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Variational Bayesian Expectation Maximization
For Radar Map Estimation

Malin Lundgren, Lennart Svensson, Lars Hammarstrand

Abstract—For self-localization, a detailed and reliable map [8], [9]. Having access to accurate reference data, theiposi
of the environment can be used to relate sensor data to static yncertainties become negligible and thus, in contrast to a

features with known locations. This paper presents a methodbr
construction of detailed radar maps that describe the expeed in-
tensity of detections. Specifically, the measurements areadelled
by an inhomogeneous Poisson process with a spatial intensit
function given by the sum of a constant clutter level and an un
normalized Gaussian mixture. A substantial difficulty with radar
mapping is the presence of data association uncertaintiese., the
unknown associations between measurements and landmarkis.
this paper, the association variables are introduced as hitken
variables in a variational Bayesian expectation maximizabn
(VBEM) framework, resulting in a computationally efficient
mapping algorithm that enables a joint estimation of the nunber
of landmarks and their parameters.

I. INTRODUCTION

SLAM problem, the focus can be strictly on map construction.
Radar has become a central sensor in many automotive
applications, due to its ability to measure the distanceglean
and relative speed to surrounding objects, and for its tebus
ness to different weather conditions. The constructioradfr
maps has been studied in [10] and [11] where the probability
hypothesis density (PHD) filter is utilized in order to estim
a map of the static environment. Common for many existing
mapping and SLAM algorithms is that they rely on a point
target assumption for the landmarks. However, when obisgrvi
the nearby environment with a radar, many landmarks might
give rise to multiple detections each scan and are thusrbette
modelled as extended objects [12]-[16]. From these papers,
it is clear that the unknown associations between objeals an

Many al_Jtomotlve systems require a _9°9d underStand'Hgtections, i.e., the data association uncertainties, iajor
of the environment and the nearby traffic situation. To ga%allenge

information about the surroundings, the vehicle is equippe I
with a set of onboard sensors, such as cameras, radars éé‘@

internal sensors [1]. In recent years, a lot of researchdbas
shifted towards self-driving vehicles and that has givee tb

this paper, the aim is to estimate a map of the world
een by a radar, i.e., a map not solely consisting of point
landmarks. The focus is on offline estimation and, in comtras
to SLAM, we condition on the vehicle trajectory. The pro-

new problems, which resemble those traditionally studied bosed radar mapping algorithm makes use of the Variational

robotics. For example, self-driving vehicles require deth

information about the world in order to localize itself arad t
plan its path. Consequently, there is a need for other typg

Bayesian Expectation Maximization (VBEM) algorithm [17]
to jointly solve the mapping and the data association prob-
s. Using VBEM we iteratively compute an approximate

of environment descriptions than provided by traditiorzd distribution over the map given the distribution over théada

maps.

In robotics, maps are often constructed as a robot navigajes,,

associations, and vice versa. This is fundamentally differ
pared to common SLAM algorithms that rely on a front-

in an unknown environment using a set of onboard SENSO&hg processing step to estimate the data associations.iAlso

This problem is referred to as simultaneous localizatiod Aontrast to LMB-SLAM [5] and the PHD filter solutions in
mapping (SLAM) and has received considerable attention fTO], [11], the proposed algorithm does not rely on recsiv

the literature [2], [3]. Examples of SLAM algorithms are EKF

SLAM, FastSLAM [4], LMB-SLAM [5] and Graph-SLAM
[6], [7], where the latter has emerged as the algorithm
choice in many contexts. To enable self-driving vehicles

open traffic, the requirements on the localization perfaroea object that, similar as in [13], [14]

approximations, but instead makes use of measurements from
all times in order to determine the data association hysethe
_%d estimate the map parameters.

N Each landmark in the map is modelled as an extended
is represented by a

are very strict. One way to obtain the needed accuracy is\ﬂ%ighted Gaussian density. This model makes the mapping

construct maps for localization using data collected byseen

mounted on vehicles equipped with reference position syste
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problem closely related to that of Gaussian mixture moaglli
which is a well-studied problem in the literature. For Géass
mixtures it is common to employ iterative batch algorithms,
such as Expectation Maximization (EM) [18] to deal with
the data association uncertainties. The same concept & use
in the probabilistic multiple hypotheses tracking (PMHT)
algorithm [19], [20] which relies on EM to perform object
tracking. A clear drawback with EM in these applications is
that the number of parameters, i.e., the number of Gaussian
components in a mixture or the number of tracked objects,



is assumed to be known. In VBEM on the other hand, tHandmarks in the map, and using the above notation, the sough

number of mixture components can be set large and, throygdrameter vectof is

optimization, the components that are not needed in order

to model the observed mixture will get insignificant weights

[21]. Thus, VBEM automatically handles the model selection is worth to emphasize that the number of landmalksand

problem. thus the number of parameters, is unknown and needs to be
Inspired by the Gaussian mixture literature, we derive radestimated based on data. A detailed mathematical desuripti

mapping solutions using both VBEM and EM, where the lattexf the measurement model (the likelihood function) is giiren

is mainly used as a reference in the evaluation. Despite tBection IlI-A, but in the remainder of this section we elater

similarities, there are important differences betweenssmm on the underlying model assumptions and introduce some key

mixture modelling and the studied radar mapping problemotation.

For example, we consider data collected by a sensor with

a limited field of view, we get multiple detections at each

discrete time instant and there are clutter measuremetttgin

0:[iu’15"'5/“"K?217"'72K7w17"'7wKa)\C]' (1)

data set. Results on both a simulated example and on real data ®

show that the proposed VBEM mapping algorithm enables Ao = pV

joint estimation of the number of landmarks, their paramsete

and the clutter intensity. ((msp %
The paper is organized as follows. In Section II, the co

sidered problem is described and the models used for the data
and for the map are presented. Section Il provides a deeper ()

discussion of the chosen models and the difficulties assatia @
with the mapping problem. It also motivates the choice of
methods. The derived solutions using EM and VBEM aréV [Mpzjij]

presented in Section IV and V, respectively, together whibrs
theoretical backgrounds of the methods. In Section VI, the
algorithms are evaluated. Finally, in Section VII, the preed E
work is summarized together with conclusions.

Figure 1: Overview of the considered problem.
Il. PROBLEM FORMULATION

The objective in this paper is to find a method for estimating What the radar observes depends on its position and heading
a map based on detections provided by radars mounted giyle, i.e., its pose, since the radar observations desthid
a moving vehicle. To limit the problem to map estimationielative distance between the sensor and a landmark. The
the sensor pose is assumed known, e.g., given by an accusai§sor pose at time is denoted by
reference system. The purpose of the map is not to descebe th p
physical environment, or what kind of objects that are prgse Xp = [ ] ,
but the world as seen by the radar. In other words, we aim
to describe a probabilistic radar sensor model as a funofionwhere x; = [zF,2N]7 is the position of the sensor in the
the sensor pose. The remainder of this section describes tloeth-east coordinate frame, an{f is the heading angle. To
studied problem in more detail. limit the problem to map building, the position and heading
The measurements are modelled by an inhomogeneaugle of the sensor are assumed to be known at each time
Poisson process, which is characterized using a map in B-noibstant. The (known) trajectory from time 1 ff is denoted
east coordinate frame. Consequently, the number of detectiby X = [x;,...,x,/]. The sensor has a field of view described
at each time instant is given by a Poisson distribution afy a known functionf (s, xx) which is defined such that
the location of measurements is described by an intensihe expected number of detectionsdss; for a landmark
function over the observed space. The spatial distribugfcea  within the field of view, and zero otherwise. Consequently, w
measurement is assumed to be the sum of a constant clutiescribe the field of view as a function of the vehicle poaitio
level and a Gaussian mixture, where each component in thg and the position of a landmar,., according to
mixture is referred to as a landmark. Based on these assump- . N . .
tions, each landmark in the map is modelled by a weight, f (u;, x;) :{ 3, gt#gr\l/\?isvt\a”thm the field of view 3)
wj, that corresponds to the expected number of detections ’ '
generated by landmark a mean positioru; = [E;, N;]T  where0 < o < 1. Similar to, e.g., [14], the field of view
and a covariance matrix:;, that define the distribution of function is thus assumed to be constant over each Gaussian.
the detections from the landmark. The clutter is described b Each measurement from the environmentis given as a range,
the intensity parametep, resulting in A\, = pV expected r, and an anglep, relative to the radar sensor. A measurement
number of clutter detections at each scan with a sensuoay either originate from a landmark or from clutter and our
whose observation volume 8. Assuming that there ar& final objective is to estimate the parameter vector in (1ljnfro

)



many such observations. Suppose that ilie measurement Or, using prior knowledge regardin@, the aim can be to
at timek is generated by landmark the observed range andfind the maximum a posteriori (MAP) or the minimum mean
angle are modelled as squared error (MMSE) estimate of the parameters

i _ P MAP _
[;ﬂ _ llt\,ui:idi X;Ck—”x“’ w, @ 0 arg rT;aXlogp(0|Y) (7)

k [ 73 J k k
OB (p(oY)) = [epolyIa0 (@)

whered; ~ N(0,X;) captures the extension of the landmark
and w;, ~ N(0,R,) is the measurement noise. Since th@here the posterior density(8|Y) o p(Y|0)p(0).
sensor pose is known, the measurements can be transformerhe main difficulty associated with the problem described

into the north-east coordinate frame, according to in Section Il, is that there are uncertainties in the data
4 i Teos (¢i n :c“”) associations. That is, the source of measurements is umknow
yi = [ f’E} =xh + 7 [ AR Tk ] (5) The association uncertainty makes direct computation ef th

YiN sin(¢y, + o)

likelihood in (6) and thus the posterior density in (7) andl (8
The complete set of data, collected during time steps very hard. By introducing a variabl®, that defines the data
and transformed into global coordinates, is denotedYby= associations, the likelihood can be expressed as
Y1, Yo, ..., Yyl whereY, = [yl,...,y7*]. It is assumed
t[hat detections fr]om moving obj[e(k:ts cankbé filtered out due to  P(Y16) = ZP(Y, ADES ZP(Y|Z’ 0)p(Z16), (9)
their velocity such that the considered data set only costai z z
detections from the static environment and clutter. Givem twhere bothp(Y|Z, 8) andp(Z|0) can be computed based on
data,Y, the aim in this paper is to estimate the parameteitse used models. However, even when marginalizing @er
in (1). As discussed in the introduction, the main difficultyhe likelihood is intractable since the number of assowiati
concerning this problem is the unknown data associations.hypotheses grows fast as the number of measurements and
potential sources increases.
A. Notation There are different mgth_ods t_hat can be_ used_ for handling
: . the unknown data associations in a Gaussian mixture context
In the paper we use the following notation: One approach is to employ a sampling-based method, such
« For brevity, in some equations we drop the dependengg Gibbs sampling [22], to generate samples from the joint
of p; andx,, in the notation for the measurement noisgensity (9, Z|Y). Since sampling from the joint density
and useR, = R(p;, Xm)- often is hard, a Gibbs sampler constructs samples from the
« N(x;m,P) is the normal (or Gaussian) probability dendensity by multiple draws from conditional distributions.
sity function of a random vectax € R” with meanm  More specifically, suppose that we want to draw sam-
and covariancé. ples from the joint density(X), whereX = !5{1, Ry
« IW(X;8,v) is the Inverse Wishart density function of arhen, thei:th sample is denote® = [x\" %),

o, X
. D . ™. - . R 1 ) N
random matrixX € S¢,, i.e., a positive definite matrix yhere eachz!’ is drawn from the conditional distribu-
with dimensionD x D. The parameters are a scallnq. OO ~(i)  =(i—1) ~(i—1)
. ion p(x:”|%x;", ..., %2, X:0 1 y...,Xn ). FoOr problems
matrix S and the degrees of freedarm involvin ] a lot of da%a ieﬁman association variabléw t
o GAM(z;a,b) is the Gamma probability density function g NN y

. method becomes impractical.
of a scalar variable: > 0. The parametera > 0 and An efficient method that circumvents the difficulties associ
b > 0 are called shape and rate parameters, respectivel

« ¢(x) denotes the digamma function, defined as th ?/edlwnh (a).'s th? E';{l Zlgonthm. EM.'S an |t$r;1t|ve method
derivative of the logarithm of the Gamma functibiiz). that in each iteration finds a point estimate of the pararaeter
and uses that to compute the expectation of the associations
The algorithm utilizes the logarithm of the complete data
I1l. M ODEL PROPERTIES AND SOLUTION STRATEGIES |ikelihood, i.e.,logp(Y,Z|@), which has a simple form for
In this section we discuss difficulties associated with tH®#any common models. In VBEM, which is a generalized
considered problem, and how these have been handledvétsion of EM, both the associations and the parameters are
related work, mainly on the topic of Gaussian mixture modelggated as random variables. In order to obtain a tractable
(GMM). More specifically, the focus is on data associatiogolution, the joint density is approximated by a factoiizat
uncertainties and how to deal with the unknown number pf0,Z|Y) ~ q¢(0)q.(Z) and the aim is to find densitigs (6)
landmarks. We also present a detailed description of the ug#d ¢.(Z) that make the approximation as good as possible
models and a derivation of key expressions needed for #ig], [22]-[24]. Thus, in VBEM, the inference problem is
solutions presented in the following sections. transformed into an optimization problem. A major advartag
When estimating some parametérbased on a set of data,with this formulation, compared to EM, is that the number
Y, a common strategy is to consider some optimality criteriof components in the Gaussian mixture does not need to
One aim can be to find the parameters that maximize the estimated before initialization. Instead, the number of
likelihood of the data components can be set much larger than the true number and
ML the prior on the mixture weight are chosen such that most
0™ = arg maxlogp(Y|0). (6) of its probability mass is close to zero. Then, through the



optimization, the components that are not needed in orderTo expres®(Y.,|Zn, 0, x.,,), we first recall that the available
model the observed mixture will get negligible weights. data set,Y, consists of a large number of measurement
In this paper we derive solutions to the mapping problemhere the noise contributions depend on the distances and
in Section Il using VBEM and EM. The motivation for usingangles between the sensor and the observed features. An
VBEM is the ability of the method to simultaneously estimatapproximation of the noise in the global coordinate fame is
the number of components in a mixture and their parameteobtained by the first order Taylor expansion of the nonlinear
In addition, the resulting algorithm is computationallfi@ént model in (5), with respect td; andw;,. That is
and straightforward to implement. The EM mapping algorithm

is derived in order to get a reference method and for the Vi =ty + dj + Tpg, %) Wi, (14)
possibility to incorporate parts of it into the VBEM solutio where
The remainder of this section considers model propertiels an oS ) s — %Pl sin )
approximations that enable the mapping solutions using EM'(u1, x;) = | . (M) Ik p"”’” (M)
and VBEM. ’ sin (/i) [y — x5 cos (fu,—3)
15)
o o This description provides a Gaussian approximation of the
A. Factorization of the complete data likelihood measurement noise in the global coordinate frame,
Both EM and VBEM make use of the logarithm of the i ~
complete data likelihoody(Y, Z|0), in order to estimate the Vi ™ N(“J" X+ R(“J"X’“>) (16)

parameters of .mterest. Since the_loggnthm Qf a prOduquuwhereR(uj, xi) = T(s;, Xk)RwFT(,u'j; x:). Based on (16),
a sum of logarithms, the expression is simplified whenewer tbl/e get

likelihood is a product of distributions, each with the peoly
that its logarithm is a simple function. In this section, we p(Y|Zm,0,x) =
show how the likelihood for the model in Section Il can be n., 1\ % K . o
factorized. <V) 11 (N(y:n;uj,zj + R(uj,xm))) 7 17)

To facilitate the derivations, the data associations are dei=1 j=1
scribed by_a matrixz,,, V\_/hlose eIements;}l are 1 if measure- By combining the expressions in (12), (13) and (17), we
menti at time stepm originates from componente [1, K], gptain
and O otherwise. The associatiafj = 1 denotes the event 1
that measurement is clutter. It is worth remembering thatp(Y .., Z,,|0,x,) = —|exp( — (A + Z f(u,,,xm)wr))
the Poisson model assumption allows several measurements Tm: T
to originate from the same landmark but, ignoring possibly ™= /y \zio K , . 2
unresolved landmarks, a measurement can be generated by ( () II (f(uj,xm)ij(.Y%; By, 25+ ij))

|4

most one landmark. Given data froM independent scans, =! j=1
the likelihood can be factorized according to (18)
M where the factol(\,,,)"™ = (Ac + >, f(Hy, X )y )™ WaS
p(Y,Z|6,X) = H (Y, Zn |0, X1m). (10) eliminated by noting that;? is 1 exactlyn,, times.

This factorized expression will be used as a starting point
in the derivations of the EM mapping algorithm in Section IV
%ned the VBEM counterpart in Section V.

m=1

Introducingn,,, as the number of associations at time step
i.e., the number of measurements, each factor in (10) can

written as )
B. Prior for the parameters
P(Ym, Zm |0, %) = To compute the posterior distribution of the parameters, we
P(YnlZim, 0, %1 )P{Z |0, %, } = need a prior density(8). It is assumed that the parameters
(Y| Zom, 0, %00 )PH{Zpy, 10 |0, X1 } = are independent before we observe any data, implying that
P(Ym|Z, 0, %0n)Pr{Zy [0, 0, X } Pr{n,|0,xm}. (11)

K K K
_ _ _ p(8) =p(Ao) [ pwj) [T o) [T 2(Z5),  (19)
Since the data is generated from a Poisson process, the j=1 j=1 j=1
probability of receivingn measurements is
A e~ Am

n!

where the individual priors are specified according to

(12) wj ~ GAM(ao,bo)
i~ u
Ej ~ IW(SQ, I/())
N N Ae ~ GAM(co,do).
P N o (T S A - - - :
H{Zn |7, 0, Xpn } = H (}\ ) H (}\7) . The reason for using a uniform prior over the map is that
m m no information regarding the landmark positions is avaddab
(13) priori we receive the observations. The Inverse-Wishadrpr

Pr{n|0,x,} =

3

where \,, = Ac + >, f(it,,Xm)w, iS the expected number
of measurements at time instant Using \,,,, we have

i=1 j=1



for 3, is chosen since it is conjugate to a Gaussian likelihood. For the model presented in Section I, and further discussed
Similarly, the choice of a Gamma prior fap; > 0 and in Section IlI-A, the auxiliary function is found as the expe

Ae > 0 is motivated by the fact that it is a conjugate priotation with respect t& of the logarithm of (10). That is,

to the Poisson distribution that is used to model the number

of detections. Q6|6 = E,{logp(Y,Z|6,X)|Y, 0" X}
M M K M
== Ae — Flps,xm)w; — log(n,,!)
C. Approximations mz:; rnZ:lj; ’ ’ mzzl
In each iteration of the proposed algorithms, the field of M nm . ,
view function, f(p1;,x,), and the measurement noise covari- Z Z [EZ{Zi0|Ya 6, X} (log A\, — log V)
5. m=1i=1

ance,R(u;,xn,), are assumed to be constants based on the
latest estimate of the landmark means. More specifically, at m ()

atest 0! CaU L NTE Y, 00, X (10 X

iterationt + 1, it is assumed thaf (p;,x,,) ~ f(ugt),xm) ; 24| Hlog fln; )

and thatR(p;, ) ~ R(u"”,x,,). The argument for this , N

simplification” is that both "the field of view function and +10gwj+1OgN(yzn;Njazj +R(l"’jvxm))):|' (23)
the noise covariance are much less informative regardiag th

parameters of the observed landmarks than the measurememiigen the prior in (19),

In addition, as the algorithm starts to converge, the eséitha

Ia(ndn;arks(r?ove very little in each iteration, implying that logp(8) = logp(\.)
t+1) o (t
A LV K (24)
+° (10gp(wj') +log p(pe;) + 1ogp(2j))-

—
IV. EM FOR ESTIMATION OF APOISSON PROCESS !

Often in the EM algorithm, the aim is to find the paramet IE (23) and (24), if not sooner, the benefit of the factorizati

o - . §h Section 111-A becomes clear since the expression to work
vectore that maximizes the likelihood(Y'|6). Howev_er, SINCE \ith becomes a sum where the association variables enter
we have defined a prior for the parameter vector, in this paqﬂearly. We now present the computations involved in the E
EM is employed to find a MAP estimate 6f Consequently,

the objective in this section is to perform the optimization and M steps using (23) and (24).

6 = arg maxlog p(Y|0) + log p(6). 20
g maxlogp(Y|6) + logp(6) ()A.Estep
As discussed in Section III-A, a direct computation of the | the E step of the algorithm, the expectation of the log-
likelihood, p(Y|8), is difficult when the data associations argelihood, with respect to the hidden variables, is coneplut
unknown. Instead, the maximization in EM is performed bpe to the form of the expression for the log-likelihood, e
iteratively finding a better parameter vector according to . enters linearly, it is enough to compute the expected value
of each association. More specifically, it is enough to commpu
01"+ = arg maxQ(0]0") +1ogp(6),  (21) P 4 g P

E{1Y. 0. X} =Pr{=f = 1[y},.0" x }. (25)
where 8 denotes the parameters from iteration and

Q(0]16Y) is referred to as the auxiliary function that is MaXEqr j £ 0 this probability can be expressed as

imized in the ML setting of EM. Given the sensor positions

X, Q is defined as Pr{z’f’? — 1]yl 00 x } -
(%] mo ) Am

Q(0/0'") = E,{logp(Y, Z|6,X)|Y,0" . X}. (22 N (vin 1 B0 4+ RS 300) ) F (1 )0

(26)

In (22), Z is called the hidden variable (or missing data)
which is a variable that, if it was known, would make thavhere [u\”, =" ] and A" are given by the parameter
problem simple. As stated in Section IIZ defines the vector from the last iteratiorg”. Similarly, for j = 0, i.e.,
associations between the data and the potential sourcae ofwhen the measurement is clutter,
measurements. _

Each iteration of the EM algorithm consists of two steps, PV{Z?S = 1|Y3m6’(t),xm} x AD V. (27)
called the expectation (E) step and the maximization (M)
step. To find a MAP estimate &, these steps are performedrhe normalization of the these probabilities follows
according to (22) and (21): from the assumption that each measurement either orig-

E: Determine the expectation of the log-likelihood witHnates fror_n_a Iandmar_lf,_ or is due to clutter. _Thus,
respect toZ. the association probabilities sum to one according to

M:  Maximize Q(0|0") + log p(8) with respect tof.  >_; PV{ZZ-L = 1|Ym70(t)7xm} =1



B. M step

In the M step, the aim is to find the parameter ve@dr V)
that maximizes the auxiliary function. Far;, u; and A, the

sought values are obtained using the straightforward aghro

of setting the first order derivative to zero, i.e.,

0

5 (@(616%) +1og(6)) =0 (28)

and solve forg;. This way, the new parameter values foy,
p; and A, are given by:

(ao—l)Jer LM Ey {z }

W = (29)
b() + Zm:l f(y’jv Xm)
) M nn, S\t
t+1
wj (Z >ty (2 + Rny, xm) )
m=1 i=1
M nmg, _ -1
> Zw;;(zj +R(,,Lj,xm)) yi  (30)
m=1 i=1
)\(t+1) :( ) + Zm 1 an ]EZ{ZzO} (31)

do+ M

where Ez{z"} is a shorthand notation for the expectation
Ez{z]}Y,0 Y X}. At this point, it is worth recalling the &:

apprOX|mat|0ns in Section 11I-C. These approximationstjye
simplify the derivative with respect tg; since they imply
that the derivative off(u;,xm) ~ f(u'",x,) and of
R(pj,xm) ~ R(p'", %) are zero.

For the covariances:;, the derivative ofQ(810®) is of

such form that directly solving foE; is not possible. Instead *
we propose that the maximization is performed by a gradient#:
based optimization approach. To enable a computation &
the gradient with respect t&;, the covariance matrix is

parameterized using the Cholesky factorization
3, = LL], (32)

whereL; is a lower triangular matrix. Sinc&; is a2 x 2

The gradient off(L;), needed in the optimization, is

M npg, ~
= > > E{HLL] + Rypm) !
m=1 1=1
X [(y;@ — )y — 1;)" — LyL] — Rjp,]

x (L;LT + Rjp) ™!
+ (L;LT) ! (s0 —(l+D+ 1)LjLJT) (L,LT)"'L;.
(34)
The derivation of (34) is outlined in Appendix A and the re-

sulting EM mapping algorithm is described using pseudocode
in Algorithm 1.

Algorithm 1 Mapping solution using EM

Require: Data,Y =[Y1,..., Y]
Sensor poseX = [x1, ...
Number of clustersik

) XM]

1:.t=0

2: Initialize 6*)

3: while Not convergedio

4. E step:

for m=1:M do

fori=1:n,, do

ComputeE{"} = Pr{zg? = 1|0(t),Ym,xm},
for j =1... K, according to (26)
ComputeEZ{z } = Pr{zZO = 1|0(t),Ym,xm},
according to (27)

N o

9: end for
10. end for
11: M step:

Computew!"™, for j=1...
Compute;ﬁ””, for j =1... K, according to (30)
ComputeA! ) according to (31) A

Perform a gradient-based optimization flw;, j =
1... K, using the objective function in (33) and the
gradient in (34?

16:  Computex|*'
17:  Sett= t+1

18: end while

K, according to (29)

LT forj=1...K

matrix, L; contains 3 parameters that are to be found in the
opt|m|zat|on Gathering the terms in (23) and (24) that aepe C- Negligible measurement noise

onL;, and denoting the expression IfyL; ), the optimization
problem can be formulated as

L, =arg max (L;)

M nmg,

-1 .
=arg max SO E{zg (7 log |L; LT + R(p;, Xom)|

m=1 i=1
(Vi — )T (LL] + Rpj, xm)) ™ (77 _“j))

. |+Tr(so(LijT)—1)]
(33)

wl»—*wl»—l

[(Vo + D +1)log |L;L

Depending on the environment and the used sensors, the
measurement noise might be very small compared to the
extensions of the landmarks. In these cases, the measuremen
noise is negligible and the landmark covariance is assumed
to alone describe the spread of the detections. Then, the
expression forp( 1 simplifies to

M nmg, 4 M nm, -1
4= 32 S et (3 S maten )
m=1 i=1 m=1 i=1

(35)
It also makes it possible to find an analytical expression
for Eg.t“) using the Inverse-Wishart prior for the covariance



matrix: likelihood. In this paper, this holds fox. andw;. However,
the expressions for the means and the covariances are more

M nmg,
=Y ={ 8 + SO B2}y — 1) (v — )" complicated due to the presence of the measurement noise.
Considering a Normal-Inverse-Wishart prior for the land-

m=1i=1

M n, -1 mark mean and covariance
x <(I/0+D+1)jL le]EZ{ZZL}> ' p(:u'jazj) :NIW(vaEj;mO,HO,SO,VO)
e (36) 2 N (1 m, kg 55TV (S5: So, 10)
The resulf[ing map()t&i?)g algoriggn;) i§ obtaingd by replacirrg; th O(|2j|*(l/o+D+2)/2eXp <1Tr (502;1)>
computations ofu; and X; in Algorithm 1 with the 2
expressions in (35) and (36). eXp(—%(uj —my) S (e, — mo)) . (42)

V. VBEM FOR ESTIMATION OF APOISSON PROCESS The measurement model is Gaussian, but with a varying co-
varianceX; +R(u;, x,,), depending on from which position

Similarly to the EM approach, when applyi.ng. VBEM 10 thge Jandmark is observed. Using the measurement model (16),
mapping problem, the unknown data associations need totng single-measurement likelihood is

considered while estimating the parameters of the map. We

employ the mean field approximation [17] and thus assurp(ay,ilmj,Ej) :N(yfn;uj,Ej +f{(uj,xm))
that the joint posterior density of the parametdétsand the ~ ~1/2

associationsZ, can be factorized according to o |33 + Rpy, X )|

1 7 N 7
p(0,Z|Y,X) ~ q4(0)q.(Z). (37) X exp (g(ym )" (Ej + R(uj,xm)) (Ym — uj)) :
We then wish to find distributiongy (@) and ¢.(Z) to make (43)

the approximation as good as possible in the "exclusivgfence, if R(u;,x) # 0, the resulting posterior density,
Kullback-Leibler sense [25], [26]. More specifically, thena P(Nj,2j|y7in) x P(}’MNJ-,EJ‘)P(HWEJ'), is no longer a

is to minimize Normal-Inverse-Wishart distribution. Instead the fuonsl
KL (g9(0)q.(Z)||p(0,Z|Y,X)) = form of the distribution changes between iterations imuyi
2(0)q-(Z) (38) that the model does not belong to the conjugate-exponential
/CJe(@)qz(Z) log md@dz. family. To overcome this issue, there are approximatioas th
P ’ can be used.

The optimization is performed iteratively by minimizing |n this paper, we employ two strategies for dealing with
(38) with respect tog.(Z) while keepinggy(6) fixed, and the non-conjugate-exponential model. First, we consttan
then repeating the procedure in order to find a n@W) variational distribution of$; to ¢x(X;) = §(Z; — %)
based on the current (Z). One can show that the best fit forimplying that the uncertainties in the covariance estimate
the distribution of the associations is [17] ignored and the computation &, is performed according to

' EM [28]. Second, fo; we adopt the Laplace approximation
q:(Z) x exp </ qg(G)logp(Y,Z,0|X)d0> (39) ?hs suggesdteddin [_2|_9].I That is, d_efini?"q,uj) = log qu (),
— exp(Ey{log p(Y.Z. 0]X)}) . e second order Taylor expansion pis

Similarly, the distribution over the parameters can be tbas Fuy) zf(“;i) + V) — Hy)
+ (e — )TV () (1 — 1), 44
q0(0) o eXp(/ q=(2Z)log p(Y, Z,HIX)dZ) (b~ ) V) = Ay) e
(40) whereV f(4;) denotes the gradient of, evaluated aj; =
= exp(Ez{logp(Y,Z,0X)}). fi;. Similarly, V2f(yi,) is the Hessian off. By setting 4i;
The joint density in (39) and (40) can be expresses as ~ €dual to the MAP estimate qf;, Vf(i) = 0. Thus,
. 1 . . .
p(Y,Z,0|X) = p(Y,Z|0,X)p(6), A1) ) = Fly) + 5 (s — )"V F (1) (1 = Hy) - (45)

wherep(Y,Z|6,X) is factorized according to Section Ill-A. and the variational distribution qf ; is
Each iteration of the VBEM algorithm thus consists of the

computations of (39) and (40). qu(p;) = e’ = N(Mj; my, Pj), (46)
where the mean and covariance are given by
A. Approximations .
A Ifepy property of the VBEM framework is that it provides 9= il
P = —[V2f(si;)) 7. (48)

tractable solutions for models that belong to the conjugate
exponential family [23], [27]. These models satisfy two dbn Using this approximation, the resulting variational disition
tions; the complete data likelihood belongs to the expdakntof the mean turns out to be a Gaussian density even if no
family while the prior for the parameters is conjugate to th€aussian assumption is made.



B. Resulting algorithm likely to be very small. The mean and covariance of the
Each iteration in the VBEM algorithm consists of thelistribution N (p;m;, P;) are:

computation ofg.(Z) and gy (0) according to (39) and (40), M nm B S\t

respectively. In order to compute.(Z), we introducer?’ m; = <Z > (2]- +R(,uj,xm)) )

as the probability that measuremeyit, was generated by m=1i=1
landmark; # 0, or is clutter if j = 0. Then, the distribution M nm ~ -1
of Z can be written as x Y > (Ej + R(l"’jvxm)) Ym (61)
M nm K . m:l]\;':l .
q-(2) = (mig)* T (=)™ (49) S 5 -t
771_:[111;[1 ’ ]1;[1 ( j) Pj= Z Zﬂij (Zj + R(Hjaxm)) . (62)
m=1 1=1

Since each measuremeyff, either originates from one of thelt is worth noting that the expression in (61) is identical to
landmarks or is a clutter detection, the probabiliti¢s must that in (30), i.e., the mean in the EM mapping solution. The

satisfy derived EM algorithm will be useful also foE; since the
us variational distribution of the covariance matrix is coagted
T+ m=1. (50) to ¢u(%,) = 6(%; — ;). Hence, the MAP estimat&; can

j=1

be found using the same gradient-based approach as in (32) —

To be able to compute ¢.(Z) according to (34). _ . . _ .
(39), a distribution ¢4(@) over the parameters is For clarity, a summary of the resulting mapping algorithm is

required. Using the approximations in Section V_Apresented in Algorithm 2. The complexity of the algorithm is

0) = O T o (w; . s ) where bilinear in the number of landmark&, and the total number
90(8) = x(Ae) I 4o (i) (k) a(3;) of measurementsy = >-M__ n,,, i.e., O(KN). However, an
qow(wj) = GAM(wj;a;,b;) (51) advantage with the method is that a large mapping problem
qu(p;) = N(u;;m;,P;) (52 can be divided into several local, and thus smaller, mapping
T nerd problems, something that will reduce the complexity.
a=(%;) 6(%; —3y) (53)
ae) = GAM(N; ¢, d). (54) Algorithm 2 Mapping solution using VBEM
Based on these models, in Appendix B it is shown that teequire: g::]as’;: ;)Ee{é’g . ’[:M] xa]
e g = 1y XM
association probabilties are 1: Set an upper bound on the number of clustéfs,
i o exp(¥(c)) (Vd)_l (55) 2 Set priors on the parameters
N bj—1|2j n ij|71/2 o Wi~ i}AM(wjj, aoilb%), fofrj :_1, .. .,KK
;o (@m)D /2 o pj ~ N(pj;my, kg 35), forj=1,...,
) wherem), ~ U
x exp(lb(ax) —=Tr((Z; + Rjm) " 'P; > e 3 ~IW(Z;; So, o), forj=1,... K
2 (R, ) « Ao~ GAM (\o; co, do)
Lo T (s s T i 3: while Not convergedio
x exp|l —=(y;, —m; X, +Rjm v, —m; : 9
p( 2(y i) ( T ) 4 i) Compute ¢.(Z):

(56) for m=1:M do
fori=1:n,, do
Computer according to (55)

Computer;”, for j =1... K, according to (56)

where, similar as beford) is the dimension ofu,.
Based on the computed (Z), Appendix B derivesyy(6)
based on (40). The variational distributions of the paranset

=
© © XN

are given by (51) — (54) where the hyperparameters.fpr enedng:or
and \; are updated according to
J P g 11:  Normalize the association probabilities, (50).
M nm 12:  Compute gg(6):
aj=ao+ Y > T (57) 13 Updatea; andb;, forj=1,..., K,
m=11i=1 according to (57) and (58)
M 14:  Updatec andd, according to (59) and (60)
by =bo+ D Fhxm) (58) 15 Updatem; andP;, forj =1...K,
mj\jl according to (61) and (62) A
- o= 16:  Perform a gradient-based optimization fow;, j =
c=cot 227@0 (59) 1...K, using the objective function in (33) and the
d = do+ M, (60) gradient in (34).

17:  ComputeX; = L;LT, forj=1...K
whereay and by are chosen such th&AM (w;; ag, by) has 18 end while
most its mass close to zero, indicating that the weights are




C. Negligible measurement noise 1) VBEM: The VBEM algorithm is initiated with K = 300
haendmarks. The prior landmark meamsy, are drawn from a

As discussed in Section 1V-C, there are situations when the. o .
. . . uniform distribution over the map while the other parameter
measurement noise can be considered negligible. Theret mi
re set toSy = 10 - Iaxo, g = 5, ag = 0.1, by = 0.2,

also be scenarios where the Laplace and Dirac approxingation ! L
. . . cg = 0.05 anddy = 0.1. These values result in a priori
introduce errors that are considered worse than the achieve : .

) ) . . expectations/varianceB{%;} = 5 - Iz, E{w;} = 0.5,
benefits. By ignoring the measurement noise, the model heé-

. : . ar{w,;} = 2.5, E{A\.} = 0.5 and Va{\.} = 5. Note that

longs to the conjugate-exponential family and, as shown the parameters, andb, are chosen such that the weights are
appendix C, the joint variational distribution pf; and%; is P 0 0 9

: : likely to be very small.
Normal-Inverse-Wishart. That is, 2) EM: Since the EM algorithm is not able to estimate the

(1, ) = NIW(p,, Smi, k5,8, v5), 63) humber of landmarks, we assume that some other algorithm
(4, 2) (hi5> 3Ly, 15,85, v5) (63) provides EM with a perfect estimate o such that the
where the hyperparameters are given by algorithm can be initiated with K=20, i.e. the true number
of landmarks, for the simulated scenario. Clearly, thisns a
Mo M o -1 idealized and slightly unrealistic assumption but we arinae
mj = Z Zﬁij ym( Z Z”ia‘) 64) it is interesting to compare the VBEM solution with what

m=11i=1 m=1 =1

" should be the best possible version of EM. The prior paramete
o Z nz m (65) values are set to the same values as for VBEM.
i = —~ i 3) PHD: To consider extended landmarks, we use the PHD
T algorithm in [13] but constrain the objects to be static. In
S. =S, + 7 (yi (i )T — m;m? 66 z_id<_j|t|on,_ the pre_dlctpn of a static map and the effect of_ the
! 0 Z Z ! (y ¥m) ! J) (66) limited field of view in the update step follow the mapping

m=1 i=1

M n, ideas in [30]. The PHD algorithm runs with a known clutter
vi=1+1+ Z ZWZL (67) ?ntensity and hen_ce/,\c does not need to be_ estimated. The
=1 =1 intensity function is represented by a Gaussian mixturerevhe

the maximum number of components is setNgax = 300.

With this description of the landmarks, the probabilitieg, keep the number of components beldWia, & merge
for the measurement to landmark associations change and g{g prune step is included in the algorithm. In the filter,

given as the probability of survival isPs = 1 and the probability of

blS,| 12 detection isPy = 0.95. The birth intensity is modelled by
o % a Gaussian component with weight = 0.5 and the mean
2(2m)P/ at the center of the field of view. The extension parameters,
—1 ; TQ-1(yi includinga andb, are set to the same values as for the VBEM
X ex Nexpl —vi(y: —m)'S7Hy! —m; ,
plu(as)) xp( vyt — m))"S; v, —my)) - Inuding and, ar

D
vi—D—k D
X €Xp (Zd’ ( D) )) exp(Tj) . B. Simulated data
k=1

(68) In the simulated scenario, the sensor travels two laps on the

track depicted in Figure 2. There aké = 20 landmarks along
The probability that a measurement is clutter is still given

as i o exp(y(c))(Vd)~!, but it is worth noticing that the
normalization changes due to the changerjh. 10l

[N
N
o

VI. EVALUATION

In this section, the proposed VBEM mapping algorithm i
evaluated on two scenarios. First, we consider a simulai
scenario where the sensor observes the environment wi
traveling two laps on a track. Second, we apply the mappil

. 60 [ S traject b
algorithm on a set of real radar data. As a reference, t

1 1 1 I 1

North [m]
=
8

o]
o

performance is compared to that of an iterative extendegbobj 60 80 100 120 140 160

PHD mapping algorithm [13], [30] and the EM mapping East [m]

algorithm derived in Section IV. Figure 2: The simulated track and the positions of the land-
marks.

A. Implementation details the track, each described by a position, a covariance matrix

Here we give a short summary of the chosen settings fand a weight. In this example;; € [0.5,2]. There is also a
the methods in the evaluation. uniform clutter intensity resulting in. = pV expected clutter



measurements at each time instant. To start with= 2. The 6
data is generated assuming an ideal field of view with a ran
of 60 m and anglet 30 degrees, such that 5

VBEM

= = = VBEM - negligible noise
EM

= = = EM - negligible noise
PHD

_ J 1, if p; is within the field of view
Py ) = { 0, otherwise.

The measurement noise covariance is set Rg, =
diag([07, 07]) whereo, = 0.3 m andoy = 3°.

1) Results: One advantage with VBEM for this problem
is the possibility to initiate the algorithm with a number o
landmarks that is known to be much larger than the tr o
number and, as seen in Figure 3, most of the weights 0/0
towards zero over time. This is a consequence from the
optimization, where the Gaussian components not needed™tgure 4: The squared L2 norm as a function of iteration
describe the joint density will get negligible weights ahds number for EM and VBEM, and as a function of
can be removed from the map. The number of iterations until time step for PHD.
convergence differs between the solutions, but for illtgin,

(69)

Squared L2 norm
w

.
15/190
Iteration number / Time step

30/380

30 iterations are executed for both EM and VBEM. 3
25
300 T
VBEM | S AT m e e e e e e e e e e e e e e — = ]
2501 S = = = VBEM - negligible noise ]
\ — — — True value
200 A VBEM
<° 150} \\ = = = VBEM - negligible noise |
3 EM
100 % = = = EM - negligible noise
~ — — — True value
50t Se s 0 ‘ ‘ ‘ ‘ ‘
[~ —————-—S===-==---==-T====== 0 5 10 15 20 25 30
00 5 10 15 20 25 30 Iteration number

Iteration number

Figure 5: The expected number of clutter detections for the

Figure 3: The number of landmarks with a weight = VBEM and EM algorithms. The trua, = 2.

a;/b; > 0.01.

To evaluate the ability to estimate all the properties of tHandmark as lost (non-existing) if it is not detected at a few
landmarks, i.e., position, weight and covariance, we uge ttime instances. This is not an issue in the batch solutioresavh
squared L2 norm, sometimes also referred to as the integalildata is considered in each iteration. Finally, by insieg
squared error. For two functionf(x) and f2(x), the squared the clutter intensity, we show that the proposed VBEM method
L2 norm is defined as manage to extract the landmarks even in dense clutter.

2
11— Foll2 = / (fl(x) - f2(x)) dx. C. Real radar data

In [31], it is shown that for Gaussian mixtures, (70) has a In this section, we apply the VBEM, EM and PHD mapping
simple and exact form that can be used here. In addition, @&korithms to a set of real radar data from a short road segmen
study how accurately the different methods estimate thiteclu Figure 7 shows an intensity plot of the collected data, toget
intensity. The resulting squared L2 norm and the estimated with the sensor trajectory, in a north-east coordinate &am
are depicted in Figures 4 and 5, respectively. Since the clutter intensity, needed in the PHD algorithm,
To see how the estimation of the landmark parametersand the number of landmarks, needed in the EM algorithm,
affected by the clutter level, we run the algorithms with= are unknown when using real data, we use the estimated
[1, 10,20, 35,50]. The squared L2 norm after 30 iterations, aand K provided by the VBEM algorithm. In reality, there
a function of the increasing clutter intensity, is illused in is no ground truth available showing what a radar map of
Figure 6. an area should look like and consequently, when running a
Comparing the two VBEM solutions, incorporation of thenapping algorithm on real data, it is not possible to perform
measurement noise results in a better description, in equaevaluation in the same manner as for the simulated example.
L2 sense, of the measurement intensity. However, by negleletstead, we evaluate the map regarding how well it describes
ing the noise, the estimated number of landmarks is madata by computing the log likelihood. The log likelihoods fo
accurate. Moreover, despite using the same models as VBHM three methods are shown in Figure 8, where it is clear that
and being initialized with the true number of landmarkghe proposed VBEM algorithm provides the best description
the EM algorithms do not perform as well as their VBEM data in this scenario.
counterparts. It is worth noting that a considerable wes&ne For illustration, Figure 9 and 10 show examples of the maps
with the PHD mapping algorithm is that it may declare abtained using VBEM and PHD, respectively. Comparing the

(70)
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Trueh, Figure 9: The resulting map using VBEM.
Figure 6: The squared L2 norm after 30 iterations as a func-
tion of the expected number of clutter detection at
each time instant. 70 :
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20 Figure 10: The resulting map using PHD.
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0 20 40 60 80 100 120
East [m]
. . . . ) VII. CONCLUSIONS
Figure 7: The intensity of radar detections together with th

sensor trajectory. The intensity describes the number!N this paper we present a method for estimating radar maps.
of detections in the data set within an area of 2. m 1 € proposed map consists of a constant clutter level and an

unknown number of landmarks. Each landmark is modelled
by a weighted Gaussian component with a mean position, a
covariance matrix that captures the extension and a weight
corresponding to the expected number of measurements from
figures we note that some landmarks in the VBEM map hatlee landmark.
been clustered in the PHD map, resulting in a less detailedWe promote a solution that estimates the model parameters
map. using VBEM. The result is an efficient batch solution that
enables joint estimation of the number of landmarks, their
parameters and the clutter intensity. In the evaluatioe, th
proposed VBEM algorithm is shown to provide a better
x10° description of the world compared to the corresponding EM
-1f 1 algorithm (with given number of landmarks) and a PHD
1 mapping algorithm (with given clutter intensity).

-1.2r

-1.4
APPENDIX
-1.6

Log Likelihood

In the appendix the derivations of the expressions needed

‘éfAEM 1 to perform mapping using EM and VBEM are summarized.

PHD

0 25190 507 180 A. Derivation of EM solution

Iteration number / Time step

-18

-2

, . ) i . This section provides details on the derivations needed for
Figure 8: The log likelihood as a function of iteration numbeye gradient descent performed to find the landmark covari-
for VBEM and EM, and as a function of time step;nces in the EM mapping algorithm. The procedure follows

for PHD. from [32].



The gradient of (33) is found by computing the gradients dthe expectation of the logarithm af ~ GAM(a,b) is [24]
10g |L;LT + Ry | and (p; — yi,)" (L LT + Ryj) ™' (1 — B

y' ). First, we factorize the measurement noise covariance in E.{logw} = t(a) - logd, (76)
the same manner as;, that is, R, = Lg(n) Ly @nd  where ) denotes the digamma function. This expression is
introduce applicable to bothv; and A.. Finally, we wish to find the

& i i expectation of
X =L Lgol". C=(h—a)yi )" (72) 5F B
Given these matrices, and settiAgto the identity matrix, the ]Eu-,z{(ﬁn )" (23' + R(p;, Xm) (Ym — Hj)}- (77)

following relations hold To perform the derivations, we use the following relations

Tr((XTAX)'C) = (vh, — )" (%5 + R) 7 (vi — 1)) xTAx = Tr(x"Ax)
log [ XTAX| = log|Z; + Rjn| TrxTAx) = Tr(Axx")
(72) Tr(A+B) = Tr(A)+ Tr(B).

For the left hand sides of (72), the derivatives with I‘eSﬂ)eCt Using these ruleS, one can rewrite (77) as
the matrixX can can found in tables. Then, since fomax n

matrix, the derivative of a scalar is Tr(/ (Ej N R(Mj,xm)_l
of of , , . (78)
85(%0) B ) < /(yin = 1) (Y — 1) q(uj)dujq(Ej)dEj)
oxX : : ’ (73) Taking a look at the integral ovgr; ~ N (p;; m;, P;):
o _of_
X1 X, /(yin — ;) (v, — 1) () dp;
the derivatives with respect th; can be found as a part of i T
the derivative with respect tX. =k {(ym = 1) (Vi = 1) }
= By {yh () = yhoti? =y (vi) " + el |
B. Derivation of VBEM solution —yi (yi )T — y:'nij —my(yi )T + (P + mjmjr)
This section presents the details of the derivations of the (yi — mj)(yi . mj)T +P;

VBEM mapping solution. The derivation starts with the vari- (79)
ational distributiong.(Z) and continues witly,(0). _ _ _ _

1) Computation ofq.(Z): To find the distribution over Insertmg (79) into (78), and again making use of that
the association variables, we compute the expectation Jof (z)d(z — 2)dz = f(&), the sought expectation is found

logp(0,Z,Y) with respect tof. That is, as
-1
% T B, i
log g (Z) = Eo{ logp(6,2,Y) } B { 05— )" (25 + Rty ) 91— 1)
A —1 . .
M :Tf(zj (3, — my)(yy, —my)" + PJD
~Eo{ Y 10gp(Yn|Zn,0) + 108 Pr{Znlnpn, 0} | +C | . s
= =yt — )" (5 + Ripy %) (74, — 1)
M ng, .1
-3 S (EA{log)\C} - 1ogv) +Tr(2j Pj)
m=1i=1 (80)
K
ZZZI( log 27 + ]Ez{logIE +R|} E.{logw;} 2) Computation ofgy(0): Given ¢.(Z), we now want to
i=1 2 find the distribution of the parametefs Starting from the
1 - < method of variational EM and including the factorization of
- §]Eu,z{(ym 1) (Z +R) (v — )}) +C the joint density
(74)
. . log gp(6) = Ez{ logp(0, Z, Y)}
where all the terms that not includé are gathered in the u
constantC.
To be able to compute the probabilitie$;,and thus the EZ{ Z 108 p(Ym|Zim, 0) + log Pr{Zu |1, 0} +1ng(0)}
distribution of the associations, we need to compute the mj\zl
expectations involved in (74). First, considering that vhe- —F 1 7. )+ loe Pr{Z o' +1 A
atlonal distribution of; is ¢=(X;) = §(2; — S;) and that Z{ zjl 08 P(Ym|Zm, 6) +10g PT{Zum|nm, 6} + log p(Ac)

3
I

J f(@)é(z — &)dx = f(2):

K K K
- - I Wi I . I ). (81
{1085, + Rign )]} = oS, + Ry )|, (79) 2 7]+ 2 Jomnlin) 4 los )} @Y

J=1



Starting with the clutter parameter, we consider all termghich can be shown to be

that depend on\.: B
P N Qs (p;]35) = N(Nj;mjﬂij 12;‘), (89)
logga(Ae) = (Z g log Ae — &) +logp(Ae) +C  where
m=1 \i=1 M nm M - nm -
m; = E{=}}}Yin E{z5} | (90)
=logA. <CO_1+ ZZW$> — (M +do)Ac + C. ’ 7nZ:1i:1 ’ mZZIizl !

m=1i=1 M nm

(82) ho= 3 S B (91)
Ignoring the constant term, the density can be found as m=1i=1

For 3;, the variational distribution is found by computing
10Tg q=(%j) = 1TOg Qs (Hj 2;‘% — log g »(p;|%;) using that
which can be identified as a Gamma distribution with pararf- AX = Tr(x" Ax) = Tr(xx" A) and the expressions in (87)

i (he) )\((:CO—Hfole ) g~ (Motdo)Ae (83)

eters according to and (89):
M nm
D) = GAMOco+ 30N wmdo+ M) (ga)  1080s(E5) = logdun(ny, 23)4 —10g gux (111%5)
m=1 i=1 log || vo+ D43 2 E{ZZI
= lo - -

The Gamma prior for the weights implies that similar deriva- & 1% 2
tions provide us withy(w;). 1 .

To find ,. (1) we gather the terms ilg ¢,,(6) that include - §Tr((SO = Kj(py —m;)(p; —m;)
;- That is, [V

log g, (p;) = C+ + Z ZE{ZZL (Vi — l*l’j)(yfn - Nj)T)Ej_l) +C,

M n m=1 i=1

= _m Lo 5 o 92
Zzﬂij(_E(ym_l"’j)T(Ej +ij) (Ym_p’j))' . . 2
m=1i=1 implying that
(85)
. qs(25) =IW (35585, v5) (93)
Here, the terms wherg; enters as a part of the field of )
view function or the noise covariance are ignored due Wth parameters given by
the assumptions in Section III-C. According to the Laplace M n,
H i i _ m % i \T T
approximation in (46), S;=So+ Y > E{z] (ym(ym) - mjmj) (94)
. o m=1 i=1
Qu(y) = N (5 g, =V log q(f;)] ) (86) M nm
where fi; is the MAP estimate ofs; that is obtained using "7 = "0 +1+ Z ZE{ZZ? : (95)
EM. The covariance?; = —V?[logq,(f;)]~" is found by m=1i=1
deriving (85) twice with respect tp,.
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