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Abstract

Can qualitative metabolite time course predictions be inferred from measured mRNA

expression patterns? Speaking against this possibility is the large number of ‘decoupling’

control points that lie between these variables, i.e. translation, protein degradation, enzyme

inhibition and enzyme activation. Speaking for it is the notion that these control points

might be coordinately regulated such that action exerted on the mRNA level is informative

of action exerted on the protein and metabolite levels. A simple kinetic model of sphingoid

base metabolism in yeast is postulated. When the enzyme activities in this model are

modulated proportional to mRNA expression levels measured in heat shocked yeast, the

model yields a transient rise and fall in sphingoid bases followed by a permanent rise in

ceramide. This finding is in qualitative agreement with experiments and is thus consistent

with the aforementioned coordinated control system hypothesis. Copyright # 2001 John

Wiley & Sons, Ltd.
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Introduction

Sphingoid base metabolites are important second
messengers in cellular responses to stress (Hannun,
1996). In yeast, sphingoid base metabolism is
important not only as a model of its mammalian
counterpart (Schneiter, 1999; Dickson, 1998), but
also in and of itself as a system that contains several
anti-fungal drug targets (Nagiec et al., 1997;
Dickson and Lester, 1999).
It is hypothesized here that cells react to stress

through a coordinated control effort whereby
action on the mRNA level is qualitatively informa-
tive of action on the protein and metabolite levels.
For example, one can speculate that mRNA time
courses lead enzyme activity time courses when
metabolism is controlled predominantly on the
mRNA level, and, in the interests of producing
less enzyme when less enzyme is demanded, that
mRNA time courses lag behind enzyme activity

time courses when control is mediated predomi-
nantly on the level of metabolites. In other words,
one can speculate that there is an associative (not
necessarily causal) correlation between mRNA time
courses and enzyme activity time courses. If so,
qualitative metabolite time course predictions may
be inferable from measured mRNA time courses.
This possibility is explored here for sphingoid base
metabolism in heat shocked yeast (Eisen et al.,
1998).

Methods and results

A simplified schematic of yeast sphingoid base meta-
bolism is shown in Figure 1. In this model, fatty
acid synthase (Fas=Fas1/2) creates palmitate (C16)
which reacts in two ways. It condenses with serine
(via serine palmitoyl transferase, Spt=Lcb1/2) to
form the sphingoid bases dihydrosphingosine
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(DHS) and phytosphingosine (PHS), and it con-
denses repeatedly with malonyl-CoA (via Elo2 and
Elo3) to form the elongation products C24 and C26.
Here C16, C24 and C26 are 16-, 24- and 26-carbon
saturated fatty acids, respectively. The sphingoid
bases can be phosphorylated by sphingoid base
kinase (Sk=Lcb4/5) to form DHS-P and PHS-P.
These phosphorylated forms can be degraded by
dihydrosphingosine phosphate lyase (Dpl), or dephos-
phorylated back to DHS and PHS by long
chain base phosphatase (Lbp=Lbp1/2)—the terms
‘sphingoid base’ and ‘long chain base’ are used here
for any one of DHS, PHS, DHS-P and PHS-P. Free
(ie. unphosphorylated) sphingoid bases can react
with C26 to form ceramide via ceramide synthase
(Cs), which has not yet been cloned. Ceramide is
removed from the system by inositolphosphoryl-
ceramide synthase (Aur1). As most of the enzymes
in this system have yet to be purified, reaction rate
laws are not known and must be assumed. In the
equations that follow, substrate concentrations are
raised to the power 0.5 as an a priori power-law
approximation to Michaelis-Menten kinetics (Voit,
2000).

d

dt
C16~Fas{(:5zw=2) � Spt � C0:5

16

{(:5{w=2) � Elo2 � C0:5
16

ð1Þ

d

dt
C24~(:5{w=2) � Elo2 � C0:5

16

{(:5{w=2) � Elo3 � C0:5
24

ð2Þ

d

dt
C26~(:5{w=2) � Elo3 � C0:5

24

{(:5{w=2) � Cs � C0:5
26 �DHS0:5

ð3Þ

d

dt
DHS~(:5zw=2) � Spt � C0:5

16

{(:5{w=2) � Cs � C0:5
26 �DHS0:5

{w � Sk �DHS0:5zy

� (Lbp �DHSP0:5{Sk �DHS0:5)

ð4Þ

d

dt
DHSP~(wzy) � Sk �DHS0:5

{w �Dpl1 �DHSP0:5

{y � Lbp �DHSP0:5

ð5Þ

d

dt
CER~(:5{w=2) � Cs � C0:5

26 �DHS0:5

{(:5{w=2) � Aur1 � CER0:5

ð6Þ

In these equations, DHS represents the sum of DHS
and PHS, DHSP represents the sum of DHS-P and
PHS-P, and CER is ceramide. The initial conditions
for these metabolites are C16(0)=1, C24(0)=1,
C26(0)=1, DHS(0)=1, DHSP(0)=1, and CER(0)=
1. By design, this initial state is also the steady state
when the enzyme activities are unity. The enzyme
activities and the main flux coming into the system
take unit values at t=0, i.e. just before heat shock.
Thus, the fluxes are all relative to the main flux at
t=0 and the metabolite concentrations and enzyme
activities are relative to their own initial values. The
fraction of the main flux leaving the system via
Dpl1 is taken as w=0.05 (Cungui Mao, personal
communication) and the fraction of the main flux
that recirculates between the free and phosphory-
lated sphingoid bases was arbitrarily chosen as
y=0.1. The enzyme activities after heat shock
were calculated from mRNA expression levels as
follows. The relative mRNA induction data for heat
treated yeast given in http://genome-www.stanford.
edu/clustering/Figure2.txt was multiplied by the
average of the absolute mRNA levels in untreated
control cells found in two independent data
sets, http://staffa.wi.mit.edu/cgi-bin/young_public/lists.
cgi?type=H&s=0 and http://www.hsph.harvard.edu/
geneexpression/. This provided estimates of the
absolute mRNA levels after heat shock (i.e. in
copies per cell). These time courses were then used
to form modulators of the enzyme activities as

Figure 1. Sphingoid base metabolism in yeast. The metabo-
lite pools are palmitate, C24, C26, DHS and PHS (pooled),
DHS-P and PHS-P (also pooled), and ceramide, see text
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Figure 2. Enzyme activities from mRNA expression data. Gene expression data was modified as described in the text and each time course was fit to a 4-parameter
system of two differential equations (Appendix A). Since the steady state Fas level is greater than the steady state Aur1 level, applying these fits to Equations 1–6 yields
a steady state ceramide level that is above baseline, see Figure 1 and the right panels of Figures 3 and 4. Furthermore, since the steady state Elo2 level is higher than the
steady state Spt level, a steady state accumulation of C26 is expected, see Figure 1 and the left panel of Figure 3. Steady state constraints were applied to the curve fits
of Fas and Dpl1 because free fits in these cases were unrealistic at large times. The gene for ceramide synthase (Cs) has not been cloned so Cs=1 was assumed
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follows. For the heterodimer enzymes fatty acid
synthase (Fas=Fas1/2), long chain base phospha-
tase (Lbp=Lbp1/2) and serine palmitoyl transfer-
ase (Spt=Lcb1/2), the smaller of the two mRNA
expression levels evaluated at each time point was
used. The results were then divided by their initial
values so that each modulator is initially 1.
Meanwhile, since sphingoid base kinase (Sk=
Lcb4/5) is believed to exist as two independent
enzymes, and since about 95% of this activity is
thought to be due to Lcb4 (Nagiec et al., 1998),
0.95LCB4+0.05LCB5 divided by its initial value
was used to modulate the Sk activity. Finally,
modulators of the enzyme activities for Elo2, Elo3,
Aur1, and Dpl1 were formed as their mRNA levels
divided by their initial values. Curve fits to the
results of these data manipulations are shown in
Figure 2, see Appendix A for the equations. These
curve fits serve as time-varying boundary condi-
tions that emulate the heat shock excitation
environment of the biochemical system. Applying
them to the model yields the metabolite time
course predictions shown in Figure 3.

Immediately apparent in Figure 3 is the un-
bounded accumulation of C26. To eliminate this
instability without altering the predicted transients,
a feedback controller (see Appendix B) was intro-
duced to modulate the Spt activity such that the
DHS level follows a target trajectory. The first part
of the target trajectory is the predicted transient

DHS curve of Figure 3, and the latter part is the
constraint that DHS has a unit steady state. The
results are shown in Figure 4 and the amount of
control effort used to stabilize the system is shown
in Figure 5. Figure 5 shows that the Spt activity was
modulated by approximately 30% at steady state.
Since this value is within the measurement error of
the microarray data used, it follows that the
stabilizing controller did not alter the system
beyond consistency with the data.

Discussion

The model’s qualitative predictions seem to be
robust; with (Figure 4) or without (Figure 3) the
controller, there is a transient rise and fall of
sphingoid bases followed by a permanent rise in
ceramide. This prediction is qualitatively consistent
with experimental results (Jenkins et al., 1997;
Dickson et al., 1997; Skrzypek et al., 1999).
Quantitatively, however, the results of these experi-
ments are not even consistent with each other; the
data (not shown) are further complicated by
different chain-length chemical species. The model
(Equations 1–6) is based on only qualitative infor-
mation (Figure 1), so its predictions are at best
qualitative; if reaction rate terms S0.5 are every-
where replaced by S, or 2S/(S+1), qualitatively, the
predictions remain unchanged.

Figure 3. Metabolite time courses of the uncontrolled model. Unbounded growth of C26 results because in steady state,
each palmitate traversing Elo2 must be matched by at least one palmitate traversing Spt (Figure 1), but, according to the curve
fits in Figure 2, the steady state flux through Elo2 is greater than the steady state flux through Spt. Here and in Figures 4 and
5, a time scale parameter a=5 (not shown) multiplies the right hand sides of Equations 1–6. This value is large enough that
Equations 1–6 are completely stiff relative to the auxiliary equations (Appendix A) used to generate the enzyme activity time
courses
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The model also predicts, in both Figures 3 and 4,
that the transient increase in sphingoid bases is
perhaps the result of a transient decrease in the
saturated fatty acid C26. Since C26 has yet to be
measured in response to heat shock, and since this
predicted transient decrease in C26 was otherwise
unexpected, experimental validation of this predic-
tion would lend strong support to the hypothesis
that qualitative metabolite time course predictions
can indeed be inferred from measured mRNA
levels.
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Appendix A

The curve fits shown in Figure 2 were produced by
least squares estimates of k1, k2, a and b in

dy

dt
~{k1y(t)zax(t)

dx

dt
~b{k2x(t)

where y(t) is fitted to the manipulated data in
Figure 2 and y(0)=x(0)=1. Roughly speaking, the
four parameters in this model provide y(t) with an
amplitude, a rising time constant, a falling time
constant and a steady state offset. Although
analytic solutions trivially exist for this system,

they are not used because the model (Equa-
tions 1–6) executes more efficiently when the time-
varying boundary conditions are supplied using
differential equations rather than analytic functions.

Appendix B

The proportional-integral controller (Kuo, 1975)
used to stabilize the model is given by

u(t)~Kpe(t)zKi

ði

0

e(t)dt

where the error e(t) is the difference between the
target trajectory and simulated DHS levels, and
where u(t) modulates the Spt activity (Figure 5).
With Kp=0, the model (Equations 1–6) was stabi-
lized by tuning Ki until DHS followed its target
trajectory. This controller blatantly admits that the
true (biological) mechanism of system stabilization
is not known.
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