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Abstract 
A practical method is proposed for estimating the 
inertial parameters of robot manipulators with 
substantial unmodeled joint kiction and actuator 
dynamics. The manipulator is mounted on a six-axis 
forcehorque sensor. Sensor measurements and joint 
velocities recorded during manipulator motion are used 
to identify the inertial parameters. The unmodeled joint 
piction and actuator dynamics do not degrade the 
estimation results, as in conventional methods. The 
estimation algorithm does not require d$$cult-to- 
measure acceleration measurements. Experimental 
results presented show that an accurate estimation of 
inertia parameters is attainable. Since the sensor is 
external to the manipulator, the same sensor can be used 
for parameter estimation for a number of different 
systems. 
1. Introduction 
Knowledge of the inertial parameters of robot 
manipulators is often required for advanced control 
algorithms. These parameters can be estimated using the 
manipulator's joint torques and forces along with the joint 
positions and velocities [ 1,5,6,7,9,12]. However, most 
robot manipulators are not equipped with joint 
forceltorque sensors. Thus, estimates of joint torques and 
forces must be used. A typical estimate is from the motor 
current [ 491. A major difficulty with this method is that 
the joint torquelforce estimation accuracy is limited by 
unmodeled joint friction and actuator dynamics. 
A base-mounted forceltorque sensor has been used to 
estimate mass properties of a manipulator statically [14]. 
The manipulator is mounted on a six-degree-of-freedom 
forcesensor and the reaction forces and moments at its 
base are measured for differentmanipulator positions and 
base onentations. A procedure is developed for 
calculating the mass properties of a manipulator from 
these measurements. While this method is effective for 
some applications, it does not yield all the inertial 
properties of the manipulator. Further, it requires the 
reorienting of the base of the manipulator, which is 
usually not practical. 
A base-mounted forceltorque sensor was used to estimate 
inertial properties of a manipulator, without requiring base 
reorientation [ 151. However, this method requires 
measurement of joint acceleration, which are difficult to 
measure in practice. 
In this paper, a method of estimating the mass, the 
location of the center of mass, and the moments of inertia 
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of each rigid link of a robot manipulator during general 
manipulator movement is presented. The robot 
manipulator is mounted on an extemal base forcekorque 
sensor. An estimation algorithm is derived from the 
Newton-Euler equations, and uses the base force sensor 
measurements and the manipulator joint positions and 
velocities. No direct measurement of the manipulator's 
joint torque or force are required. 
A filtering algorithm eliminates the need for difficult-to- 
measure joint accelerations. Experimental results are 
presented that show that the method is accurate and 
effective. 
The forceltorque sensor measures a wrench that 

corresponds only to the forces and torques effectively 
applied to the manipulator's links [lo]. Joint friction and 
actuator dynamics do not cause errors in the estimation 
results. Furthermore, as with previous methods, the base 
forceltorque sensor is extemal to the manipulator. The 
method is cost-effective,as the same base sensor can be 
used with different manipulators. 

2. Dynamic Model Formulation for Parameter 
Identification 
Consider an n-joint manipulator mounted on a six-axis 
base forceltorque sensor, such as shown in Figure 1. The 
manipulator has n+l links, where link 0 and link n are 
the base and the terminal link, respectively. The wrench 
measured by the base forcesensor is denoted as ws. The 
wrench at joint 1, wl, can be obtained as 

wi=TSws (1) 
where T, is a constant transformation matrix. 
A local coordinate system P, is fixed in each link i with 
its origin at joint i .  The ten inertial parameters of link i 
are denoted as 

where mi is the mass of link i. The coordinates, (cxi,cyi,czJ 
are of the center of mass of link i with respect to P,. The 
elements of the inertia tensor of link i around the origin of 
Pi are represented by ( ~ - j , I ~ ~ j , I ~ ~ j , I ~ ~ ; , I ~ j , I = = ~ .  It should be 
noted that the inertia tensor is expressed with respect to 
the joint, not the center of mass of the link. 
The wrench at joint 1 is related to the inertial parameters 
of the links as 

w,=U@ (3) 

where U is a matrix determined by kinematics and joint 
movement of the manipulator. The vector 9 represents 
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inertial parameters of all links. A detailed derivation of 
Equation 3 can be found in [ 1,2]. 
Equations 1 and 3 yield 

Denoting 

gives 

When N measurements are used, Equation 6 can be 
augmented as 

ws=T.-' U@ (4) 

Ys=Ts-' U ( 5 )  

ws=Ys@ (6) 

or 
W=Y@ 

The vector @ can generally be estimated from Equation 8 
using the least-squares method as 

6 = [ YTY1-1 YT w (9) 

However, the least-squares method may not be applied 
directly when [Y T y l - l  does not exist. In this case, the 
ridge regression and singular value decomposition 
methods can be used to solve this problem [ 11. 

0 
a. 

Figure 1 : N-Joint Manipulator Mounted on a 
ForceiTorque Sensor 

3. Estimation of Inertial Parameters 
Elimination of Acceleration Requirement 
To compute the elements of Y in Equation 9, one needs 
the measurement of joint accelerations. However, it is 
difficult to measure manipulator joint accelerations 
directly, and it is well known that acceleration estimation 
using position or velocity signals is usually difficult due 
to noise issues. A low-pass filter transformation can help 
overcome this problem as studied in [5,8]. Applying a 
low-pass filter with unity gain at zero frequency to both of 
sides of Equation 8 yields 

where t[ ] and E'[ 3 represent the Laplace transformation 
and the inverse transformation respectively, and 1 is a 
positive constant. 
Since acceleration terms in Y appear only in conjunction 
with functions of the joint angles q, a term containing Q 
can be generally represented by f ( q ) i j  [6], and its Laplace 
transform is 

As in [6,8], applying the low-pass filter to both sides of 
Equation 12 leads to 

Applying inverse Laplace transformation to both sides of 
Equation 13 yields 

( f  ( q ) i j  )[ = 

Thus, no acceleration temn appears on the right-hand side 
of Equation 10. 

Filtering Velocity Measurement Noise 

Examining the first term of the right-hand side of 
Equation 14, we can see that it is actually the difference 
between the unfiltered and filtered values of f(q)q,, 
multiplied by the filter parameter 1. This term is sensitive 
to noise contained in measurements of the joint velocity, 
4,. For example, whenAq)=l, Equation 14 becomes 

(15) 
which could be dominated by measurement noise when the 
low-pass filter bandwidth parameter 1 is large. 

To overcome this problem, the transformation defined by 
Equation 11 is applied again to Equation 10: 

(f(q)ii ,  >, = (ii, )f = 114, - (4, )f 1 

((V,), == ( (Y) , )d@ (16) 
where d is another positive constant that determines the 
bandwidth of the second low-pass filter. 
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Applying the second low-pass filter, Equation 14 becomes 

( ( f ( q ) i i j ) / ) d  = 

And Equation 15 becomes 
( ( f ( 4 ) i ,  = ((e, >i )d = l [ ( q ,  ) d  - ((41 >i )d 1 (18) 

Equation 16 is used to estimate $ using the least squares 
technique. When [(( Y T )  ) d  (( Y), ) I-' exists, one could 
estimate $ using 

(19) i = [((YT),)d((Y)l)d1-l ( ( Y T ) l  )d((W)1 I d  

Generally, the ridge regression or singular value 
decomposition methods must be used when 
[((YT)l)d((Y)l)d]-'does not exist. 

When implementing the parameter identification 
algorithm, the parameter d should be set high compared to 
1, but it should be low enough to filter out the velocity 
measurement noise. This requirement is not restrictive 
since the value of 1 could be small. This will be 
demonstrated in the experimental results presented in 
Section 4. 

Elimination of Sensor Offset Effects 

Sensor output offsets usually exist in strain gage-type 
force/moment sensors. Normally such offsets can be 
measured by taking sensor readings at zero load. 
However, in this method, the manipulator sits on the 
sensor, and the forces and moments due to gravity are 
mixed with the sensor offsets. This makes it difficult to 
measure the sensor offsets without removing the robot 
manipulator from the base force sensor. 
In other words, the sensor output contains the motion- 
related wrench, gravity effects, and sensor offsets, i.e. 

Wr = W m  + Wg + WO (20) 

where w, is the motion-related wrench, and it is zero when 
the manipulator is stationary. The gravity wrench, wg, 
masks the sensor offset w,. 

The sensor offset effect can be eliminated by using only 
the motion-related wrench in the identification algorithm. 
From Equation 20: 

(21) wm = ws - ( wg + W O )  

where w, is measured while the robot manipulator is 
moving along a given trajectory. Since wg+w, depends 
only on the position of the robot manipulator, it can be 
measured as follows: the robot manipulator is controlled 
to move along the same trajectory, but it is stopped at 
each sampling position, and the sensor output gives the 
corresponding w,+w,. 

Without gravity, Equation 6 is modified as 

W m  = ymd (22) 

For all m sampling points, let 

From Equation 22: 

Wm = Ymd 

The identification algorithm, Equation 19, can be modified 
using Equation 24 as 

4. Experimental Results 
Experimental Setup 
The proposed inertial parameter estimation method has 
been implemented and tested on a PUMA 550 robot. The 
manipulator was mounted on an AMTI six-axis 
forcehorque sensor as shown in Figure 2. 

xs 
Figure 2: A PUMA 550 Manipulator Mounted on a Six- 

Axis Force/Torque Sensor. 
In this experiment only the first two joints of the PUMA 
were actuated, in order to reduce model complexity. Joints 
three, four, and five were immobilized, in the following 
configuration: q,=-142.lo, q4=Oo, q5=Oo. Joint positions 
were measured with optical encoders, and joint velocities 
were computed by differentiating position data. 
Estimation Procedure 
For the coordinate system illustrated in Figure 2,  the 
equations relating manipulator motion to the wrench 
exerted at the first joint were derived as: 

w m = Y m 4  

3318 



Where 

Wm = [Fm ' m y  Fmz M mM my M mz 1 
is obtained from the base sensor measurement through a 
simple transformation. The parameter vector 4 is given by 

@=Cmlqx,mlqz + d p 2  + m2r2z,m21m2r2y.Ilxy. 
4 y y  + m 2 4  52d2m2r2z + f2XxJl,J2,J2,7 

12yY - l 2 n 9  1,,* 1 2 J  

where 01 = a+-,, and 13 = d,+r,,. The minimum paramew 
set @ is obtained analytically by combining linearly 
dependent columns of an original Y, formulated using the 
symbolic processor Maple [4]. 

The excitation trajectories of the two joints are shown in 
Figures 3a and 3b. Joint velocities were calculated using 
forward-difference numerical differentiation. The sampling 
rate for the experiments was eight milliseconds. 
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Figure 3: ql and q2 Dluring Identification Motion 

The identification algorithm of Equation 25 was 
implemented in MATLAB. Filter parameters were chosen 
to minimize the effects of sensor noise while maintaining 
a good least square estimation. For the filter parameters 
1=1, d=50, the followin,g estimate of 41 was obtained: 

0.1125 
-4.2455 
2.2202 
-0.1834 
-0.2278 
1.2489 
0.1338 
0.1213 
-0.1247 
0.8596 
-0.0086 
0.9867 

+=  

Estimation Result Verification 
To verify the estimation results, we used the estimated 
parameters to predict the forces and torques at joint 1 for a 
totally different motion, as shown in Figure 4. The 
predicted forces and torques are calculated as ( (Ym) l )d$ .  
The filtering techniques described in Section 3 were 
applied. The predicted forces and torques match well those 
from sensor measurements as shown in Figures Sa-g. 
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Figure 4: q l  and q2 during Verification Motion 
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Figure 5: Predicted and Measured Forces and Torques 
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5. Conclusions 

A practical method of inertial parameter estimation for 
robot manipulators with unmodeled joint friction and 
actuator dynamics is presented in this paper. The 
manipulator is mounted on a base forcehorque sensor. 
The sensor measurements are used to identify the inertial 
parameters. The presence of unmodeled joint friction and 
actuator dynamics do not corrupt the estimation results. 
A low-pass filter technique is applied to eliminate the 
requirement for acceleration measurement and to reduce the 
effect of measurement noise of the joint velocities. The 
proposed method has been tested experimentally, and the 
results show that the estimated inertial parameters predict 
robot dynamics well. Since the base forcehorque sensor is 
external to the manipulator, the same sensor can be used 
for parameter estimation for different robot manipulators. 
The accuracy depends on the measurement accuracy of the 
force/moment sensor Further work is required on 
systematic analysis of the estimation accuracy. Other 
important remaining issues are the identifiability of 
inertial parameters and the selection of efficient exciting 
trajectories. For manilpulators with more than two degrees 
of freedom, it is nontrivial to analytically derive a base 
parameter set. For future work, a more general approach, 
similar to that reported' in [4], is required. 
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