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1 Introduction

Modern knowledge bases such as Yago [14], DeepDive [19], and Google’s Knowledge Vault [6] are constructed
from large corpora of text by using some form of supervised information extraction. The extracted data usually
starts as a large probabilistic database, then its accuracy is improved by adding domain knowledge expressed as
hard or soft constraints. Finally, the knowledge base can be queried using some general-purpose query language
(SQL, or Sparql).

A key technical challenge during the construction, refinement, and querying of knowledge bases is proba-
bilistic reasoning. Because of the size of the data involved, probabilistic reasoning in knowledge bases becomes
a central data management problem. The number of random variables is very large, typically one for each fact
in the knowledge base. Most systems today perform inference by using Markov Chain Monte Carlo (MCMC)
methods; for example, DeepDive uses Gibbs Sampling, a form of MCMC. While MCMC methods are broadly
applicable, probabilistic inference techniques based on MCMC have no polynomial time convergence guaran-
tees; this is unavoidable, as exact probabilistic inference is provably intractable. Nevertheless, many classes of
queries can be evaluated efficiently using an alternate, quite promising approach: lifted inference. While tra-
ditional methods first ground the knowledge base and run MCMC over the resulting large probabilistic space,
lifted inference performs the inference directly on the first-order expression, which is much smaller than the
entire probabilistic space. Lifted inference has evolved separately in the AI community [21] and in the database
community [28]. When applicable, lifted inference is extremely efficient, in theory and in practice. Evaluat-
ing a query using lifted inference is equivalent to computing a SQL query with aggregate operators. Today’s
database engines have a large toolbox for computing aggregate queries, and such queries can be computed quite
efficiently both on a single server and on a distributed system. But lifted inference has an important limitation:
it only applies to some first-order expressions. In this paper we review lifted inference, both from the AI and
from the database perspective, and describe some recent techniques that have expanded the applicability of lifted
inference.

2 Probabilistic Databases

A Knowledge Base starts as a large collection of facts with probabilities, called a probabilistic database in the
DB community. We review here the basic concepts following [28]. A probabilistic database is a relational
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Tweeter
Name Topic P
Alice Transactions 0.7
Alice SocialNetworks 0.8
Carol SocialNetworks 0.9

Follows
Follower Followee P
Alice J.Bieber 0.3
Alice G.Keillor 0.4
Carol J.Bieber 0.5

Celebrity
Name P
J.Bieber 0.99
M.Jordan 0.66
G.Keillor 0.33

Figure 1: A probabilistic database

database where each tuple is a random Boolean variable. Each relation has one extra attribute, P , representing
the probability that the record is present. For now, we will assume that all tuples are independent, and will revisit
this assumption in Section 5. The main research challenge in probabilistic databases is to compute the output
probabilities for query answers.

A simple example is in Figure 1, which shows a tuple-independent probabilistic database with three tables.
Consider the following SQL query:

select distinct Tweeter.topic
from Tweeter, Follows
where Tweeter.name = Follows.follower

Equivalently, the query written in First-Order Logic (FOL) is:

Q1(t) = ∃x∃y Tweeter(x, t) ∧ Follows(x, y)

The query retrieves all topics tweeted by people who are followers (occur in the Follows table). The answers
to the query are uncertain, and the probabilistic database system needs to compute the output probability for
each answer:

Topic P
Transactions 0.7 · [1− (1− 0.3) · (1− 0.4)] = 0.406
SocialNetworks 1− {1− 0.8 · [1− (1− 0.3) · (1− 0.4)]} · {1− 0.9 · 0.5} = 0.7052

In general, if a database has n tuples, then it defines a probability space with 2n possible outcomes. While
some queries, like the query above, can be computed efficiently, for other queries the complexity of computing
the output probabilities is #P-hard in the size of the database. A simple example is the following query, whose
complexity is #P-hard:

Q2(t) = ∃x∃y Tweeter(x, t) ∧ Follows(x, y) ∧ Celebrity(y)

One common misconception about probabilistic databases is that the independence assumption limits their use-
fulness. This is wrong: correlations can be modeled using constraints, and the latter folded back inside query
evaluation over tuple-independent probabilistic databases; we will discuss this in Section 5.

3 Weighted Model Counting (WMC)

Probabilistic inference in Knowledge Bases can be reduced to the Weighted Model Counting (WMC) problem,
which is a very well studied problem in the theory community. In Model Counting, or #SAT [11], one has to
compute the number of models #F of a Boolean formula F . In WMC, each model has a weight and we have
to compute the sum of their weights. Several state-of-the-art probabilistic inference algorithms for Bayesian
networks [5, 24, 2], relational Bayesian networks [3] and probabilistic programs [8] perform a reduction to
WMC. We give here a brief overview of WMC.
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Propositional WMC Consider a Boolean Formula F over n Boolean variables X1, . . . , Xn, and two weight
functions, w̄, w, that associates to each Boolean variable Xi two weights: w̄(Xi), w(Xi) ∈ R. The weight of a
truth assignment, θ : X1, . . . , Xn → 0, 1, is defined as:

WM(θ) =
∏

i=1,n:θ(Xi)=0

w̄(Xi)×
∏

i=1,n:θ(Xi)=1

w(Xi)

In other words, when Xi = 0 then we multiply with w̄(Xi), and when Xi = 1 then we multiply with w(Xi).
The weight of the Boolean formula, F , is the sum of weights of all assignments that satisfy F :

WMC(F, w̄, w) =
∑

θ:X1,...,Xn→0,1,θ(F )=1

WM(θ)

For a simple illustration, if F = X1 ∧X2 then WMC(F, w̄, w) = w(X1) · w(X2) ·
∏n

i=3(w(Xi) + w̄(Xi)).
Often, the weight w̄(Xi) is omitted from the specification of the WMC and assumed by default to be equal

to 1. In Section 6 we will use values for w̄ that are different from 1. There are three special cases of WMC of
particular interest.

1. In the Standard WMC, w̄(Xi) = 1 for all i. In that case we write WMC(F,w) instead of WMC(F, 1, w).

2. In Model Counting, #SAT, we set w(Xi) = w̄(Xi) = 1 for all i, then WMC(F,w) = #F , the number
of satisfying assignments of F .

3. In Probability Computation, each variable Xi is set to true with some known probability p(Xi) ∈ [0, 1],
and we want to compute Pr(F, p), the probability that F is true. Then we set w̄(Xi) = 1 − p(Xi),
w(Xi) = p(Xi), in other words we have Pr(F, p) = WMC(F, p, 1− p).

The WMC, the standard WMC, and the probability computation problems are equivalent, under the mild as-
sumption that none of the following denominators are zero:

WMC(F, w̄, w) =WMC(F, 1, w/w̄)×
∏
i

w̄(Xi) (1)

WMC(F, w̄, w) =Pr(F,w/(w + w̄))×
∏
i

(w(Xi) + w̄(Xi))

Each of the three problems is reducible to the others. As such, we shall use them interchangeably. Probabilities
are most convenient to describe lifted inference in Section 4, while weights are most convenient to describe the
soft constraints in Section 5. Notice that weighted model count and probability computation strictly generalize
#SAT.

In the original paper where Valiant introduced the class #P [29] he already noted that #SAT is #P-complete;
he proved in a companion paper [30] that the problem remains #P-hard even if F is restricted to positive 2CNF
formulas, and similarly for positive 2DNF formulas. Provan and Ball [22] proved that F can be further re-
stricted to be a Partitioned Positive 2CNF (or 2DNF), meaning that every clause is of the form Xi ∨ Yj , where
X1, X2, . . ., and Y1, Y2, . . ., are disjoint sets of variables, but it is possible that Xi = Xj or Yi = Yj for i ̸= j.
Of course, these classes of formulas remain #P-hard for WMC and for probabilistic computation.

First-Order WMC Next, we move from propositional formulas to sentences in first-order logic. Consider a
relational vocabulary (database schema): R1, . . . , Rk. Assume a domain of constants D of size n, and denote
L the set of all grounded atoms that can be built using the relations Rj and the values in the domain D. Let
w̄, w : L → R+ be two weight functions. For any first-order sentence Φ, its grounding, or lineage is the Boolean
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function FΦ,D over the grounded atoms L (viewed as propositional Boolean variables), obtained by replacing
quantifiers ∃ and ∀ with disjunctions or conjunctions over the domain D: F∃xΦ,D =

∨
a∈D FΦ[a/x],D, and

F∀xΦ,D =
∧

a∈D FΦ[a/x],D; furthermore, FΦ1 op Φ2,D = FΦ1,D op FΦ2,D for op ∈ ∨,∧, F¬Φ,D = ¬FΦ,D and
finally Ft = t for a ground atom t ∈ L. The grounding of even a simple FO sentence can be quite large. Consider
the sentence Φ = ∃x, y, z, w, R1(x, y)∧R2(y, z)∧R3(z, w). If the domain D has size 1000, the grounding of
Φ contains 1012 distinct formulas. The terms “grounding” and “lineage” were introduced independently in the
AI literature and in the DB literature; we will use them interchangeably in this paper.

The weighted first-order model count of sentence Φ for domain D is the weighted model count of its ground-
ing, that is, WFOMC(Φ, D, w̄, w) = WMC(FΦ,D, w̄, w).

Definition 1 (The WFOMC Problem:): Given a domain D, weight functions w, w̄, and first-order sentence Φ,
compute WFOMC(Φ, D, w̄, w).

One can view the triple (D,w, w̄) as a probabilistic database, where every tuple t has probability w(t)/(w(t) +
w̄(t)), and the FO-WMC is equivalent to the query computation problem in a probabilistic database.

4 Lifted Inference

The term lifted inference was coined by Poole [21] to mean (informally) inference techniques that can solve
WFOMC without grounding the FO sentence. Subsequently different classes of techniques have been called
“lifted”, even with grounding. A more rigorous definition was proposed by Van den Broeck [31]; an algorithm
is called domain lifted if it runs in time polynomial in n, the size of the domain. Independently, the database
community searched for algorithms whose data complexity is in PTIME. Following Vardi [36], in data complex-
ity the query expression is fixed, and one measures the complexity as a function of the size of the input database.
Dalvi and Suciu [4] showed that some queries have a PTIME data complexity, while others are #P-hard. For the
WFOMC task, these two notions developed in the AI and DB communities coincide:1 liftability, defined as an
algorithm that runs in PTIME in the size of the domain, and PTIME data complexity. We briefly review here
lifted inference algorithms for WFOMC.

Lifted inference algorithms compute Pr(Φ) by repeatedly applying one of the following rules to a FO sen-
tence Φ, until it becomes a ground tuple t, in which case Pr(t) can be simply looked up in the database:

Independent (decomposable) AND Pr(Φ1∧Φ2) = Pr(Φ1)·Pr(Φ2), when the lineages of Φ1,Φ2 have disjoint
sets of atoms. This pre-condition is checked by analysis of the first-order expressions and implies Φ1,Φ2

are independent.

Independent (decomposable) FORALL Pr(∀xΦ) =
∏

a∈D Pr(Φ[a/x]) if x is a “separator variable” in Φ
(for any two constants a ̸= b, Φ[a/x] is independent from Φ[b/x]).

Inclusion/exclusion Pr(Φ1 ∨ Φ2) = Pr(Φ1) + Pr(Φ2)− Pr(Φ1 ∧ Φ2).

Negation Pr(¬Φ) = 1− Pr(Φ)

Exclusive (deterministic) OR Pr(Φ1 ∨ Φ2) = Pr(Φ1) + Pr(Φ2) if Φ1,Φ2 are exclusive (Φ1 ∧ Φ2 ≡ false).

By duality we also have Pr(Φ1∨Φ2) = 1− (1−Pr(Φ1) · (1−Pr(Φ2))) when Φ1,Φ2 are independent, and
Pr(∃xΦ) = 1−

∏
a∈D(1−Pr(Φ[a/x])) when x is a separator variable in Φ. The rules are effective, in the sense

that one can check their preconditions using a simple syntactic analysis on the FOL expressions, and applying
the rules can be done in time polynomial in the size of the domain D [28]. For a simple example, to compute

1In other contexts (e.g., Markov logic), one may want to distinguish between the data and domain, resulting in distinct notions.
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Πt 

Πx 

Follows(x,y) Tweeter(x,t) 

⋈x 
Independent 

AND 

Separator 
variable y 

Separator 
variable x 

∃x∈ D 

∃y∈ D 

Follows(x,y) Tweeter(x,t) 

∧ 

(a) (b)

Figure 2: A Query Plan (a) and the equivalent FO-d-DNNF circuit (b); both compute the query Q1 in Section 2.
The Appendix shows how to express the query directly in Postgres.

the probability of ∃x∃yTweeter(x,SocialNetworks)∧ Follows(x, y) on the database in Figure 1 one applies the
separator variable rules to ∃x, followed by an independent AND, arriving at the formula in Section 2.

A sequence of lifted inference rules is naturally represented as a tree, which can be interpreted either as
a query plan, or as a circuit. Figure 2 shows the Relational Query plan [28], and the equivalent FO-d-DNNF
circuit [35, 32] for computing the query Q1 in Section 2.

For some queries one cannot compute their probabilities using lifted inference alone; for example this must
happen when the query has a data complexity that is #P-hard. For example, consider

Φ2 =∃x∃yTweeter(x, SocialNetworks) ∧ Follows(x, y) ∧ Celebrity(y) (2)

which corresponds to Q2 in Section 2. Its lineage is the following (where we abbreviate the constants in the
domain by their first letter, e.g. writing A instead of Alice, etc):

F =Tweeter(A,S) ∧ Follows(A, J) ∧ Celebrity(J)

∨Tweeter(A,S) ∧ Follows(A,G) ∧ Celebrity(G)

∨Tweeter(C, S) ∧ Follows(A, J) ∧ Celebrity(J)

It is not hard to see that computing Pr(Φ2) is #P-hard in the size of D: indeed, any PP2DNF formula
∨

Xi ∧Yj
is equivalent to a lineage above, if we choose Tweeter to represent the variables Xi, Celebrity to represent Yj ,
and Follows to represent all prime implicants Xi ∧ Yj (by setting the probabilities to 1 or 0). In other words,
computing the answer to Q2 is #P-hard, and therefore (under standard complexity assumptions) its probability
cannot be computed using lifted inference.

Completeness One open question is whether the lifted inference rules are complete for exact probabilistic
inference: one wonders if one should search for new rules, or whether our list is exhaustive in some formal
sense. The criteria for “completeness” is to be able to compute the probability of any query computable in
PTIME. It has been shown in [4] that the rules are complete to evaluate all Unions of Conjunctive Queries
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(UCQ) that are in PTIME. It follows immediately that the rules are complete both for UCQ, and for their dual
counterpart, the positive, universal fragment of First Order Logic. However, these rules are not complete for
languages with negation: as the following example shows, there are PTIME queries with negation where none
of the above rules apply, and an algorithm incorporating only these rules is immediately stuck. Applying logical
resolution can derive equivalent queries such that the above rules apply, but even then it is open if this gives a
complete algorithm for lifted inference [13]. For example, consider this query:

∀x∀y(Tweeter(x) ∨ ¬Follows(x, y)) ∧ (Follows(x, y) ∨ ¬Celebrity(y))

(Written as Follows(x, y) ⇒ Tweeter(x) and Celebrity(y) ⇒ Follows(x, y), it says that every follower is a
tweeter, and that every celebrity is followed by everyone.) Our list of rules are stuck on this query: in fact, if we
remove all negations, then the query is known to be #P-hard, hence to get unstuck we need to use the negation
in an essential way. We do this by applying resolution between the two clauses then we obtain the equivalent
query:

Φ =∀x∀y(Tweeter(x) ∨ ¬Follows(x, y)) ∧ (Follows(x, y) ∨ ¬Celebrity(y)) ∧ (Tweeter(x) ∨ ¬Celebrity(y))

≡∀x∀y(Tweeter(x) ∨ ¬Follows(x, y)) ∧ (Follows(x, y) ∨ ¬Celebrity(y)) ∧ Tweeter(x)

∨∀x∀y(Tweeter(x) ∨ ¬Follows(x, y)) ∧ (Follows(x, y) ∨ ¬Celebrity(y)) ∧ ¬Celebrity(y)

≡∀x∀y ∧ (Follows(x, y) ∨ ¬Celebrity(y)) ∧ Tweeter(x)

∨∀x∀y(Tweeter(x) ∨ ¬Follows(x, y)) ∧ ¬Celebrity(y)

Now we apply inclusion/exclusion and obtain:

Pr(Φ) =Pr(∀x∀y(Follows(x, y) ∨ ¬Celebrity(y)) ∧ Tweeter(x))

+Pr(∀x∀y(Tweeter(x) ∨ ¬Follows(x, y)) ∧ ¬Celebrity(y))

−Pr(∀xTweeter(x) ∧ ∀y¬Celebrity(y))

and all three resulting expressions can be computed using lifted inference.

Symmetric Probabilities A special case is when all ground tuples belonging to the same relation have the
same probabilities. These types of weights occur in the #SAT model counting setting, and are of particular
interest in machine learning. Van den Broeck [34] has established recently that, if one adds one other rule (to
eliminate unary predicates) then the rules are complete when all probabilities are symmetric, and the sentence Φ
has at most two logical variables. In that case, for example, query (2) is computable in PTIME.

Rule independence Are all rules necessary? In other words, can we remove some rules form the list because
we can express them using the other rules? For example, exclusive OR can be expressed using inclusion/exclu-
sion. An interesting open question is whether inclusion/exclusion can be substituted by exclusive OR.

Approximate Lifted Inference Lifted inference has been extended beyond exact inference to handle ap-
proximations. In the database community, Dylla [7] reasons on the FOL formula to determine lower and
upper bounds on the output probability, extending the techniques in [20] developed for propositional infer-
ence. The AI community has a rich literature on approximate lifted inference with symmetric probabilities
(e.g., [18, 16, 27, 33, 10, 26]).
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Other Lifted Tasks Next to the task of computing marginal probabilities, the AI community considers several
other inference and learning tasks. This includes the Maximum a Posteriori (MAP) problem, that is, to determine
the most likely state of all variables in the distribution. For recent work on lifting the MAP task with symmetric
probabilities, see [17, 1, 25]. Because the standard probabilistic database setting assumes tuple independence,
the MAP task has received little attention in the probabilistic database literature: without any additional con-
straints, the probability distribution completely factorizes, and computing the MAP state reduces to setting every
tuple with probability greater than 0.5 to true and the rest to false. Recently, [12] proposed the Most Probable
Database (MPD) problem, which is variation on the MAP task that has several database applications. Neverthe-
less, exact lifted inference for the MAP and MPD tasks is still poorly understood. Other tasks one may consider
include lifted marginal MAP, a harder generalization of the MAP task where the most likely state of only some
of the variables is sought, and lifted structure and parameter learning. These are largely unexplored problem
areas.

5 Hard and Soft Constraints

Conceptually, the construction of a large Knowledge Base has two major steps. The first step generates a
database of facts, by using some information extraction systems. The result is a database where each fact
has some confidence, or probability, and, thus, it looks much like a probabilistic database. Second, one adds
constraints representing common knowledge; these constraints, also called rules, are FOL formulas and may be
either hard, or soft.

We illustrate soft rules by adapting the syntax of Markov Logic Networks (MLNs), introduced by Richardson
and Domingos [20]. Consider the following three soft rules:

5.38 : Φ1(x) = Tweeter(x,MachineLearning) ⇒ Follows(x,M.Jordan)

1.2 : Φ2(x) = ∀y(Follows(x, y) ⇒ Celebrity(y))

0.8 : Φ3(x) = ∀y∀z(Tweeter(x, y) ∧ Tweeter(x, z) ∧ y ̸= z)

The first rule says that tweeters on MachineLearning are likely to follow M.Jordan. The second rule says that
people who are followed are typically celebrities. Note that both these rules have a weight > 1, and therefore
we assert that they are more likely to happen. The last rule has a weight < 1, saying that for any tweeter x, it is
unlikely that x tweets on two different topics y ̸= z. Each formula has a free variable x.

An MLN is a set of FOL formulas MLN = Φ1, . . . ,Φm and two weight functions w̄(Φi), w(Φi); the weight
function w̄(Φi) is often equal to 1, and omitted from the specification of the MLN. The formulas may have
free variables, in other words they are not necessarily sentences; we write Φi(xi) to denote that xi are the free
variables in Φi.

Given a domain D, we will describe now how the MLN defines a probability space on the subsets L. Recall
that L represents the set of grounded atoms over the domain D. A subset of L is called a possible world, and we
will define it equivalently as a truth assignment θ : L → 0, 1. Its weight is:

WM(θ) =
∏

Φi∈MLN,a∈D|xi|:θ ̸|=Φi[a/xi]

w̄(Φi)×
∏

Φi∈MLN,a∈D|xi|:θ|=Φi[a/xi]

w(Φi)

In other words, to compute the weight of a possible world θ, we take every formula Φi(xi) in the MLN, substitute
xi in all possible ways with constants a from the domain to obtain a sentence Φi[a/xi], and we multiply the
weight either by w̄(Φi), or by w(Φi), depending on whether the sentence Φi[a/xi] is false or true in the world
θ. For example, consider a simple MLN with the single rule Φ(x) = ∃yR(x, y), weight functions w(Φ) = 2
and w̄(Φ) = 0.5, with domain x, y ∈ {A,B,C}. Let θ be a world where R(A,A), R(A,B), R(B,A) are true
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and R(A,C), R(B,B), R(B,C), R(C,A), R(C,B), R(C,C) are false. Then Φ(A),Φ(B) are true and Φ(C)
is false, hence WM(θ) = 2 · 2 · 0.5 = 2.

The weight of a query (sentence) Φ is defined as before:

WMC(Φ,MLN, w̄, w) =
∑

θ:L→0,1:θ(FΦ)=1

WM(θ) (3)

and its probability is obtained by dividing by a normalization factor Z:

Pr(Φ) =
WMC(Φ,MLN, w̄, w)

Z

where Z =
∑

θ:L→0,1

WM(θ)

In a typical Knowledge Base one starts with a tuple-independent probabilistic database, then adds soft rules
that represent common knowledge. Once we add rules, the tuples in the database are no longer independent. In
fact, every grounding for some formula in the MLN creates a new factor, and correlates all the tuples that occur
in that grounding.

In the standard definition of an MLN, every formula has w̄(Φi) = 1, in other words we have only the
positive weight function w(Φi). A “non-standard” MLN, which has explicit negated weights w̄(Φi), can be
easily converted into a standard MLN by using equation (1). The negated weights w̄, however, make it easier
to represent hard constraints by setting w̄(Φi) = 0 and w(Φi) = 1: in this case the formula Φi acts as a hard
constraint, because only worlds where Φi is true contribute to the sum (3). In the standard formulation, a hard
constraint is represented by setting w(Φi) = ∞, requiring the system to handle hard constraints separately.

6 Recent Developments: Transformations and Negative Weights

In a series of recent papers [15, 34] some researchers (including the authors) have found simple transformations
that convert between MLNs and WFOMC problems, and use clever expressions on the weights in order to
simplify the logical formulas. The new weights may be negative, which may correspond to either negative
probabilities, or probabilities > 1. (Recall that the connection between weights w, w̄ and the probability p is
p = w/(w + w̄).) We give here a brief overview of these rewritings.

First we show a well known fact, that every MLN can be converted into an equivalent tuple-independent
probabilistic database, plus hard constraints [35, 9]. If MLN = Φ1(x1), . . . ,Φm(xm), then for each i = 1,m
we create a new relational symbol Ti of arity |xi|, add the hard constraint:

Γi =∀xi(Φi(xi) ⇔ T (xi)) (4)

and create a new probabilistic relation Ti where all tuples Ti(a) have the same weights:

w̄(Ti) = w̄(Φi) w(Ti) = w(Φi)

(We write w(Ti) instead of w(Ti(a)) since all tuples in Ti have exactly the same weights.) In other words, we
move the weights from the formula Φi to the new relation Ti, and add a hard constraint asserting that the formula
and the relation are equivalent.

A disadvantage of Eq.(4) is that it introduces negations, because it expands to (¬Φi ∨ Ti) ∧ (Φi ∨ ¬Ti). As
we explained earlier, negations are more difficult to handle in lifted inference. A way around this is to modify
the hard constraint to:

Γi =∀xi(Φi(xi) ∨ Ti(xi))
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and set the weights of each tuple Ti(a) with the objective of achieving the equalities:

w̄(Φi) = w(Ti) w(Φi) = w̄(Ti) + w(Ti)

Recall that w̄(Φi) is often 1, and in that case w(Ti) = 1. These expressions are justified by the following
argument. Consider some values a for the variables xi. If Φi[a/xi] is false in a world, then Ti[a/xi] must be
true (because Φi[a/xi] ∨ Ti[a/xi] is a hard constraint), and the same factor w̄(Φi) = w(Ti) is applied to this
world in the original MLN as in the new MLN. If Φi[a/xi] is true in a world, then Ti[a/xi] can be either true
or false, and the factors of the two possible worlds add up to w̄(Ti) + w(Ti) = w(Φi). Next, we use these two
expressions to solve for w̄(Ti) and w(Ti):

w̄(Ti) = w(Φi)− w̄(Φi) w(Ti) = w̄(Φi)

In other words, we have replaced the constraint (4) with a simpler constraint, without negations, by using more
clever expressions for the weights. Notice that w̄(Ti) may be negative.

In fact, negation can be completely removed from the formula during lifted inference, through the following
simple rewriting. For every relational symbol R that occurs negated in a formula Φ, create two new relational
symbols of the same arities, N,T , replace all atoms of the form ¬R(x) with N(x) and add the following hard
constraints:

Γ =∀x(R(x) ∨N(x)) ∧ (R(x) ∨ T (x)) ∧ (N(x) ∨ T (x))

with the following weights:

w̄(N) = w(N) = w(T ) = 1 w̄(T ) = −1

To see why this works, call a possible world “good” if, for every tuple a, exactly one of the tuples R(a) and
N(a) is true. In other words, in a good world N denotes ¬R. The hard constraint Γ further ensures that all
tuples T (a) are true in a good world, hence good worlds have the same weights in the original and in the new
MLN. Consider now a “bad” world that satisfies Γ: then there exists a tuple a such that both R(a) and N(a)
are true in that world. However, in that case T (a) can be set to either true or false, and the weights of the two
corresponding worlds cancel each other out. Therefore, the weights of all bad worlds cancel each other out.

Finally, another source of complexity in lifted inference comes from formulas that use a mixture of existential
and universal variables. These can also be removed by using clever expressions for the weights. For example,
consider a hard constraint:

Φ =∀x∃yφ(x, y)

Create a new relational symbol T (x), and replace Φ with the following constraint:

Φ′ =∀x∀y(T (x) ∨ ¬φ(x, y))

and weights:

w̄(T ) = −1 w(T ) = 1

We invite the reader to verify the correctness of this rewriting.
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7 Open Problems

Many inference problems in AI are symmetric, where all tuples in a single relation have identical probabilities.
As discussed in Section 4, the complexity of inference with symmetric probabilities is different (strictly easier)
than in the asymmetric setting. In particular, many of the intractability results for probabilistic databases do
not apply directly to the symmetric setting. It is of theoretical and practical interest to further characterize the
complexity of queries with symmetric probabilities.

An open question is whether the inclusion/exclusion rule is necessary for lifted inference, or if some se-
quence of applications of the deterministic OR and other simpler rules is sufficient to compute any liftable
query. Lifted inference rules for probabilistic databases use inclusion/exclusion, but in the AI community, lifted
inference relies on deterministic OR. It is conjectured that inclusion/exclusion is strictly more powerful than
deterministic OR: that is, there exist queries which cannot be computed in PTIME unless inclusion/exclusion
is applied to identify intractable subqueries that cancel out and hence need not be computed. If the conjecture
is correct, approaches that rely solely on deterministic OR can not be complete for lifted inference. However,
deterministic OR is simpler to express; if it is equally as powerful, it may be preferred in practical systems.

As we have presented, there have been many recent advances in lifted inference techniques. There is a need
for these new techniques to be incorporated into a robust, state of the art WFOMC tool for lifted inference that
operates equally well in the database and AI settings. Effort in this direction is ongoing. For a prototype that
implements many of the techniques discussed above, see http://dtai.cs.kuleuven.be/wfomc.
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[28] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases. Synthesis Lectures on Data Manage-
ment, 3(2):1–180, 2011.

[29] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201, 1979.

[30] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing,
8(3):410–421, 1979.

[31] G. Van den Broeck. On the completeness of first-order knowledge compilation for lifted probabilistic
inference. In NIPS, pages 1386–1394, 2011.

16



[32] G. Van den Broeck. Lifted Inference and Learning in Statistical Relational Models. PhD thesis, KU
Leuven, 2013.

[33] G. Van den Broeck, A. Choi, and A. Darwiche. Lifted relax, compensate and then recover: From approxi-
mate to exact lifted probabilistic inference. In Proceedings of UAI, 2012.

[34] G. Van den Broeck, W. Meert, and A. Darwiche. Skolemization for weighted first-order model counting.
In Proceedings of KR, 2014.

[35] G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt. Lifted probabilistic inference by
first-order knowledge compilation. In Proceedings of IJCAI, pages 2178–2185, 2011.

[36] M. Y. Vardi. The complexity of relational query languages (extended abstract). In STOC, pages 137–146,
1982.

A Appendix

Below is the SQL code for running query Q1 on the probabilistic database in Figure 1. The SQL query below
implements the plan in Figure 2 and has been tested on PostgreSQL 9.2.3.

-- define an aggregate function to compute the product
create or replace function combine_prod (float, float) returns float as ’select $1 * $2’ language SQL;
create or replace function final_prod (float) returns float as ’select $1’ language SQL;
drop aggregate if exists prod (float);
create aggregate prod (float)
( sfunc = combine_prod,

stype = float,
finalfunc = final_prod,
initcond = ’1.0’

);

-----------------------------------------------------
-- create/populate tables
create table Tweeter(name text, topic text, p float);
create table Follows(follower text, followee text, p float);

insert into Tweeter values(’Alice’, ’Transactions’, 0.7);
insert into Tweeter values(’Alice’, ’SocialNetworks’, 0.8);
insert into Tweeter values(’Carol’, ’SocialNetworks’, 0.9);

insert into Follows values(’Alice’, ’J.Bieber’, 0.3);
insert into Follows values(’Alice’, ’G.Keillor’, 0.4);
insert into Follows values(’Carol’, ’J.Bieber’, 0.5);

-----------------------------------------------------
-- run the query
with Temp as
(select Follows.follower, 1.0-prod(1.0-p) as p
from Follows
group by Follows.follower)

select Tweeter.topic, 1.0-prod(1-Tweeter.p*Temp.p)
from Tweeter, Temp
where Tweeter.name=Temp.follower
group by Tweeter.topic;

17


