iance
hubble 80x60 7.382 8.431 8.902 0.798
joel 80x60 5.526 5.643 5.731 0.660
klein 384x288 20.624 32.506 36.881 26.695
cindy 80x60 1.255 2.702 3.898 1.325
cindy 160x120 4.874 8.282 11.842 5.043
cindy 320x240 18.987 26.854 33.315 15.805

Table 1: Frame decoding time variation in MPEG
decoder measured by strong-ARM simulator

allows the contents provider to characterize the decoding
time of each frame for a given video clip. If there exists only
single system architecture in client site, the timing charac-
terization is a trivial problem because the contents provider
can characterize the decoding time of each frame based on
the same system architecture. In this case, the contents
provider can supply not only the actual worst case frame
decoding time for a given video clip, but also the exact de-
coding time of each frame. Thus, DVS techniques can fully
exploit the slack time because MPEG decoder has the per-
fect knowledge of the decoding time of each frame a priori.
Due to the large volume of requests for single video clip, the
extra work (timing characterization) required to the con-
tents provider can be fully compensated by the energy sav-
ing of numerous clients.

2.2 Frame decoding time variation
To illustrate our basic idea, we �rst show the variation

of frame decoding time of a MPEG decoder in Table 1 by
running MPEG decoder on strong ARM simulator. Table 1
shows two important execution time variations in MPEG
frame decoding procedure.
First, the execution time variation of frame decoding in

single MPEG video clip is very large. It means that DVS
technique can more eÆciently exploit idle intervals if we can
track the execution time variation over the frame execution.
Most of previous approaches have focused on exploiting the
slack time occurred due to this variation.
Second, the worst case execution time of each video clip

varies more signi�cantly. One of the major reasons for
such variation is the picture size (horizontal size � verti-
cal size) because picture size a�ects the number of macro
blocks which eventually controls the number of iterations
for many computationally expensive loop constructs. Even
when several video clips have the same size (hubble, joel,
and cindy(80x60)) the worst case execution time varies sig-
ni�cantly due to other encoding parameter values. For this
reason, the worst case execution time should be decided de-
pending on the video clip to be decoded for more eÆcient
DVS. However, previous approaches considered single worst
case execution time without the consideration of the work-
load characteristics. In other words, they decided single
worst case execution time for a MPEG decoder program.
For this reason, actual worst case execution time (i.e. the

MPEG

encoder

cost information

MPEG

video clip

MPEG decoding

cost characterizer

server machine

data disk

DVD

off-line

environment

on-line

environment

Figure 2: MPEG video clip characterization ow

worst case execution time experienced while decoding the
given video clip) can be much smaller than they decided.
The following example clearly shows the importance of the

exact worst case frame decoding time estimation to consider
the workload characteristics.
Example 1. Suppose that the worst case frame decoding

time of MPEG decoder is decided as 3:898 ms in strong
ARM processor environment by pro�ling the program using
the video clip, cindy (80x60). In this setting, DVS tech-
nique will severely violate the required performance when
MPEG decoder experiences other MPEG video clips due to
the underestimation. On the other hand, suppose that the
worst case frame decoding time of MPEG decoder is decided
as 36:881 ms by pro�ling the program using all video clips
shown in Table 1. Even though MPEG decoder is trained
for all video clips, the largest worst case frame decoding time
(klein) is applied to all video clips in previous approaches,
which wastes large portion of slack time in other video clips.
For example, when MPEG decoder experiences the video clip,
cindy (80x60), 32:983 ms of idle time is wasted due to the
overestimated worst case frame decoding time. �
In practice, there exist many di�erent system architec-

tures in client site. For this reason, the timing information
should be abstracted as architecture independent and each
client system needs a method to translate the architecture
independent timing information into the timing informa-
tion for its own system architecture. We call the abstracted
frame decoding time and translation method decoding cost
and decoding cost translation, respectively. Also, we call the
translated decoding cost actual decoding cost.
To summarize, our method requires that contents

providers supply architecture independent timing informa-
tion with the contents. Each system in client site translates
it into the architecture speci�c timing information and DVS
is performed based on this information.

3. OVERALL FLOW
At the server site, the decoding time of each frame for

the reference system can be easily obtained by simulation
or measurement. This information is only meaningful when
the client system is identical to the reference system due to
the architecture-dependent property. To support heteroge-
neous client systems, we reduce the architecture dependent
property of the timing information by introducing decoding
cost which is the decoding time of each frame normalized
to that of the �rst frame (reference frame). Figure 2 shows
the decoding cost characterization procedure performed by
the contents provider. The decoding cost �le also informs
the best worst decoding costs. The reference system archi-
tecture is arbitrarily decided by the contents provider, thus
each contents provider may have di�erent reference system

cost
information

read best and worst costs

partion the cost range
and initialize cost

scaling table

decode at full speed and measure time

MPEG
video clip

read the first frame and its cost

construct DVS table

scale the cost

scaling factor
for the range

decided?

select voltage and frequency
from DVS table for the cost

set the processor
at the full speed

decode the frame
and measure the time

compute scaling
factor for the range

YesNo

read the next frame and its cost

select cost range

Initialization phase Compulsory
learning phase

Check
phase

Learning phase DVS phase

decode the frame

Figure 3: MPEG decoding procedure with the pro-
posed DVS technique

architecture. However, if the client machine identi�es the
decoding time of the reference frame in the client machine, it
is possible to approximate the decoding time of other frames
using the decoding costs by assuming that the decoding time
ratio among the frames are rarely sensitive to system archi-
tecture. The advantage of this abstraction is that contents
providers do not need to provide the exact decoding time
of each frame. Instead, they just need to provide the rela-
tive computation costs of the frames, which is possible using
the computation cost estimation tool. This characterization
step increases the transmission latency in streaming mode to
transmit the decoding cost �le before the video clip. But the
latency is tolerable because the decoding cost of each frame
requires only 4 bytes for oating point representation. The
details of decoding cost model will be described in Section 4.
Figure 3 shows the overall procedure of MPEG decoding

in cooperating with our decoding cost translation method.
MPEG decoding with our technique consists of �ve phases.
Initially, MPEG decoder goes into initialization

phase to initialize the cost scaling table which partitions
the range from the best decoding cost to the worst decoding
cost into several pieces called cost segments. For each cost
segment, a scaling factor is assigned for translating the de-
coding cost into the architecture speci�c timing information,
i.e. actual decoding cost. The scaling factors are identi�ed
in learning phase while the decoding is in progress.
After initialization phase, the MPEG decoder goes

into compulsory learning phase, in which the �rst frame
of the video clip is decoded by the processor running at full
speed. At the same time, the decoding time of the �rst frame
is measured. Using this information, the DVS table is con-
structed. DVS table represents the mapping relationship be-
tween actual decoding cost and appropriate clock frequency
and supply voltage pair. This table is used as a lookup table
in the later phase.
Next, MPEG decoder moves to check phase. MPEG de-

coder reads the decoding cost of the next frame and check
the cost scaling table whether the corresponding scaling fac-
tor is identi�ed. If the scaling factor has not been identi�ed,
MPEG decoder starts the learning phase. Otherwise, the
DVS phase is started.
In learning phase, the frame is decoded at full speed and

Frame SimpleScalar Strong ARM
decoding decoding decoding decoding

time (ms) cost time (ms) cost
1 0.221 1.000 1.227 1.000
5 0.327 1.480 1.895 1.544
10 0.653 2.955 3.920 3.194

Table 2: Decoding time and cost for cindy(80x60)

0 5 10 15 20 25 30
Frame number

1

1.5

2

2.5

3

3.5

4

D
ec

od
in

g
co

st

strong ARM
SimpleScalar
ST200

Figure 4: Decoding cost comparison on di�erent ar-
chitectures for the video clip, cindy (80x60)

the decoding time is measured like in compulsory learning
phase. However, at this time, the scaling factor is computed
using the decoding cost and decoding time and recorded in
the cost scaling table for future reuse.
In DVS phase the actual decoding cost is �rst computed

using the cost scaling table and then, DVS table is looked
up to �nd the appropriate frequency and voltage setting.
After �nishing either learning phase or DVS phase, MPEG
decoder returns to check phase to process the next frame.
Our method performs DVS only in DVS phase. But

initialization phase and compulsory learning phase
are executed only once during the entire decoding process.
Also, for reasonable long video clips, the DVS phase signi�-
cantly dominates learning phase visiting frequency.

4. DECODING COST CHARACTERIZA-
TION

We simulated MPEG decoder with the video clip, cindy
(80x60), for three di�erent system architectures. Sim-
pleScalar is a super-scalar microprocessor [2], ST200 is a
VLIW microprocessor [6], and strong ARM is a typical
RISC microprocessor [7]. Table 2 shows the decoding time
and decoding cost of three frames selected from SimpleScalar
and Strong-ARM simulations. The decoding cost of each
frame is its decoding time normalized to that of the frame
1. Figure 4 shows the decoding cost of the �rst 30 frames
of the video clip, cindy (80x60). In Table 2 and Figure 4,
it is observed that even though the same video clip is de-
coded in di�erent architectures, the decoding cost in each
system varies in the similar direction. In other words, the
decoding time ratio between two di�erent frames is much
less sensitive to system architecture compared to the abso-
lute decoding time. This observation implies that decoding
cost is more appropriate information rather than decoding
time to consider various client system architectures for DVS.
Suppose that the reference system of the contents provider

is SimpleScalar and the client systems are ST200 and strong
ARM. Then, the decoding costs of two client systems, ac-
tual decoding costs can be obtained by scaling the decoding
cost of SimpleScalar. The scaling factors can be computed
by measuring the decoding times of a few frames on each

0 10 20 30
rank of frames (ascending order)

1

1.5

2

2.5

3

3.5

4

de
co

di
ng

 c
os

t

strong ARM
SimpleScalar
ST200

Figure 5: Sorted decoding costs of frames (cindy
(80x60))

client system. Although their decoding costs show similar
variations, the di�erence at each frame is not a constant,
i.e. they are non-linearly related. For instance, the scaling
factor to compute the decoding cost of frame 1 is 1 and that
of frame 10 is 1.08. The di�erence of scaling factors is even
larger when the client system is ST200. Thus, decoding cost
translation should consider the non-linear relation between
decoding cost and actual decoding cost. But, this is not the
duty of the contents provider and should be treated by the
clients and will be discussed in detail in Section 5.

5. DVS WITH DECODING COSTS
5.1 Initialization phase
The construction of cost scaling table is the main purpose

of this phase. This table is used to translate the decoding
cost into the actual decoding cost. Due to the non-linear re-
lation between the decoding cost and actual decoding cost as
described in Section 4, single scaling factor is not suÆcient
for the translation and piece-wise linear model is appropri-
ate for the translation. Cost scaling table consists of cost
segments and a scaling factor is determined for each cost
segment in later phase (learning phase).
Figure 5 shows that piece wise linear model is appropriate

for the translation. In Figure 5, the frames in Figure 4 are
sorted in ascending order in terms of the strong ARM de-
coding cost. The important observation in this graph is that
similar decoding costs can use the same scaling factor to ap-
proximate their actual decoding costs with acceptable error
ratio. For example, the frames ranked in between the �rst
and 7th can translate their decoding costs to its actual de-
coding costs by single scaling factor. And the frames ranked
in between 8th and 30th also need single scaling factor.
The entire range of the decoding cost for the given video

clip is identi�ed by the best decoding cost and worst decod-
ing cost from the decoding cost information �le provided
with the video clip. A client-de�ned parameter called de-
coding cost partitioning factor (denoted as Np) decides the
number of cost segments in the cost scaling table. Thus, ith
cost segment is denoted as Segment(i) and expressed:

dbest + (i� 1) ��d < Segment(i) < dbest + i��d (1)

where, dworst and dbest are worst decoding cost and best
decoding cost, respectively, and �d is dworst�dbest

Np�1
which is

the distance between the segment.
Next, from the cost scaling table, MPEG decoder selects

the Segment(i) corresponding to the decoding cost of the
�rst frame (the decoding cost of the �rst frame is always 1.)
and its scaling factor is set to 1.

10.71W3.3V200MHz0

0.20.1W0.5V10MHzNp-1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8.20.9W3.1V180MHz1

ThresholdPowerVoltageFrequencyIndex

Figure 6: An example of DVS table

5.2 Compulsory learning phase
MPEG decoder constructs the DVS table and decodes the

�rst frame of the video clip at full speed. Also, the decoding
time of the �rst frame is measured and denoted as tfirst.
Next, MPEG decoder constructs a DVS table to map each
clock frequency and supply voltage pair to the appropriate
actual decoding cost as shown in Figure 6. Using tfirst, DVS
table is constructed using the following equation.

threshold(i) =
D � to

tfirst
�

tp(0)

tp(i)
(2)

where, D is a deadline to decode a frame, to is the overhead
time to switch the voltage and frequency, tp(0) is the clock
period at the full speed, and tp(i) is the clock period at
the selection of row i from the DVS table. threshold(i)
represents the minimum actual cost of the given frame to
select the corresponding voltage and clock frequency pair.

5.3 Check phase
First, MPEG decoder selects the row corresponding to the

decoding cost of the current frame from the cost scaling ta-
ble. If the scaling factor for this segment is not computed
yet, MPEG decoder goes to learning phase to learn the scal-
ing factor for this segment. Otherwise, MPEG decoder goes
into DVS phase to set the processor with the appropriate
voltage and clock frequency pair.

5.4 DVS phase
In this phase, MPEG decoder �rst computes the actual

cost of the current frame using the scaling factor selected
in Check phase. Next, the appropriate voltage and clock
frequency pair is selected from the DVS table. If the ac-
tual cost of the frame is in between threshold(i + 1) and
threshold(i), the row i is selected as the appropriate volt-
age and clock frequency pair to decode the frame.

5.5 Learning phase
To learn the scaling factor for the given decoding cost,

MPEG decoder decodes the frame i at full speed and mea-
sures the decoding time as we obtain tfirst. We denote the
decoding time of the frame i as ti. Segment(i) correspond-
ing to the given decoding cost is selected and its scaling
factor is set to ti

tfirst
. This phase is visited Np � 1 times.

6. EXPERIMENTAL RESULTS
We veri�ed our method by considering three di�erent sys-

tem architectures. SimpleScalar was selected as the refer-
ence system and ST200 and strong ARM were chosen as the
client systems.
As our evaluation metric, we use idle time usage (ITU)

which is the fraction of idle time used for DVS over the to-
tal idle time. If the idle time usage is smaller than 1, the
available idle time is under-utilized. On the other hand, if
idle time usage is larger than 1, it is over-utilized and de-
coding process violates the deadline. We call the former

under-utilized idle time usage (UITU) and the latter over-
utilized idle time usage (OITU). Also, we call unity ITU
ideal idle time usage (IITU). It is very important to classify
the decoded frames into two categories based on the timing
violation and analyze ITU for each category because ITU for
all frames is insuÆcient to appreciate the severeness of tim-
ing violation and the eÆciency of exploiting idleness without
timing violation. Notice that MPEG decoder imposes soft
real-time constraint rather than hard real-time constraint
on each frame decoding, therefore marginal violation is ac-
ceptable for energy reduction. Because we are especially
more interested in the timing-violated frames. Over-utilized
Frame Ratio (OFR) and Execution time over the Deadline
Ratio (EDR) are de�ned. OFR indicates the number of
timing violated frames over total number of decoded frames
and EDR is the average ratio of the execution time of over-
utilized frame over the deadline.
We compared our method to oracle DVS (ODVS) which

is an ideal method and only available by o�-line analysis.
Oracle DVS always provides the largest ITU (but less than
or equal to IITU) compared to any other methods. OFR
of ODVS is always 0 according to its de�nition, thus OITU
of ODVS is also always 0 and its UITU is same to its ITU.
However, ODVS does not always provide IITU when the
system provides discrete voltage and frequency ranges.
To analyze how the number of voltage/frequency pairs af-

fects our method, we consider two set of voltage/frequency
pairs. Table 3 (a) and (c) were obtained using 5 volt-
age/frequency pairs and Table 3 (b) and (d) were obtained
using 20 voltage/frequency pairs. 1 The deadline to de-
code a frame, D, was set to 20ms and the overhead time
to change the frequency and voltage was set to 140us [13].
Finally, Np (decoding cost partitioning factor) is set to 10.
While the voltage and frequency are changed, we assume
that processors consume their maximum power.
In Table 3, UITU of our method is comparable to ITU

of ODVS - our method is as eÆcient as OVDS in idle time
utilization. Also, OFR of our method is negligible except
for cindy(320x160) in Table 3 (d). However, OITU in Ta-
ble 3 (d) is only 1.061, which indicates that the amount
of over-utilized idle time is marginal and acceptable under
soft-realtime constraint, even if the number of over-utilized
frames is non-trivial. EDR in this table supports this claim
by showing that the the average execution time of the over-
utilized frames is only 2:9% larger than the deadline.
It is also interesting to appreciate Table 3 with the change

of the number of voltage/frequency pairs (Compare (a) to
(b) and (c) to (d) in Table 3). As the number of volt-
age/frequency pairs is increased, so are ITU of both ODVS
and our method because a widen set of possible selections
of frequencies enables to control the frame decoding time
more precisely. Also, OFR of our method is increased as
the number of voltage/frequency pairs is increased (klein
and cindy(320x160). This is because the accuracy of the
piece-wise linear model (scaling factor) becomes signi�cant.
As the number of voltage/frequency increases, the distance

1For each set, we assume that the frequency (f) range is
from 200MHz to 10MHz and the frequencies are equally
spaced. Each corresponding voltage is computed by f =
(VDD�VTH)�

VDD
[14]. Also, we assume that the voltage at

200MHz is 3.3V, � is 2.0, and VTH is 0.7V. When the volt-
age/frequency set is de�ned for a speci�c architecture like
Xscale [3], the set can be directly applied.

MPEG Our method ODVS

clips OFR OITU EDR UITU ITU ITU

hubble(80x60) 0.000 0.000 0.000 0.634 0.634 0.642

joel(80x60) 0.000 0.000 0.000 0.454 0.454 0.462

klein(384x288) 0.000 0.000 0.000 0.199 0.199 0.216

cindy(80x60) 0.000 0.000 0.000 0.516 0.516 0.522

cindy(160x120) 0.000 0.000 0.000 0.604 0.604 0.614

cindy(320x240) 0.000 0.000 0.000 0.545 0.545 0.558

(a) ST200 (5 voltage / frequency pairs)

MPEG Our method ODVS

clips OFR OITU EDR UITU ITU ITU

hubble(80x60) 0.007 1.074 1.058 0.799 0.801 0.820

joel(80x60) 0.000 0.000 0.000 0.733 0.733 0.743

klein(384x288) 0.000 0.000 0.000 0.813 0.813 0.833

cindy(80x60) 0.042 1.028 1.025 0.837 0.845 0.829

cindy(160x120) 0.085 1.116 1.090 0.788 0.816 0.822

cindy(320x240) 0.000 0.000 0.000 0.858 0.858 0.905

(b) ST200 (20 voltage / frequency pairs)

MPEG Our method ODVS

clips OFR OITU EDR UITU ITU ITU

hubble(80x60) 0.000 0.000 0.000 0.518 0.518 0.525

joel(80x60) 0.000 0.000 0.000 0.323 0.323 0.329

klein(384x288) 0.000 0.000 0.000 0.789 0.789 0.804

cindy(80x60) 0.000 0.000 0.000 0.422 0.422 0.428

cindy(160x120) 0.000 0.000 0.000 0.513 0.513 0.522

cindy(320x240) 0.000 0.000 0.000 0.556 0.556 0.583

(c) Strong ARM (5 voltage / frequency pairs)

MPEG Our method ODVS

clips OFR OITU EDR UITU ITU ITU

hubble(80x60) 0.000 0.000 0.000 0.837 0.837 0.845

joel(80x60) 0.000 0.000 0.000 0.739 0.739 0.749

klein(384x288) 0.017 1.007 1.002 0.870 0.873 0.884

cindy(80x60) 0.000 0.000 0.000 0.688 0.688 0.695

cindy(160x120) 0.000 0.000 0.000 0.824 0.824 0.836

cindy(320x240) 0.128 1.061 1.029 0.859 0.885 0.903

(d) Strong ARM (20 voltage / frequency pairs)

Table 3: Idle time usage comparison between our
method and oracle DVS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

hub
ble(

80
x6

0)

jo
el(

80
x6

0)

kle
in(

384
x2

88
)

cin
dy(8

0x
60

)

cin
dy(1

60
x1

20
)

cin
dy(3

20
x1

60
)

ave
ra

ge

our method oracle DVS

Normalized energy (our method / DPM)

Figure 7: Energy consumption comparison between
our method and oracle DVS for Table 3 (d)

between the thresholds in DVS table is decreased. Thus,
even small error in scaling factor may alter the row selec-
tion in DVS table. However, such undesirable selection has
small impact on OITU and EDR because the frequency step
in Table 3 (b) and (d) is 4 times smaller than that in Table 3
(a) and (c). This limitation can be overcome by increasing
Np. WhenNp is 50, OFR of cindy(320x160) becomes 0.012.
Finally, we compared the energy saving of our method

to ODVS. Figure 7 shows the energy consumption of each
method normalized to the energy consumption when Dy-
namic Power Management (DPM) [1] is adopted for Ta-
ble 3 (d). We assume that the power consumption of each
client system is zero in sleep state and there is no over-
head in power state transition. Nevertheless, our method
and ODVS outperform DPM and the actual energy improve-
ments of both methods will be larger than Figure 7. Also,
our method is comparable to ODVS, which is impossible
without the decoding cost information used in our approach.

7. CONCLUSIONS
We proposed a novel DVS technique for multimedia ap-

plication programs. Our method requires that contents

providers (server site) supply the information of the execu-
tion time variations in addition to the content itself. There-
fore, it is possible to make DVS techniques be independent
of the worst case execution time estimation, which is one of
the most critical factors a�ecting the quality of DVS tech-
niques. The extra work required to the contents provider for
this purpose is fully compensated by the bene�ts for the end
users, because single content is typically provided to more
than thousands users. The experimental results show that
our method is comparable to the ideal method - oracle DVS
- in terms of both idle time usage and energy saving when
the client systems are di�erent from the server system. The
next generation of MPEG standard format may support the
energy related information like the decoding cost informa-
tion proposed in this paper for convenience and to reduce
the latency to transmit the information.

8. REFERENCES
[1] L. Benini and G. De Micheli, Dynamic Power Management

of Circuits and Systems: Design Techniques and CAD
Tools, Kluwer, 1997.

[2] D. Burger and T. Austin, \The SimpleScalar Tool Set,
Version 2.0", Computer Architecture News, pp. 13-25,
June, 1997

[3] Developer manual: \Intel 80200 Processor Based on Intel
XScale Microarchitecture",
http://developer.intel.com/design/iio/manuals/273411.htm

[4] J. Flinn and M. Satyanarayanan, \Energy-aware
Adaptation for Mobile Applications", ACM Symposium on
Operating Systems Principles, pp. 48-63, 1999

[5] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M.
Neufeld, \Policies for Dynamic Clock Scheduling",
Symposium on Operating Systems Design &
Implementation, Oct. 2000

[6] http://www.st.com
[7] http://www.arm.com
[8] C. Im, H. Kim, S. Ha, \Dynamic Voltage Scaling

Techniques for Low-Power Multimedia Applications Using
Bu�ers", International Symposium on Low Power
Electronics and Devices, pp. 34-39, 2001

[9] T. Ishihara and H.Yasuura, \Voltage Scheduling Problem
for Dynamically Variable Voltage Processors",
International Symposium on Low Power Electronics and
Design, pp. 197-202, 1999

[10] S. Lee and T. Sakurai, \Run-time Voltage Hopping for
Low-power Real-time Systems", Design Automation
Conference, pp.806-809, 2000

[11] A. Manzak and C.Chakrabarti, \Variable Voltage Task
Scheduling Algorithms for Minimizing Energy",
International Symposium on Low Power Electronics and
Design, pp. 279-282, 2001

[12] T. Pering, T. Burd, and R. Broderson, \The Simulation
and Evaluation of Dynamic Voltage Scaling Algorithms",
International Symposium on Low Power Electrnoics and
Design, pp. 76-81, 1998

[13] J. Pouwelse, K. Langendoen, and H. Sips \Energy Priority
Scheduling for Variable Voltage Processors", International
Symposium on Low Power Electronics and Devices, pp.
28-33, 2001

[14] T. Sakurai and A. Newton, \Alpha-power Law MOSFET
Model and its Application to CMOS Inverter Delay and
Other Formulas", IEEE Journal of Solid State Circuits,
vol.25, no.2, pp.584-594, Apr, 1990

[15] Y. Shin and K. Choi, \Power Conscious Fixed Priority
Scheduling for Hard Real-Time Scheduling", Design
Automation Conference, pp.134-139, 1999

[16] D. Shin and J. Kim, \Intra-Task Voltage Scheduling for
Low-Energy Hard Real-Time Applications", IEEE Design
& Test of Computers, Vol. 18, No. 2, pp. 20-30, 2001

[17] D. Wu, Y. Hou, W. Zhu, Y, Zhang, J. Peha, \Streaming
Video over the Internet: Approaches and Directions",
IEEE trans. on Circuits and Systems for Video
Technology, vol. 11, no. 1, , pp.1-20, Feb. 2001

[18] F. Yao, A. Demers, and S. Shenker, \A Scheduling Model
for Reduced CPU Energy", IEEE Annual Foundations of
Computer Science, pp. 374-382, 1995

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

