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Variational Bayesian Expectation Maximization
For Radar Map Estimation
Malin Lundgren, Lennart Svensson, Lars Hammarstrand

Abstract—For self-localization, a detailed and reliable map
of the environment can be used to relate sensor data to static
features with known locations. This paper presents a methodfor
construction of detailed radar maps that describe the expected in-
tensity of detections. Specifically, the measurements are modelled
by an inhomogeneous Poisson process with a spatial intensity
function given by the sum of a constant clutter level and an un-
normalized Gaussian mixture. A substantial difficulty with radar
mapping is the presence of data association uncertainties,i.e., the
unknown associations between measurements and landmarks.In
this paper, the association variables are introduced as hidden
variables in a variational Bayesian expectation maximization
(VBEM) framework, resulting in a computationally efficient
mapping algorithm that enables a joint estimation of the number
of landmarks and their parameters.

I. I NTRODUCTION

Many automotive systems require a good understanding
of the environment and the nearby traffic situation. To gain
information about the surroundings, the vehicle is equipped
with a set of onboard sensors, such as cameras, radars and
internal sensors [1]. In recent years, a lot of research focus has
shifted towards self-driving vehicles and that has given rise to
new problems, which resemble those traditionally studied in
robotics. For example, self-driving vehicles require detailed
information about the world in order to localize itself and to
plan its path. Consequently, there is a need for other types
of environment descriptions than provided by traditional road
maps.

In robotics, maps are often constructed as a robot navigates
in an unknown environment using a set of onboard sensors.
This problem is referred to as simultaneous localization and
mapping (SLAM) and has received considerable attention in
the literature [2], [3]. Examples of SLAM algorithms are EKF-
SLAM, FastSLAM [4], LMB-SLAM [5] and Graph-SLAM
[6], [7], where the latter has emerged as the algorithm of
choice in many contexts. To enable self-driving vehicles in
open traffic, the requirements on the localization performance
are very strict. One way to obtain the needed accuracy is to
construct maps for localization using data collected by sensors
mounted on vehicles equipped with reference position systems
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[8], [9]. Having access to accurate reference data, the position
uncertainties become negligible and thus, in contrast to a
SLAM problem, the focus can be strictly on map construction.

Radar has become a central sensor in many automotive
applications, due to its ability to measure the distance, angle
and relative speed to surrounding objects, and for its robust-
ness to different weather conditions. The construction of radar
maps has been studied in [10] and [11] where the probability
hypothesis density (PHD) filter is utilized in order to estimate
a map of the static environment. Common for many existing
mapping and SLAM algorithms is that they rely on a point
target assumption for the landmarks. However, when observing
the nearby environment with a radar, many landmarks might
give rise to multiple detections each scan and are thus better
modelled as extended objects [12]–[16]. From these papers,
it is clear that the unknown associations between objects and
detections, i.e., the data association uncertainties, is amajor
challenge.

In this paper, the aim is to estimate a map of the world
as seen by a radar, i.e., a map not solely consisting of point
landmarks. The focus is on offline estimation and, in contrast
to SLAM, we condition on the vehicle trajectory. The pro-
posed radar mapping algorithm makes use of the Variational
Bayesian Expectation Maximization (VBEM) algorithm [17]
to jointly solve the mapping and the data association prob-
lems. Using VBEM we iteratively compute an approximate
distribution over the map given the distribution over the data
associations, and vice versa. This is fundamentally different
compared to common SLAM algorithms that rely on a front-
end processing step to estimate the data associations. Also, in
contrast to LMB-SLAM [5] and the PHD filter solutions in
[10], [11], the proposed algorithm does not rely on recursive
approximations, but instead makes use of measurements from
all times in order to determine the data association hypotheses
and estimate the map parameters.

Each landmark in the map is modelled as an extended
object that, similar as in [13], [14], is represented by a
weighted Gaussian density. This model makes the mapping
problem closely related to that of Gaussian mixture modelling
which is a well-studied problem in the literature. For Gaussian
mixtures it is common to employ iterative batch algorithms,
such as Expectation Maximization (EM) [18] to deal with
the data association uncertainties. The same concept is used
in the probabilistic multiple hypotheses tracking (PMHT)
algorithm [19], [20] which relies on EM to perform object
tracking. A clear drawback with EM in these applications is
that the number of parameters, i.e., the number of Gaussian
components in a mixture or the number of tracked objects,



is assumed to be known. In VBEM on the other hand, the
number of mixture components can be set large and, through
optimization, the components that are not needed in order
to model the observed mixture will get insignificant weights
[21]. Thus, VBEM automatically handles the model selection
problem.

Inspired by the Gaussian mixture literature, we derive radar
mapping solutions using both VBEM and EM, where the latter
is mainly used as a reference in the evaluation. Despite the
similarities, there are important differences between Gaussian
mixture modelling and the studied radar mapping problem.
For example, we consider data collected by a sensor with
a limited field of view, we get multiple detections at each
discrete time instant and there are clutter measurements inthe
data set. Results on both a simulated example and on real data
show that the proposed VBEM mapping algorithm enables
joint estimation of the number of landmarks, their parameters
and the clutter intensity.

The paper is organized as follows. In Section II, the con-
sidered problem is described and the models used for the data
and for the map are presented. Section III provides a deeper
discussion of the chosen models and the difficulties associated
with the mapping problem. It also motivates the choice of
methods. The derived solutions using EM and VBEM are
presented in Section IV and V, respectively, together with short
theoretical backgrounds of the methods. In Section VI, the
algorithms are evaluated. Finally, in Section VII, the presented
work is summarized together with conclusions.

II. PROBLEM FORMULATION

The objective in this paper is to find a method for estimating
a map based on detections provided by radars mounted on
a moving vehicle. To limit the problem to map estimation,
the sensor pose is assumed known, e.g., given by an accurate
reference system. The purpose of the map is not to describe the
physical environment, or what kind of objects that are present,
but the world as seen by the radar. In other words, we aim
to describe a probabilistic radar sensor model as a functionof
the sensor pose. The remainder of this section describes the
studied problem in more detail.

The measurements are modelled by an inhomogeneous
Poisson process, which is characterized using a map in a north-
east coordinate frame. Consequently, the number of detections
at each time instant is given by a Poisson distribution and
the location of measurements is described by an intensity
function over the observed space. The spatial distributionof a
measurement is assumed to be the sum of a constant clutter
level and a Gaussian mixture, where each component in the
mixture is referred to as a landmark. Based on these assump-
tions, each landmark in the map is modelled by a weight,
ωj , that corresponds to the expected number of detections
generated by landmarkj, a mean positionµj = [Ej , Nj ]

T

and a covariance matrix,Σj , that define the distribution of
the detections from the landmark. The clutter is described by
the intensity parameterρ, resulting in λc = ρV expected
number of clutter detections at each scan with a sensor
whose observation volume isV . Assuming that there areK

landmarks in the map, and using the above notation, the sought
parameter vectorθ is

θ = [µ1, ...,µK ,Σ1, ...,ΣK , ω1, ..., ωK , λc]. (1)

It is worth to emphasize that the number of landmarksK, and
thus the number of parameters, is unknown and needs to be
estimated based on data. A detailed mathematical description
of the measurement model (the likelihood function) is givenin
Section III-A, but in the remainder of this section we elaborate
on the underlying model assumptions and introduce some key
notation.

[µj ,Σj , ωj ]

λc = ρV

E

N

Figure 1: Overview of the considered problem.

What the radar observes depends on its position and heading
angle, i.e., its pose, since the radar observations describe the
relative distance between the sensor and a landmark. The
sensor pose at timek is denoted by

xk =

[

x
p
k

xϕk

]

, (2)

where x
p
k = [xE

k, x
N
k ]

T is the position of the sensor in the
north-east coordinate frame, andxϕk is the heading angle. To
limit the problem to map building, the position and heading
angle of the sensor are assumed to be known at each time
instant. The (known) trajectory from time 1 toM is denoted
byX = [x1, . . . ,xM ]. The sensor has a field of view described
by a known functionf(µj,xk) which is defined such that
the expected number of detections isαωj for a landmark
within the field of view, and zero otherwise. Consequently, we
describe the field of view as a function of the vehicle position,
xk, and the position of a landmark,µj , according to

f(µj ,xk) =

{

α, if µj is within the field of view
0, otherwise.

(3)

where 0 < α ≤ 1. Similar to, e.g., [14], the field of view
function is thus assumed to be constant over each Gaussian.

Each measurement from the environment is given as a range,
r, and an angle,φ, relative to the radar sensor. A measurement
may either originate from a landmark or from clutter and our
final objective is to estimate the parameter vector in (1) from



many such observations. Suppose that thei:th measurement
at timek is generated by landmarkj, the observed range and
angle are modelled as

[

rik
φik

]

=

[

‖µj + dj − x
p
k‖

µj + dj − x
p
k − xϕk

]

+wk, (4)

wheredj ∼ N (0,Σj) captures the extension of the landmark
and wk ∼ N (0,Rw) is the measurement noise. Since the
sensor pose is known, the measurements can be transformed
into the north-east coordinate frame, according to

yi
k =

[

yik,E
yik,N

]

= x
p
k + rik

[

cos
(

φik + xϕk
)

sin(φik + xϕk )

]

. (5)

The complete set of data, collected duringM time steps
and transformed into global coordinates, is denoted byY =
[Y1,Y2, . . . ,YM ], whereYk = [y1k, . . . , y

nk

k ]. It is assumed
that detections from moving objects can be filtered out due to
their velocity such that the considered data set only contains
detections from the static environment and clutter. Given the
data,Y, the aim in this paper is to estimate the parameters
in (1). As discussed in the introduction, the main difficulty
concerning this problem is the unknown data associations.

A. Notation

In the paper we use the following notation:

• For brevity, in some equations we drop the dependence
of µj andxm in the notation for the measurement noise
and useR̃jm = R̃(µj ,xm).

• N (x;m,P) is the normal (or Gaussian) probability den-
sity function of a random vectorx ∈ R

D with meanm
and covarianceP.

• IW(X;S, ν) is the Inverse Wishart density function of a
random matrixX ∈ S

D
++, i.e., a positive definite matrix

with dimensionD × D. The parameters are a scaling
matrix S and the degrees of freedomν.

• GAM(x; a, b) is the Gamma probability density function
of a scalar variablex > 0. The parametersa > 0 and
b > 0 are called shape and rate parameters, respectively.

• ψ(x) denotes the digamma function, defined as the
derivative of the logarithm of the Gamma functionΓ(x).

III. M ODEL PROPERTIES AND SOLUTION STRATEGIES

In this section we discuss difficulties associated with the
considered problem, and how these have been handled in
related work, mainly on the topic of Gaussian mixture models
(GMM). More specifically, the focus is on data association
uncertainties and how to deal with the unknown number of
landmarks. We also present a detailed description of the used
models and a derivation of key expressions needed for the
solutions presented in the following sections.

When estimating some parametersθ based on a set of data,
Y, a common strategy is to consider some optimality criterion.
One aim can be to find the parameters that maximize the
likelihood of the data

θML = arg max
θ

log p(Y|θ). (6)

Or, using prior knowledge regardingθ, the aim can be to
find the maximum a posteriori (MAP) or the minimum mean
squared error (MMSE) estimate of the parameters

θMAP = arg max
θ

log p(θ|Y) (7)

θMMSE = E{p(θ|Y)} =

∫

θp(θ|Y)dθ (8)

where the posterior density,p(θ|Y) ∝ p(Y|θ)p(θ).
The main difficulty associated with the problem described

in Section II, is that there are uncertainties in the data
associations. That is, the source of measurements is unknown.
The association uncertainty makes direct computation of the
likelihood in (6) and thus the posterior density in (7) and (8)
very hard. By introducing a variableZ, that defines the data
associations, the likelihood can be expressed as

p(Y|θ) =
∑

Z

p(Y,Z|θ) =
∑

Z

p(Y|Z, θ)p(Z|θ), (9)

where bothp(Y|Z, θ) andp(Z|θ) can be computed based on
the used models. However, even when marginalizing overZ,
the likelihood is intractable since the number of association
hypotheses grows fast as the number of measurements and
potential sources increases.

There are different methods that can be used for handling
the unknown data associations in a Gaussian mixture context.
One approach is to employ a sampling-based method, such
as Gibbs sampling [22], to generate samples from the joint
density p(θ,Z|Y). Since sampling from the joint density
often is hard, a Gibbs sampler constructs samples from the
density by multiple draws from conditional distributions.
More specifically, suppose that we want to drawN sam-
ples from the joint densityp(X̃), whereX̃ = [x̃1, . . . , x̃n].
Then, the i:th sample is denoted̃X(i) = [x̃

(i)
1 , . . . , x̃

(i)
n ],

where eachx̃(i)
j is drawn from the conditional distribu-

tion p(x̃
(i)
j |x̃

(i)
1 , . . . , x̃

(i)
j−1, x̃

(i−1)
j+1 , . . . , x̃

(i−1)
n ). For problems

involving a lot of data, i.e., many association variables, the
method becomes impractical.

An efficient method that circumvents the difficulties associ-
ated with (9) is the EM algorithm. EM is an iterative method
that in each iteration finds a point estimate of the parameters
and uses that to compute the expectation of the associations.
The algorithm utilizes the logarithm of the complete data
likelihood, i.e., log p(Y,Z|θ), which has a simple form for
many common models. In VBEM, which is a generalized
version of EM, both the associations and the parameters are
treated as random variables. In order to obtain a tractable
solution, the joint density is approximated by a factorization
p(θ,Z|Y) ≈ qθ(θ)qz(Z) and the aim is to find densitiesqθ(θ)
and qz(Z) that make the approximation as good as possible
[17], [22]–[24]. Thus, in VBEM, the inference problem is
transformed into an optimization problem. A major advantage
with this formulation, compared to EM, is that the number
of components in the Gaussian mixture does not need to
be estimated before initialization. Instead, the number of
components can be set much larger than the true number and
the prior on the mixture weight are chosen such that most
of its probability mass is close to zero. Then, through the



optimization, the components that are not needed in order to
model the observed mixture will get negligible weights.

In this paper we derive solutions to the mapping problem
in Section II using VBEM and EM. The motivation for using
VBEM is the ability of the method to simultaneously estimate
the number of components in a mixture and their parameters.
In addition, the resulting algorithm is computationally efficient
and straightforward to implement. The EM mapping algorithm
is derived in order to get a reference method and for the
possibility to incorporate parts of it into the VBEM solution.
The remainder of this section considers model properties and
approximations that enable the mapping solutions using EM
and VBEM.

A. Factorization of the complete data likelihood

Both EM and VBEM make use of the logarithm of the
complete data likelihood,p(Y,Z|θ), in order to estimate the
parameters of interest. Since the logarithm of a product equals
a sum of logarithms, the expression is simplified whenever the
likelihood is a product of distributions, each with the property
that its logarithm is a simple function. In this section, we
show how the likelihood for the model in Section II can be
factorized.

To facilitate the derivations, the data associations are de-
scribed by a matrixZm whose elementszmij are 1 if measure-
ment i at time stepm originates from componentj ∈ [1,K],
and 0 otherwise. The associationzmi0 = 1 denotes the event
that measurementi is clutter. It is worth remembering that
the Poisson model assumption allows several measurements
to originate from the same landmark but, ignoring possibly
unresolved landmarks, a measurement can be generated by at
most one landmark. Given data fromM independent scans,
the likelihood can be factorized according to

p(Y,Z|θ,X) =

M
∏

m=1

p(Ym,Zm|θ,xm). (10)

Introducingnm as the number of associations at time stepm,
i.e., the number of measurements, each factor in (10) can be
written as

p(Ym,Zm|θ,xm) =

p(Ym|Zm, θ,xm)Pr{Zm|θ,xm} =

p(Ym|Zm, θ,xm)Pr{Zm, nm|θ,xm} =

p(Ym|Zm, θ,xm)Pr{Zm|nm, θ,xm}Pr{nm|θ,xm} . (11)

Since the data is generated from a Poisson process, the
probability of receivingn measurements is

Pr{n|θ,xm} =
λnme

−λm

n!
, (12)

whereλm = λc +
∑

r f(µr,xm)ωr is the expected number
of measurements at time instantm. Usingλm, we have

Pr{Zm|nm, θ,xm} =

nm
∏

i=1

(

λc
λm

)zm
i0

K
∏

j=1

(

f(µj ,xm)ωj

λm

)zm
ij

.

(13)

To expressp(Ym|Zm, θ,xm), we first recall that the available
data set,Y, consists of a large number of measurement
where the noise contributions depend on the distances and
angles between the sensor and the observed features. An
approximation of the noise in the global coordinate fame is
obtained by the first order Taylor expansion of the nonlinear
model in (5), with respect todj andwk. That is

yi
k = µj + dj + Γ(µj ,xk)wk, (14)

where

Γ(µj ,xk) =

[

cos
(

µj−x
p
k

)

−‖µj − x
p
k‖ sin

(

µj−x
p
k

)

sin
(

µj−x
p
k

)

‖µj − x
p
k‖ cos

(

µj−x
p
k

)

]

.

(15)
This description provides a Gaussian approximation of the
measurement noise in the global coordinate frame,

yi
k ∼ N

(

µj ,Σj + R̃(µj ,xk)
)

(16)

whereR̃(µj ,xk) = Γ(µj ,xk)RωΓ
T (µj ,xk). Based on (16),

we get

p(Ym|Zm, θ,xm) =
nm
∏

i=1

(

1

V

)zm
i0

K
∏

j=1

(

N
(

yi
m;µj ,Σj + R̃(µj ,xm)

))zm
ij

(17)

By combining the expressions in (12), (13) and (17), we
obtain

p(Ym,Zm|θ,xm) =
1

nm!
exp
(

− (λc +
∑

r

f(µr,xm)ωr)
)

×
nm
∏

i=1

(

λc
V

)zm
i0

K
∏

j=1

(

f(µj ,xm)ωjN (yi
m;µj,Σj + R̃jm)

)zm
ij

(18)

where the factor(λm)nm = (λc +
∑

r f(µr,xm)ωr)
nm was

eliminated by noting thatzmij is 1 exactlynm times.
This factorized expression will be used as a starting point

in the derivations of the EM mapping algorithm in Section IV
and the VBEM counterpart in Section V.

B. Prior for the parameters

To compute the posterior distribution of the parameters, we
need a prior densityp(θ). It is assumed that the parameters
are independent before we observe any data, implying that

p(θ) = p(λc)

K
∏

j=1

p(ωj)

K
∏

j=1

p(µj)

K
∏

j=1

p(Σj), (19)

where the individual priors are specified according to

ωj ∼ GAM(a0, b0)

µj ∼ U

Σj ∼ IW(S0, ν0)

λc ∼ GAM(c0, d0).

The reason for using a uniform prior over the map is that
no information regarding the landmark positions is available a
priori we receive the observations. The Inverse-Wishart prior



for Σj is chosen since it is conjugate to a Gaussian likelihood.
Similarly, the choice of a Gamma prior forωj ≥ 0 and
λc ≥ 0 is motivated by the fact that it is a conjugate prior
to the Poisson distribution that is used to model the number
of detections.

C. Approximations

In each iteration of the proposed algorithms, the field of
view function,f(µj ,xm), and the measurement noise covari-
ance,R̃(µj ,xm), are assumed to be constants based on the
latest estimate of the landmark means. More specifically, at
iteration t + 1, it is assumed thatf(µj ,xm) ≈ f(µ

(t)
j ,xm)

and thatR̃(µj ,xm) ≈ R̃(µ
(t)
j ,xm). The argument for this

simplification is that both the field of view function and
the noise covariance are much less informative regarding the
parameters of the observed landmarks than the measurements.
In addition, as the algorithm starts to converge, the estimated
landmarks move very little in each iteration, implying that
µ

(t+1)
j ≈ µ

(t)
j .

IV. EM FOR ESTIMATION OF APOISSON PROCESS

Often in the EM algorithm, the aim is to find the parameter
vectorθ that maximizes the likelihoodp(Y|θ). However, since
we have defined a prior for the parameter vector, in this paper
EM is employed to find a MAP estimate ofθ. Consequently,
the objective in this section is to perform the optimization

θ̂ = arg max
θ

log p(Y|θ) + log p(θ). (20)

As discussed in Section III-A, a direct computation of the
likelihood, p(Y|θ), is difficult when the data associations are
unknown. Instead, the maximization in EM is performed by
iteratively finding a better parameter vector according to

θ(t+1) = arg max
θ

Q(θ|θ(t)) + log p(θ), (21)

where θ(t) denotes the parameters from iterationt, and
Q(θ|θ(t)) is referred to as the auxiliary function that is max-
imized in the ML setting of EM. Given the sensor positions
X, Q is defined as

Q(θ|θ(t)) = EZ{log p(Y,Z|θ,X)|Y, θ(t),X}. (22)

In (22), Z is called the hidden variable (or missing data)
which is a variable that, if it was known, would make the
problem simple. As stated in Section III,Z defines the
associations between the data and the potential sources of the
measurements.

Each iteration of the EM algorithm consists of two steps,
called the expectation (E) step and the maximization (M)
step. To find a MAP estimate ofθ, these steps are performed
according to (22) and (21):

E: Determine the expectation of the log-likelihood with
respect toZ.

M: MaximizeQ(θ|θ(t)) + log p(θ) with respect toθ.

For the model presented in Section II, and further discussed
in Section III-A, the auxiliary function is found as the expec-
tation with respect toZ of the logarithm of (10). That is,

Q(θ|θ(t)) = EZ{log p(Y,Z|θ,X)|Y, θ(t),X}

= −
M
∑

m=1

λc −
M
∑

m=1

K
∑

j=1

f(µj ,xm)ωj −
M
∑

m=1

log(nm!)

+
M
∑

m=1

nm
∑

i=1

[

EZ{z
m
i0 |Y, θ

(t),X}(logλc − logV )

+
K
∑

j=1

EZ{z
m
ij |Y, θ

(t),X}
(

log f(µj ,xm)

+ logωj + logN
(

yi
m;µj ,Σj + R̃(µj,xm)

))

]

. (23)

Given the prior in (19),

log p(θ) = log p(λc)

+
K
∑

j=1

(

log p(ωj) + log p(µj) + log p(Σj)
)

.
(24)

In (23) and (24), if not sooner, the benefit of the factorization
in Section III-A becomes clear since the expression to work
with becomes a sum where the association variables enter
linearly. We now present the computations involved in the E
and M steps using (23) and (24).

A. E step

In the E step of the algorithm, the expectation of the log-
likelihood, with respect to the hidden variables, is computed.
Due to the form of the expression for the log-likelihood, where
zmij enters linearly, it is enough to compute the expected value
of each association. More specifically, it is enough to compute

E{zmij |Y, θ
(t),X} =Pr

{

zmij = 1|yi
m, θ

(t),xm

}

. (25)

For j 6= 0 this probability can be expressed as

Pr
{

zmij = 1|yi
m, θ

(t),xm

}

∝

N
(

yi
m;µ

(t)
j ,Σ

(t)
j + R̃(µ

(t)
j ,xm)

)

f(µ
(t)
j ,xm)ω

(t)
j

(26)

where [µ
(t)
r ,Σ(t)

r , ω
(t)
r ] and λ(t)c are given by the parameter

vector from the last iteration,θ(t). Similarly, for j = 0, i.e.,
when the measurement is clutter,

Pr
{

zmi0 = 1|yi
m, θ

(t),xm

}

∝ λ(t)c /V. (27)

The normalization of the these probabilities follows
from the assumption that each measurement either orig-
inates from a landmark, or is due to clutter. Thus,
the association probabilities sum to one according to
∑

j Pr
{

zmij = 1|Ym, θ
(t),xm

}

= 1.



B. M step

In the M step, the aim is to find the parameter vectorθ(t+1)

that maximizes the auxiliary function. Forωj , µj andλc, the
sought values are obtained using the straightforward approach
of setting the first order derivative to zero, i.e.,

∂

∂θj

(

Q(θ|θ(t)) + log p(θ)
)

= 0 (28)

and solve forθj . This way, the new parameter values forωj ,
µj andλc are given by:

ω
(t+1)
j =

(a0 − 1) +
∑M

m=1

∑nM

i=1 EZ{zmij }

b0 +
∑M

m=1 f(µj ,xm)
(29)

µ
(t+1)
j =

(

M
∑

m=1

nm
∑

i=1

πm
ij

(

Σj + R̃(µj ,xm)
)−1

)−1

×
M
∑

m=1

nm
∑

i=1

πm
ij

(

Σj + R̃(µj ,xm)
)−1

yi
m (30)

λ(t+1)
c =

(c0 − 1) +
∑M

m=1

∑nm

i=1 EZ{zmi0}

d0 +M
(31)

whereEZ{zmij } is a shorthand notation for the expectation
EZ{z

m
ij |Y, θ

(t),X}. At this point, it is worth recalling the
approximations in Section III-C. These approximations greatly
simplify the derivative with respect toµj since they imply

that the derivative off(µj ,xm) ≈ f(µ
(t)
j ,xm) and of

R̂(µj ,xm) ≈ R̂(µ
(t)
j ,xm) are zero.

For the covariances,Σj , the derivative ofQ(θ|θ(t)) is of
such form that directly solving forΣj is not possible. Instead
we propose that the maximization is performed by a gradient-
based optimization approach. To enable a computation of
the gradient with respect toΣj , the covariance matrix is
parameterized using the Cholesky factorization

Σj = LjL
T
j , (32)

whereLj is a lower triangular matrix. SinceΣj is a 2 × 2
matrix, Lj contains 3 parameters that are to be found in the
optimization. Gathering the terms in (23) and (24) that depend
onLj , and denoting the expression byf(Lj), the optimization
problem can be formulated as

L̂j =arg max
Lj

f(Lj)

=arg max
Lj

M
∑

m=1

nm
∑

i=1

E{zmij }
(−1

2
log |LjL

T
j + R̃(µj ,xm)|

−
1

2
(yi

m − µj)
T (LjL

T
j + R̃(µj ,xm))−1(yi

m − µj)
)

−
1

2

[

(ν0 +D + 1) log |LjL
T
j |+ Tr

(

S0(LjL
T
j )

−1
)]

.

(33)

The gradient off(Lj), needed in the optimization, is

∂f(Lj)

∂Lj
=

M
∑

m=1

nm
∑

i=1

E{zmij }(LjL
T
j + R̃jm)−1

× [(yi
m − µj)(y

i
m − µj)

T − LjL
T
j − R̃jm]

× (LjL
T
j + R̃jm)−1Lj

+ (LjL
T
j )

−1
(

S0 − (ν0 +D + 1)LjL
T
j

)

(LjL
T
j )

−1Lj .

(34)

The derivation of (34) is outlined in Appendix A and the re-
sulting EM mapping algorithm is described using pseudocode
in Algorithm 1.

Algorithm 1 Mapping solution using EM

Require: Data,Y = [Y1, . . . ,YM ]
Sensor poses,X = [x1, . . . ,xM ]
Number of clusters,K

1: t = 0
2: Initialize θ(t)

3: while Not convergeddo
4: E step:
5: for m = 1 :M do
6: for i = 1 : nm do
7: ComputeEZ{zmij } = Pr

{

zmij = 1|θ(t),Ym,xm

}

,
for j = 1 . . .K, according to (26)

8: ComputeEZ{z
m
i0} = Pr

{

zmi0 = 1|θ(t),Ym,xm

}

,
according to (27)

9: end for
10: end for
11: M step:
12: Computeω(t+1)

j , for j = 1 . . .K, according to (29)

13: Computeµ(t+1)
j , for j = 1 . . .K, according to (30)

14: Computeλ(t+1)
c , according to (31)

15: Perform a gradient-based optimization forL̂j , j =
1 . . .K, using the objective function in (33) and the
gradient in (34).

16: ComputeΣ(t+1)
j = L̂jL̂

T
j , for j = 1 . . .K

17: Set t = t+1
18: end while

C. Negligible measurement noise

Depending on the environment and the used sensors, the
measurement noise might be very small compared to the
extensions of the landmarks. In these cases, the measurement
noise is negligible and the landmark covariance is assumed
to alone describe the spread of the detections. Then, the
expression forµ(t+1)

j simplifies to

µ
(t+1)
j =

M
∑

m=1

nm
∑

i=1

EZ{z
m
ij }y

i
m

(

M
∑

m=1

nm
∑

i=1

EZ{z
m
ij }

)−1

.

(35)
It also makes it possible to find an analytical expression
for Σ(t+1)

j using the Inverse-Wishart prior for the covariance



matrix:

Σ
(t+1)
j =

(

S0 +
M
∑

m=1

nm
∑

i=1

EZ{z
m
ij }(y

i
m − µj)(y

i
m − µj)

T

)

×

(

(ν0 +D + 1) +

M
∑

m=1

nm
∑

i=1

EZ{z
m
ij }

)−1

.

(36)

The resulting mapping algorithm is obtained by replacing the
computations ofµ(t+1)

j andΣ
(t+1)
j in Algorithm 1 with the

expressions in (35) and (36).

V. VBEM FOR ESTIMATION OF APOISSON PROCESS

Similarly to the EM approach, when applying VBEM to the
mapping problem, the unknown data associations need to be
considered while estimating the parameters of the map. We
employ the mean field approximation [17] and thus assume
that the joint posterior density of the parameters,θ, and the
associations,Z, can be factorized according to

p(θ,Z|Y,X) ≈ qθ(θ)qz(Z). (37)

We then wish to find distributionsqθ(θ) and qz(Z) to make
the approximation as good as possible in the ”exclusive”
Kullback-Leibler sense [25], [26]. More specifically, the aim
is to minimize

KL(qθ(θ)qz(Z)||p(θ,Z|Y,X)) =
∫

qθ(θ)qz(Z) log
qθ(θ)qz(Z)

p(θ,Z|Y,X)
dθdZ.

(38)

The optimization is performed iteratively by minimizing
(38) with respect toqz(Z) while keepingqθ(θ) fixed, and
then repeating the procedure in order to find a newqθ(θ)
based on the currentqz(Z). One can show that the best fit for
the distribution of the associations is [17]

qz(Z) ∝ exp

(
∫

qθ(θ) log p(Y,Z, θ|X)dθ

)

= exp(Eθ{log p(Y,Z, θ|X)}) .

(39)

Similarly, the distribution over the parameters can be found as

qθ(θ) ∝ exp

(
∫

qz(Z) log p(Y,Z, θ|X)dZ

)

= exp(EZ{log p(Y,Z, θ|X)}) .

(40)

The joint density in (39) and (40) can be expresses as

p(Y,Z, θ|X) = p(Y,Z|θ,X)p(θ), (41)

wherep(Y,Z|θ,X) is factorized according to Section III-A.
Each iteration of the VBEM algorithm thus consists of the
computations of (39) and (40).

A. Approximations

A key property of the VBEM framework is that it provides
tractable solutions for models that belong to the conjugate-
exponential family [23], [27]. These models satisfy two condi-
tions; the complete data likelihood belongs to the exponential
family while the prior for the parameters is conjugate to the

likelihood. In this paper, this holds forλc andωj . However,
the expressions for the means and the covariances are more
complicated due to the presence of the measurement noise.

Considering a Normal-Inverse-Wishart prior for the land-
mark mean and covariance

p(µj ,Σj) =NIW(µj ,Σj ;m0, κ0,S0, ν0)

,N (µj ;m0, κ
−1
0 Σj)IW(Σj ;S0, ν0)

∝|Σj |
−(ν0+D+2)/2exp

(

−
1

2
Tr
(

S0Σ
−1
j

)

)

exp
(

−
κ0
2
(µj −m0)

TΣ−1
j (µj −m0)

)

. (42)

The measurement model is Gaussian, but with a varying co-
varianceΣj + R̃(µj ,xm), depending on from which position
the landmark is observed. Using the measurement model (16),
the single-measurement likelihood is

p(yi
m|µj ,Σj) = N

(

yi
m;µj ,Σj + R̃(µj ,xm)

)

∝ |Σj + R̃(µj ,xm)|−1/2

× exp

(

−
1

2
(yi

m − µj)
T
(

Σj + R̃(µj ,xm)
)−1

(yi
m − µj)

)

.

(43)

Hence, if R̃(µj ,xm) 6= 0, the resulting posterior density,
p(µj ,Σj |y

i
m) ∝ p(yi

m|µj ,Σj)p(µj ,Σj), is no longer a
Normal-Inverse-Wishart distribution. Instead the functional
form of the distribution changes between iterations implying
that the model does not belong to the conjugate-exponential
family. To overcome this issue, there are approximations that
can be used.

In this paper, we employ two strategies for dealing with
the non-conjugate-exponential model. First, we constrainthe
variational distribution ofΣj to qΣ(Σj) = δ(Σj − Σ̂j)
implying that the uncertainties in the covariance estimateis
ignored and the computation of̂Σj is performed according to
EM [28]. Second, forµj we adopt the Laplace approximation
as suggested in [29]. That is, definingf(µj) = log qµ(µj),
the second order Taylor expansion off is

f(µj) ≈f(µ̂j) +∇f(µ̂j)(µj − µ̂j)

+
1

2
(µj − µ̂j)

T∇2f(µ̂j)(µj − µ̂j), (44)

where∇f(µ̂j) denotes the gradient off , evaluated atµj =
µ̂j . Similarly, ∇2f(µ̂j) is the Hessian off . By setting µ̂j

equal to the MAP estimate ofµj , ∇f(µ̂) = 0. Thus,

f(µj) ≈ f(µ̂j) +
1

2
(µj − µ̂j)

T∇2f(µ̂j)(µj − µ̂j) (45)

and the variational distribution ofµj is

qµ(µj) = ef(µj) ≈ N
(

µj;mj ,Pj

)

, (46)

where the mean and covariance are given by

mj = µ̂j (47)

Pj = −[∇2f(µ̂j)]
−1. (48)

Using this approximation, the resulting variational distribution
of the mean turns out to be a Gaussian density even if no
Gaussian assumption is made.



B. Resulting algorithm

Each iteration in the VBEM algorithm consists of the
computation ofqz(Z) and qθ(θ) according to (39) and (40),
respectively. In order to computeqz(Z), we introduceπm

ij

as the probability that measurementyi
m was generated by

landmarkj 6= 0, or is clutter if j = 0. Then, the distribution
of Z can be written as

qz(Z) =
M
∏

m=1

nm
∏

i=1

(πm
i0 )

zm
i0

K
∏

j=1

(

πm
ij

)zm
ij . (49)

Since each measurementyi
m either originates from one of the

landmarks or is a clutter detection, the probabilitiesπm
ij must

satisfy

πm
i0 +

K
∑

j=1

πm
ij = 1. (50)

To be able to compute qz(Z) according to
(39), a distribution qθ(θ) over the parameters is
required. Using the approximations in Section V-A,
qθ(θ) = qλ(λc)

∏K
j=1 qω(ωj)qµ(µj)qΣ(Σj) where

qω(ωj) = GAM(ωj ; aj , bj) (51)

qµ(µj) = N (µj ;mj ,Pj) (52)

qΣ(Σj) = δ(Σj − Σ̂j) (53)

qλ(λc) = GAM(λc; c, d). (54)

Based on these models, in Appendix B it is shown that the
association probabilities are

πm
i0 ∝ exp

(

ψ(c)
)(

V d
)−1

(55)

πm
ij ∝

b−1
j |Σ̂j + R̃jm|−1/2

(2π)D/2

× exp

(

ψ(aj)−
1

2
Tr
(

(Σ̂j + R̃jm)−1Pj

)

)

× exp

(

−
1

2
(yi

m −mj)
T
(

Σ̂j + R̃jm

)−1

(yi
m −mj)

)

(56)

where, similar as before,D is the dimension ofµj .
Based on the computedqz(Z), Appendix B derivesqθ(θ)

based on (40). The variational distributions of the parameters
are given by (51) – (54) where the hyperparameters forωj

andλj are updated according to

aj = a0 +
M
∑

m=1

nm
∑

i=1

πm
ij (57)

bj = b0 +
M
∑

m=1

f(µj ,xm) (58)

c = c0 +
M
∑

m=1

nm
∑

i=1

πm
i0 (59)

d = d0 +M, (60)

wherea0 and b0 are chosen such thatGAM(ωj ; a0, b0) has
most its mass close to zero, indicating that the weights are

likely to be very small. The mean and covariance of the
distributionN (µj ;mj,Pj) are:

mj =

(

M
∑

m=1

nm
∑

i=1

πm
ij

(

Σj + R̃(µj ,xm)
)−1

)−1

×
M
∑

m=1

nm
∑

i=1

πm
ij

(

Σj + R̃(µj ,xm)
)−1

yi
m (61)

Pj =

(

M
∑

m=1

nm
∑

i=1

πm
ij

(

Σj + R̃(µj ,xm)
)−1

)−1

. (62)

It is worth noting that the expression in (61) is identical to
that in (30), i.e., the mean in the EM mapping solution. The
derived EM algorithm will be useful also forΣj since the
variational distribution of the covariance matrix is constrained
to qΣ(Σj) = δ(Σj − Σ̂j). Hence, the MAP estimatêΣj can
be found using the same gradient-based approach as in (32) –
(34).

For clarity, a summary of the resulting mapping algorithm is
presented in Algorithm 2. The complexity of the algorithm is
bilinear in the number of landmarks,K, and the total number
of measurements,N =

∑M
m=1 nm, i.e.,O(KN). However, an

advantage with the method is that a large mapping problem
can be divided into several local, and thus smaller, mapping
problems, something that will reduce the complexity.

Algorithm 2 Mapping solution using VBEM

Require: Data,Y = [Y1, . . . ,YM ]
Sensor poses,X = [x1, . . . ,xM ]

1: Set an upper bound on the number of clusters,K
2: Set priors on the parameters

• ωj ∼ GAM(ωj; a0, b0), for j = 1, . . . ,K
• µj ∼ N (µj ;m

j
0, κ

−1
0 Σj), for j = 1, . . . ,K

wheremj
0 ∼ U

• Σj ∼ IW(Σj ; S0, ν0), for j = 1, . . . ,K
• λc ∼ GAM (λc; c0, d0)

3: while Not convergeddo
4: Compute qz(Z):
5: for m = 1 :M do
6: for i = 1 : nm do
7: Computeπm

i0 according to (55)
8: Computeπm

ij , for j = 1 . . .K, according to (56)
9: end for

10: end for
11: Normalize the association probabilities, (50).
12: Compute qθ(θ):
13: Updateaj andbj , for j = 1, . . . ,K,

according to (57) and (58)
14: Updatec andd, according to (59) and (60)
15: Updatemj andPj , for j = 1 . . .K,

according to (61) and (62)
16: Perform a gradient-based optimization forL̂j , j =

1 . . .K, using the objective function in (33) and the
gradient in (34).

17: ComputeΣ̂j = L̂jL̂
T
j , for j = 1 . . .K

18: end while



C. Negligible measurement noise

As discussed in Section IV-C, there are situations when the
measurement noise can be considered negligible. There might
also be scenarios where the Laplace and Dirac approximations
introduce errors that are considered worse than the achieved
benefits. By ignoring the measurement noise, the model be-
longs to the conjugate-exponential family and, as shown in
appendix C, the joint variational distribution ofµj andΣj is
Normal-Inverse-Wishart. That is,

qµ,Σ(µj ,Σj) = NIW(µj ,Σj ;mj, κj ,Sj , νj), (63)

where the hyperparameters are given by

mj =

M
∑

m=1

nm
∑

i=1

πm
ij y

i
m

(

M
∑

m=1

nm
∑

i=1

πm
ij

)−1

(64)

κj =

M
∑

m=1

nm
∑

i=1

πm
ij (65)

Sj = S0 +

M
∑

m=1

nm
∑

i=1

πm
ij

(

yi
m(yi

m)T −mjm
T
j

)

(66)

νj = ν0 + 1 +

M
∑

m=1

nm
∑

i=1

πm
ij . (67)

With this description of the landmarks, the probabilities
for the measurement to landmark associations change and are
given as

πm
ij ∝

b−1
j |Sj |−1/2

2(2π)D/2

× exp(ψ(aj)) exp

(

−1

2
νj(y

i
m −mj)

TS−1
j (yi

m −mj)

)

× exp

(

D
∑

k=1

ψ

(

νj −D − k

2

)

)

exp

(

−D

κj

)

.

(68)

The probability that a measurement is clutter is still given
asπm

i0 ∝ exp(ψ(c))(V d)−1, but it is worth noticing that the
normalization changes due to the change inπm

ij .

VI. EVALUATION

In this section, the proposed VBEM mapping algorithm is
evaluated on two scenarios. First, we consider a simulated
scenario where the sensor observes the environment while
traveling two laps on a track. Second, we apply the mapping
algorithm on a set of real radar data. As a reference, the
performance is compared to that of an iterative extended object
PHD mapping algorithm [13], [30] and the EM mapping
algorithm derived in Section IV.

A. Implementation details

Here we give a short summary of the chosen settings for
the methods in the evaluation.

1) VBEM: The VBEM algorithm is initiated with K = 300
landmarks. The prior landmark means,m0, are drawn from a
uniform distribution over the map while the other parameters
are set toS0 = 10 · I2×2, ν0 = 5, a0 = 0.1, b0 = 0.2,
c0 = 0.05 and d0 = 0.1. These values result in a priori
expectations/variancesE{Σj} = 5 · I2×2, E{ωj} = 0.5,
Var{ωj} = 2.5, E{λc} = 0.5 and Var{λc} = 5. Note that
the parametersa0 andb0 are chosen such that the weights are
likely to be very small.

2) EM: Since the EM algorithm is not able to estimate the
number of landmarks, we assume that some other algorithm
provides EM with a perfect estimate ofK such that the
algorithm can be initiated with K=20, i.e. the true number
of landmarks, for the simulated scenario. Clearly, this is an
idealized and slightly unrealistic assumption but we arguethat
it is interesting to compare the VBEM solution with what
should be the best possible version of EM. The prior parameter
values are set to the same values as for VBEM.

3) PHD: To consider extended landmarks, we use the PHD
algorithm in [13] but constrain the objects to be static. In
addition, the prediction of a static map and the effect of the
limited field of view in the update step follow the mapping
ideas in [30]. The PHD algorithm runs with a known clutter
intensity and hence,λc does not need to be estimated. The
intensity function is represented by a Gaussian mixture where
the maximum number of components is set toNmax = 300.
To keep the number of components belowNmax, a merge
and prune step is included in the algorithm. In the filter,
the probability of survival isPs = 1 and the probability of
detection isPd = 0.95. The birth intensity is modelled by
a Gaussian component with weightωb = 0.5 and the mean
at the center of the field of view. The extension parameters,
includinga andb, are set to the same values as for the VBEM
and EM algorithms.

B. Simulated data

In the simulated scenario, the sensor travels two laps on the
track depicted in Figure 2. There areK = 20 landmarks along

East [m]
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N
or

th
 [m

]
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Sensor trajectory
Landmarks

Figure 2: The simulated track and the positions of the land-
marks.

the track, each described by a position, a covariance matrix
and a weight. In this example,ωj ∈ [0.5, 2]. There is also a
uniform clutter intensity resulting inλc = ρV expected clutter



measurements at each time instant. To start with,λc = 2. The
data is generated assuming an ideal field of view with a range
of 60 m and angle± 30 degrees, such that

f(µj ,xk) =

{

1, if µj is within the field of view
0, otherwise.

(69)

The measurement noise covariance is set toRω =
diag([σ2

r , σ
2
φ]) whereσr = 0.3 m andσφ = 3◦.

1) Results: One advantage with VBEM for this problem
is the possibility to initiate the algorithm with a number of
landmarks that is known to be much larger than the true
number and, as seen in Figure 3, most of the weights go
towards zero over time. This is a consequence from the
optimization, where the Gaussian components not needed to
describe the joint density will get negligible weights and thus
can be removed from the map. The number of iterations until
convergence differs between the solutions, but for illustration,
30 iterations are executed for both EM and VBEM.
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Figure 3: The number of landmarks with a weightω̂j =
aj/bj > 0.01.

To evaluate the ability to estimate all the properties of the
landmarks, i.e., position, weight and covariance, we use the
squared L2 norm, sometimes also referred to as the integral
squared error. For two functionsf1(x) andf2(x), the squared
L2 norm is defined as

∥

∥f1 − f2
∥

∥

2

2
=

∫

(

f1(x)− f2(x)
)2

dx. (70)

In [31], it is shown that for Gaussian mixtures, (70) has a
simple and exact form that can be used here. In addition, we
study how accurately the different methods estimate the clutter
intensity. The resulting squared L2 norm and the estimatedλc
are depicted in Figures 4 and 5, respectively.

To see how the estimation of the landmark parameters is
affected by the clutter level, we run the algorithms withλc =
[1, 10, 20, 35, 50]. The squared L2 norm after 30 iterations, as
a function of the increasing clutter intensity, is illustrated in
Figure 6.

Comparing the two VBEM solutions, incorporation of the
measurement noise results in a better description, in squared
L2 sense, of the measurement intensity. However, by neglect-
ing the noise, the estimated number of landmarks is more
accurate. Moreover, despite using the same models as VBEM
and being initialized with the true number of landmarks,
the EM algorithms do not perform as well as their VBEM
counterparts. It is worth noting that a considerable weakness
with the PHD mapping algorithm is that it may declare a
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Figure 4: The squared L2 norm as a function of iteration
number for EM and VBEM, and as a function of
time step for PHD.
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Figure 5: The expected number of clutter detections for the
VBEM and EM algorithms. The trueλc = 2.

landmark as lost (non-existing) if it is not detected at a few
time instances. This is not an issue in the batch solutions where
all data is considered in each iteration. Finally, by increasing
the clutter intensity, we show that the proposed VBEM method
manage to extract the landmarks even in dense clutter.

C. Real radar data

In this section, we apply the VBEM, EM and PHD mapping
algorithms to a set of real radar data from a short road segment.
Figure 7 shows an intensity plot of the collected data, together
with the sensor trajectory, in a north-east coordinate frame.

Since the clutter intensity, needed in the PHD algorithm,
and the number of landmarks, needed in the EM algorithm,
are unknown when using real data, we use the estimatedλc
and K provided by the VBEM algorithm. In reality, there
is no ground truth available showing what a radar map of
an area should look like and consequently, when running a
mapping algorithm on real data, it is not possible to perform
evaluation in the same manner as for the simulated example.
Instead, we evaluate the map regarding how well it describes
data by computing the log likelihood. The log likelihoods for
the three methods are shown in Figure 8, where it is clear that
the proposed VBEM algorithm provides the best description
of data in this scenario.

For illustration, Figure 9 and 10 show examples of the maps
obtained using VBEM and PHD, respectively. Comparing the
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Figure 6: The squared L2 norm after 30 iterations as a func-
tion of the expected number of clutter detection at
each time instant.
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Figure 7: The intensity of radar detections together with the
sensor trajectory. The intensity describes the number
of detections in the data set within an area of 1 m2.

figures we note that some landmarks in the VBEM map have
been clustered in the PHD map, resulting in a less detailed
map.
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Figure 8: The log likelihood as a function of iteration number
for VBEM and EM, and as a function of time step
for PHD.
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Figure 9: The resulting map using VBEM.
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Figure 10: The resulting map using PHD.

VII. C ONCLUSIONS

In this paper we present a method for estimating radar maps.
The proposed map consists of a constant clutter level and an
unknown number of landmarks. Each landmark is modelled
by a weighted Gaussian component with a mean position, a
covariance matrix that captures the extension and a weight
corresponding to the expected number of measurements from
the landmark.

We promote a solution that estimates the model parameters
using VBEM. The result is an efficient batch solution that
enables joint estimation of the number of landmarks, their
parameters and the clutter intensity. In the evaluation, the
proposed VBEM algorithm is shown to provide a better
description of the world compared to the corresponding EM
algorithm (with given number of landmarks) and a PHD
mapping algorithm (with given clutter intensity).

APPENDIX

In the appendix the derivations of the expressions needed
to perform mapping using EM and VBEM are summarized.

A. Derivation of EM solution

This section provides details on the derivations needed for
the gradient descent performed to find the landmark covari-
ances in the EM mapping algorithm. The procedure follows
from [32].



The gradient of (33) is found by computing the gradients of
log |LjL

T
j + R̃jm| and (µj − yi

m)T (LjL
T
j + R̃jm)−1(µj −

yi
m). First, we factorize the measurement noise covariance in

the same manner asΣj , that is, R̃jm = LR(m)L
T
R(m), and

introduce

X̃ = [Lj LR(m)]
T , C = (yi

m − µj)(y
i
m − µj)

T . (71)

Given these matrices, and settingA to the identity matrix, the
following relations hold

Tr
(

(X̃TAX̃)−1C
)

= (yi
m − µj)

T (Σj + R̃)−1(yi
m − µj)

log |X̃TAX̃| = log |Σj + R̃jm|
(72)

For the left hand sides of (72), the derivatives with respectto
the matrixX can can found in tables. Then, since for am×n
matrix, the derivative of a scalar is

∂f(X̃)

∂X̃
=


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
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





, (73)

the derivatives with respect toLj can be found as a part of
the derivative with respect tõX.

B. Derivation of VBEM solution

This section presents the details of the derivations of the
VBEM mapping solution. The derivation starts with the vari-
ational distributionqz(Z) and continues withqθ(θ).

1) Computation ofqz(Z): To find the distribution over
the association variables, we compute the expectation of
log p(θ,Z,Y) with respect toθ. That is,

log qz(Z) = Eθ

{

log p(θ,Z,Y)
}

=Eθ

{

M
∑

m=1

log p(Ym|Zm, θ) + logPr{Zm|nm, θ}
}

+ C

=

M
∑

m=1

nm
∑

i=1

zmi0

(

Eλ{logλc} − logV
)

−
K
∑

j=1

zmij

(D

2
log 2π +

1

2
EΣ

{

log |Σj + R̃|
}

− Eω{logωj}

+
1

2
Eµ,Σ

{

(yi
m − µj)

T (Σj + R̃)−1(yi
m − µj)

})

+ C

(74)

where all the terms that not includeZ are gathered in the
constantC.

To be able to compute the probabilitiesπm
ij ,and thus the

distribution of the associations, we need to compute the
expectations involved in (74). First, considering that thevari-
ational distribution ofΣj is qΣ(Σj) = δ(Σj − Sj) and that
∫

f(x)δ(x − x̂)dx = f(x̂):

EΣ

{

log |Σj + R̃(µj ,xm)|
}

= log |Sj + R̃(µj ,xm)|. (75)

The expectation of the logarithm ofω ∼ GAM(a, b) is [24]

Eω{logω} = ψ(a)− log b, (76)

whereψ denotes the digamma function. This expression is
applicable to bothωj and λc. Finally, we wish to find the
expectation of

Eµ,Σ

{

(yi
m − µj)

T
(

Σj + R̃(µj ,xm

)−1

(yi
m − µj)

}

. (77)

To perform the derivations, we use the following relations

xTAx = Tr(xTAx)

Tr(xTAx) = Tr(AxxT )

Tr(A+B) = Tr(A) + Tr(B).

Using these rules, one can rewrite (77) as

Tr
(

∫

(

Σ̂j + R̃(µj ,xm

)−1

∫

(yi
m − µj)(y

i
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T q(µj)dµjq(Σj)dΣj

)

(78)

Taking a look at the integral overµj ∼ N (µj ;mj ,Pj):
∫

(yi
m − µj)(y

i
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T q(µj)dµj

= Eµ

{

(yi
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}
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mµT

j − µj(y
i
m)T + µjµ

T
j

}

= yi
m(yi

m)T − yi
mmT

j −mj(y
i
m)T + (Pj +mjm

T
j )

= (yi
m −mj)(y

i
m −mj)

T +Pj

(79)

Inserting (79) into (78), and again making use of that
∫

f(x)δ(x − x̂)dx = f(x̂), the sought expectation is found
as

Eµ,Σ

{
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T
(

Σj + R̃(µj ,xm

)−1
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}

=Tr
(
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[

(yi
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)

=(yi
m −mj)

T
(
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(yi
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+ Tr
(
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j Pj

)

(80)

2) Computation ofqθ(θ): Given qz(Z), we now want to
find the distribution of the parametersθ. Starting from the
method of variational EM and including the factorization of
the joint density

log qθ(θ) = EZ

{

log p(θ,Z,Y)
}

= EZ

{

M
∑

m=1

log p(Ym|Zm, θ) + logPr{Zm|nm, θ}+ log p(θ)
}

= EZ

{

M
∑

m=1

log p(Ym|Zm, θ) + logPr{Zm|nm, θ}+ log p(λc)

+
K
∑

j=1

log p(ωj) +
K
∑

j=1

log p(µj) +
K
∑

j=1

log p(Σj)
}

. (81)



Starting with the clutter parameter, we consider all terms
that depend onλc:

logqλ(λc) =

M
∑

m=1

(

nm
∑

i=1

πm
i0 log λc − λc

)

+ log p(λc) + C

= logλc

(

c0 − 1 +

M
∑

m=1

nm
∑

i=1

πm
i0

)

− (M + d0)λc + C.

(82)

Ignoring the constant term, the density can be found as

qλ(λc) ∝ λ
(c0−1+

∑
M
m=1

∑nm
i=1

πm
i0)

c e−(M+d0)λc (83)

which can be identified as a Gamma distribution with param-
eters according to

qλ(λc) = GAM(λc; c0 +
M
∑

m=1

nm
∑

i=1

πm
i0 , d0 +M) (84)

The Gamma prior for the weights implies that similar deriva-
tions provide us withq(ωj).

To find qµ(µj) we gather the terms inlog qµ(θ) that include
µj . That is,

log qµ(µj) = C+

M
∑

m=1

nm
∑

i=1

πm
ij

(

−
1

2
(yi

m − µj)
T
(

Σj + R̃jm

)−1

(yi
m − µj)

)

.

(85)

Here, the terms whereµj enters as a part of the field of
view function or the noise covariance are ignored due to
the assumptions in Section III-C. According to the Laplace
approximation in (46),

qµ(µj) ≈ N (µj ; µ̂j ,−∇2[log q(µ̂j)]
−1) (86)

where µ̂j is the MAP estimate ofµj that is obtained using
EM. The covariancePj = −∇2[log qµ(µ̂j)]

−1 is found by
deriving (85) twice with respect toµj .

C. VBEM mapping without noise

Describing the mean and covariance by a Normal-Inverse-
Wishart distribution,µj andΣj are dependent. Consequently,
the derivations ofqµ|Σ(µj |Σj) andqΣ(Σj) start from the joint
distribution,

log qµ,Σ(µj ,Σj) =

M
∑

m=1

nm
∑

i=1

E{zmij }
(

−
1

2
log |Σj |

−
1

2
(yi

m − µj)
TΣ−1

j (yi
m − µj)

)

+ log p(Σj) + C.

(87)

Starting with the means, sincelog qµ,Σ(µj ,Σj) =
log qµ|Σ(µj |Σj) + log qΣ(Σj), the distributionqµ|Σ(µj |Σj)
is found by collecting the terms in (87) that depend onµj .

logqµ|Σ(µj |Σj) =

=
M
∑
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nm
∑

i=1

E{zmij }
(

−
1

2
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TΣ−1

j (yi
m − µj)

)

+ C,

(88)

which can be shown to be

qµ|Σ(µj |Σj) = N
(

µj ;mj , κ
−1
j Σj

)

, (89)

where

mj =
M
∑

m=1
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i
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∑
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nm
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(90)

κj =
M
∑

m=1

nm
∑

i=1

E{zmij }. (91)

For Σj , the variational distribution is found by computing
log qΣ(Σj) = log qµ,Σ(µj ,Σj) − log qµ|Σ(µj |Σj) using that
xTAx = Tr(xTAx) = Tr(xxTA) and the expressions in (87)
and (89):

logqΣ(Σj) = log qµ,Σ(µj ,Σj)− log qµ|Σ(µj|Σj)

= log |Σj |

(

−
ν0 +D +
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j

)

+ C,

(92)

implying that

qΣ(Σj) = IW (Σj ;Sj , νj) , (93)

with parameters given by

Sj = S0 +

M
∑

m=1

nm
∑

i=1

E{zmij }
(

yi
m(yi

m)T −mjm
T
j

)

(94)

νj = ν0 + 1 +

M
∑

m=1

nm
∑

i=1

E{zmij }. (95)
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