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Abstract 

This paper provides a novel technique for multiple kernel 

learning within Support Vector Machine framework. The 

problem of combining different sources of information 

arises in several situations, for instance, the classification 

of data with asymmetric similarity matrices or the 

construction of an optimal classifier from a collection of 

kernels. Often, each source of information can be 

expressed as a similarity matrix. In this paper we propose 

a new method in order to produce a single optimal kernel 

matrix from a collection of kernel (similarity) matrices 

with the label information for classification purposes. 

Then, the constructed kernel matrix is used to train a 

Support Vector Machine. The key ideas within the kernel 

construction are twofold: the quantification, relative to the 

classification labels, of the difference of information 

among the similarities; and the linear combination of 

similarity matrices to the concept of functional 

combination of similarity matrices. The proposed method 

has been successfully evaluated and compared with other 

powerful classifiers on a variety of real classification 

problems. 

1 Introduction 

Kernel based methods such as Support Vector 

Machine (SVM) have proven to be powerful for a wide 

range of different data analysis problems. They employ a 

so-called kernel function ),( ji xxk , which intuitively 

computes the similarity between two examples ix and 

jx .The specific literature on the combination of matrix-

like sources of information is rather in its beginnings 

[16,17]. For the particular case of information arising 

from kernel matrices, a usual approach is to consider 

linear combinations of the matrices. This is the proposal in 

[9], which is based on the solution of a semi-definite 

programming problem [13] to calculate the coefficients of 

the linear combination. Special purpose implementations, 

in order to improve the computational cost required for 

the solution of this type of optimization problems, are 

supplied [4, 5]. The main difference between both 

approaches is the way in which the weights within the 

semi-definite programming problem are found. The ideas 

introduced by [9] are extended by [11]. This work is based 

on the definition of a kernel (called hyperkernel) in the 

space of kernels itself, leading to the semi-definite 

optimization problem. Finally, it is worthwhile to mention 

the proposal in [3]. The method, called MARK-L, builds a 

classifier (not the specific kernel matrix) by a boosting 

type algorithm. So far, in multiple kernel learning problem, 

especially for the co-correction of original kernel function, 

label information has not been adopted. 

Label information has been well used in machine 

learning problem. Yu-Feng Li [15] has been successfully 

applied label mean to control the number of the positive 

points in the unlabeled data for semi-supervised learning 

problems. Xin Geng [14] has constructed probabilistic 

regression model from label contributions for facial age 

estimation problem. Javier M. Moguerza [10] combined 

the multi-source similarity matrices with label information 

by heuristic methods for classification problem, but in the 

paper, no quantitative function has been proposed for the 

construction of the optimal kernel matrix. In this paper, 

we propose a quantitative function to construct the de-

noise kernel matrices with label information, and use the 

MKL (multiple kernel learning) model to solve the 

classification problems. 

This paper is organized as follows. The general 

framework is presented in Sect. 2. In Sect. 3, the problem 

at hand is motivated. The experimental setup and results 

on artificial and real data sets are resumed in Sect. 4, Sect. 

5 concludes. 

2 Methods 

2.1 Multiple Kernel Learning (MKL) 

As the background of this paper, this section will 

introduce the basic idea of multiple kernel learning (MKL) 

and the standard multiple kernel learning within SVM 

framework. 

Multiple kernel learning (MKL) aims at 

simultaneously learning a kernel and the associated 

predictor in supervised learning settings. Let  
1

,
l

i i i
x y


 is 

the learning set, where ix  belongs to some input space 

X  and iy  is the target value for pattern ix . For kernel 

algorithms in SVM, the solution of the learning problem 

is of the form 

* *

1

( ) ( , )
l

i i

i

f x K x x b


                                       
(2-1-1) 
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where 
*

i  and 
*b  are some coefficients to be 

learned from examples, while ( , )K    is a given positive 

definite kernel associated with a reproducing kernel 

Hilbert space (RKHS) H . 

In some situations, a machine learning practitioner 

may be interested in more flexible models. Recent 

applications have shown that using multiple kernels 

instead of a single one can enhance the interpretability of 

the decision function and improve performances. In such 

cases, a convenient approach is to consider that the kernel 

( , ')K x x  is actually a convex combination of basis 

kernels: 
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where M is the total number of kernels. Each basis 

kernel
mK may either use the full set of variables 

describing x or subsets of variables stemming from 

different data sources. Alternatively, the kernels
mK can 

simply be classical kernels (such as Gaussian kernels) 

with different parameters. Within this framework, the 

problem of data representation through the kernel is then 

transferred to the choice of weights md . 

In the MKL-SVM methodology, the decision 

function is of the form 

1 1

( )
l M

i i m m

i m

f x y d K b
 

                                          

Where the optimal parameters md , i and b  are 

obtained by solving the dual of the following optimization 

problem [1, 2, 5, 7, 12]: 
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a) Label-based MKL (LB-MKL) 

 

In this section, we will introduce the basic principle 

for the construction of label-based kernel function, and 

give the general formula for the kernel function. Then, 

two-step method will be proposed to solve the label-based 

multiple kernel learning problem. 

 

i. Label Information Added in the Kernel 

Function 

 

For the classification problem, how to measure the 

similarity between the individuals? The natural idea is that 

individuals belonging to the same class should be similar, 

and individuals belonging to different classes should be 

un-similar. Since kernel function is one of the metrics of 

similarity between individuals, then the value of kernel 

function between the individuals belonging to the same 

class should be large, and individuals belonging to 

different classes should be small. 

So, it is reasonable to add the label information to the 

construction of kernel function. The formula of Label-

based kernel function can be defined 

as: *( , ) ( ( , ), )i j i jK x x h K x x Y , Which the kernel funcition 

is multi-variable about the original kernel matrix and the 

label information.  

In this paper, we use an exponential weighted 

approach to combine the label information with the 

original kernel matrices; we define the kernel function as: 

),()1(),(
2

*

ji

xxbeta

jiji xxKeyyxxK
ji

     (2-2-1) 

In the formula, beta is a given parameter 

with 0beta  , which can be qualified by cross-validation. 

The factor 
2

1
ji xxbeta

ji eyy


  is called adjusting factor, 

the range of which is [0, 2].  

The adjusting factor is restricted by the label 

information and the distance of the two points ix and jx . 

If the two points ix and jx  are very close in distance 

metric  belonging to the same class, the factor is 

calculated large, the original kernel ),( ji xxk is 

expanded by the factor, otherwise, if the two points ix and 

jx  are very close in distance metric belonging to the 

different classes, the factor is calculated small, the original 

kernel ),( ji xxk  is co-corrected by compression.  

The adjusting factor has the following properties: 

(1). When the two points ix and jx  are close to 

each other in the distance metrics and belong to the same 

class , the factor is larger than 1, and the original kernel 

function is expanded. This means that the original kernel 

function is trustable and should be strengthened.  

(2). When the two points are far away from each 

other in the distance metrics and do not belong to the 

same class, the factor is smaller than 1. The original 

kernel function is compressed. This means that the 

original kernel function is not trustable and should be un-

strengthened 

(3). When the two points ix and jx  are close to 

each other in the distance metrics and do not belong to the 

same class, the factor is smaller than 1, and the original 

kernel function is compressed, This means that the 

original kernel function is not trustable and should un-

strengthened. 

(4). When the two points ix and jx  are far away 

from each other and belong to the same class, the factor is 

larger than 1, and the original kernel function is expanded. 

This means that the original kernel function is trustable 

and should be strengthened. 

The formula of kernel function with label 

information can be other ways so long as it satisfies the 

four above properties.  

(2-1-3) 

(2-1-2) 
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After the weighting approach, it is necessary to 

transform the matrix )),(*(* ji xxKK to a semi-definite 

positive matrix )),*(*(** ji xxKK , so that the matrix 

**K is a Gram matrix.  

Proposition: For the two points ix and 

jx ( lji ,,1,  ), their kernel function ),(* ji xxK is 

defined by Equation (5), so we get the kernel matrix *K . 

Let ** * *K K K  , then the matrix **K  is a SDP 

matrix. 

Proof:  Since similarity matrix *K is symmetric, 

then we consider the spectral decomposition of matrix *K : 
* TK U U  , 

Where the matix  1 2, , , nU u u u is an orthonormal 

matrix, whose columns are the corresponding 

eigenvectors, and  is the a diagonal matrix containing 

the eigenvalues of *K . 

Since U is an orthonormal matrix, then 

0, , , 1, ,

1, , , 1, , .

 
  

 

T

i j

i j i j n
u u

i j i j n
 

So, we have TU U E , where E is an identity matrix. 

Then 
** * * ( )    T TK K K U U U U  

= ( )  TU E U =
2( ) TU U , 

where 2 is  a diagonal matrix containing the 

eigenvalues of 
**K . 

Since All the elements of the diagonal eigenvalue 

matrix 
2  is non-negative, so the matrix 

)),*(*(** ji xxKK  is a SDP matrix. 

 

ii. Label-based multiple kernel learning 

(LB-MKL) 

 

After the construction of the kernel function, we 

propose two-step method to solve the problem. And the 

framework of LB-MKL approach is shown in Fig.1. 

 

Test: Algorithm 2 

 

Decision function 
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o
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Figure 1. The framework of LB-MKL 

In the framework of LB-MKL approach, there are two 

algorithms, in corresponding to the training process and 

the testing process. They are described in detail below. 

Algorithm 1:Training Algorithm 

1. Let 
MKKK ,,, 21  be a set of normalized input 

similarity matrices calculated from the training 

data points  nxxx ,,, 21  ,drawn from a possibly 

unknown statistical distribution X. 

2. Build a single symmetric similarity matrix using 

the proposed weighting approach for each original 

similarity matrix. Get a set of correcting similarity 

matrices *,*,*, 21 MKKK  . 

3. Transform each *mK  into a PSD matrix **mK , 

respectively.(m=1,…,M) 

4. Use **,*,**,* 21 MKKK   to train a multiple 

kernel learning within the framework of MKL-SVM, 

for the computation of the vector of weights alpha 

that will be used to build the discrimination rule at 

testing time. 

Given an unlabeled data point x, 

*,*,*, 21 MKKK  has to be evaluated. Since labels are 

needed to evaluate *,*,*, 21 MKKK  , we can calculate 

two different values for *,*,*, 21 MKKK  : the first one 

is 

  ),,1,,,1(),,(* liMmxx im  K , assuming x 

belongs to class +1. 

And the second one is  

),,1,,,1(),,(* liMmxx im  K , assuming x 

belongs to class −1.  

For each assumption, all we have to do is to predict 

the class x belongs to. This can be made by calculating the 

conditional decision hyperplanes under each assumption, 

that is )(xf  and )(xf . Then, using a voting scheme, the 

a posteriori class for x can be predicted. These stages are 

summarized in Algorithm 2.  

 

3 Results 

In this section, to test the performance of the 

proposed method, we first perform the artificial 

experiments to show the label-based kernel function is 

more powerful for the classification problems.  And then 

the experiments on real world data is performed, 

compared with other algorithms.  
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3.1 Simulation 

In this section, we illustrate the proposed method is 

more useful to the classification purpose. We demonstrate 

the distribution of data set by proposed method. 

We build a data set made up of 100 two-dimensional 

points (50 per class). To build the set, we first generate 

two uniform distribution with the interval of (-1, 0) and (0, 

1), respective. Then we add the noise to the data set. The 

noise is Guassian distribution with variance of sigma and 

mean of 0. In this section, we set sigma for 0, 0.5, 1 and 2.  

For the original data set, we use the proposed method to 

build the label-based kernel matrix, and the original kernel 

function is Guassian kernel function. For the label-based 

kernel matrix, we adopt eigenvalue decomposition method 

to take the two principle cmponoents with the first two 

large eigenvalues. The Distributions of the original data 

and decomposition data are shown in Fig. 2  (a) ~ (l). 

They have the following characters: 

 
Figure 2. The Distributions of the original data and 

decomposition data 
 (a): Original dataset added by the noise with mean=0 and 

standard variance sigma =0.5. 

(b): Distribution of data in hyperspace after the 

decomposition of kernel matrix with beta=0. 

(c): Distribution of  data in hyperspace after the 

decomposition of kernel matrix in the kernel space with 

beta=1. 

(d): Distribution of data in hyperspace after the 

decomposition of kernel matrix with beta=2. 

(e) : Original data dataset added by the noise with mean=0 

and standard variance sigma =1. 

(f): Distribution of  data in hyperspace after the 

decomposition of kernel matrix with beta=0. 

(g): Distribution of data in hyperspace after the 

decomposition of kernel matrix with beta=0.5. 

(h): Distribution of data in hyperspace after the 

decomposition of kernel matrix with beta=1 

(i): Original data dataset added by the noise with mean=0 

and standard variance sigma =2 

(j): Distribution of  data in hyperspace after the 

decomposition of kernel matrix with beta=0. 

(k): Distribution of  data in hyperspace after the 

decomposition of kernel matrix with beta=0.5. 

(l): Distribution of  data in hyperspace after the 

decomposition of kernel matrix with beta=1. 

 

     Fig. 2, it is clear that after adding the label 

information to the kernel function, the data points in the 

hyperspace are more separable than in the original space. 

So the label-based kernel function is more useful for 

classification.  

3.2 Experiments on Real World Datasets 

We apply the proposed method to five UCI data sets 

[10], the cancer data set, the ionosphere data set, the heart 

disease data set, and the vote recording data set. The 

description of the data sets can be consulted in Table 1. 

    Since the proposed label-based kernel function has 

not been used in single kernel method ever, we perform 

the label-based kernel function in the framework of single 

kernel method SVM, called LB-S-SVM(label-based 

single kernel SVM). Furthermore, in the experiments, we 

perform LB-MKL(label based multiple kernel learning), 

LB-S-SVM(label-based single kernel SVM) on the 

datasets. And the proposed methods are compared with 

SSVM(standard SVM), LDA(linear discriminate analysis), 

and K-NN(k-nearest neighborhood). And the experimental 

results of SSVM, LDA and K-NN are cited from the 

literature [9].  

Table 1.  Summary of the data sets used in the 

experiments 

Database  Number of data Dimension  Classes  
Cancer 683 9 2 

Ionospher

e 
351 34 2 

Heart 462 9 2 

Hepatitis 155 19 2 

Vote 435 16 2 

For each dataset, we have used 80% of the data for 

training and 20% for testing. The parameters for each 

algorithm are selected from the set {2i |i =−7, . . . , 7} by 

ten-fold cross validation on each training data. The results 

of average error ratio on training data and testing data 

over 10 runs of the experiments are shown in Table 2.  

Table 2. The results of average error ratio on train and test 

data 

Database 

LB-

MKL 

(Train  

Test) 

MKL 

(Train   

Test) 

LB-S-

SVM 

(Train  

test) 

SSVM 

(Train  

Test) 

LDA 

(Train 

Test) 

K-NN 

(Train  

Test) 

Cancer 
1.45      

3.71 

1.58      

3.70 

1.57    

3.82 

1.6       

3.9 

3.8     

3.9 

2.2      

2.6 

Ionospher

e 
0           

5.87 

0           

7.60 

2.74    

7.51 

2.7       

6.5 

7.7    

14.1 

9.5     

16.1 

Heart 
23.04   

25.52 

23.05   
28.44 

21.5    
29.6 

21.6    
29.1 

25.2    
28.7 

27.8   
26.5 

Hepatitis 
5.52     

14.96 

6.45     

15.17 
5.00    

17.61 

5.1       

18 

9.2    

17.6 

12.8   

17.4 

Vote 
1.06      
3.76 

1.77      

3.90 

1.52    

3.80 

1.5       

3.7 

4.4     

4.3 

5.1      

6.7 

From the experimental results, our proposed method is 

powerful for classification. When the dimension of the 

dataset is high, the proposed method is much powerful 

than other methods.  

 
          a                 b                 c                 d 

 
           e                f                  g                h 

 
           i                 j                  k                l 
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3.3 The Sensitivity of The Parameter Beta 

In LB-S-SVM and LB-MKL, Beta is a given 

parameter, when beta is too small, the clarifier will be 

over-fitting, and when beta is too large, the effect of label 

information will not be imposed. In this experiment we 

show how the value of beta  impacts on the accuracy of 

the test sets. For each real world data set , we set beta for 

1,2,4,8,16,32, And the results of the average accuracy on 

the test data of 10 runs are shown in Fig. 3. 

From the five figures, it is clear that when beta is 

getting larger, the accuracy of test data is flat with high 

accuracy, we can get the highest accuracy with finite beta. 

To find the best beta for the training data set, we can 

adopt grid searching in the feasible interval of beta until 

the highest accuracy shows up. 

 

Cancer               Ionosphere                 Heart 

 

Hepatitis                      Vote 

Figure 3. The results of the average accuracy with 

different parameter Beta 

4    Conclusion 

In this paper we have proposed a novel technique for 

multiple kernel learning problems within the context of 

SVM classifiers. The proposed framework is based on the 

natural idea that individuals belonging to the same class 

should be similar. This is supported by the fact that the 

suggested method compares favorably theoretically and 

computationally to other well established classification 

techniques in a variety of data sets. 

Regarding further research, a natural extension is to 

study the other formula of kernel function based on label 

information, and the application of this methodology to 

other kernel-based classification methods. 
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