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Abstract

Computational homogenization of elastic media with stationary cracks is
considered, whereby the macroscale stress is obtained by solving a boundary
value problem on a Statistical Volume Element (SVE) and the cracks are rep-
resented by means of the eXtended Finite Element Method (XFEM). With
the presence of cracks on the microscale, conventional BCs (Dirichlet, Neu-
mann, strong periodic) perform poorly, in particular when cracks intersect
the SVE boundary. As a remedy, we herein propose to use a mixed vari-
ational format to impose periodic boundary conditions in a weak sense on
the SVE. Within this framework, we develop a novel traction approximation
that is suitable when cracks intersect the SVE boundary. Our main result is
the proposition of a stable traction approximation that is piecewise constant
between crack-boundary intersections. In particular, we prove analytically
that the proposed approximation is stable in terms of the LBB (inf-sup)
condition and illustrate the stability properties with a numerical example.
We emphasize that the stability analysis is carried out within the setting
of weakly periodic boundary conditions, but it also applies to other mixed
problems with similar structure, e.g. contact problems. The numerical ex-
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amples show that the proposed traction approximation is more efficient than
conventional boundary conditions (Dirichlet, Neumann, strong periodic) in
terms of convergence with increasing SVE size.

Keywords: XFEM, Multiscale modeling, Microcracks, LBB (inf-sup),
Computational Homogenization, Weak periodicity

1. Introduction

Computational homogenization [1, 2] offers the possibility to model the
effective response of microheterogeneous materials in numerical simulations.
The standard approach is to homogenize the response of a Statistical Volume
Element (SVE)1, whereby the choice of suitable boundary conditions (BCs)
on the SVE is critical. It should be noted that conventional BCs (Neumann,
Dirichlet and strong periodic [4, 5]) are inaccurate if cracks are present in the
microstructure. In particular, Neumann BCs result in severe underestimation
of the effective stiffness if cracks cause a piece of the microstructure to be
“cut loose” close to the SVE boundary. On the other hand, Dirichlet BCs
as well as strong periodic BCs suppress crack opening at the SVE boundary,
leading to overstiff predictions. To illustrate these deficiencies, consider the
SVE shown in Figure 1, with traction free cracks and linear elastic bulk
material. Applying a macroscopic strain of ε̄xx = 0.1, ε̄yy = 0.1, ε̄xy = 0
using Dirichlet, Strong periodic and Neumann boundary conditions gives the
qualitative behavior shown in Figure 2. We note that Dirichlet BCs as well
as strong periodic BCs enforce crack closure on the SVE boundary, leading
to overstiff predictions. Neumann BCs predict very low stresses, leading to
severe underprediction of the stiffness.

In the present work, we aim to alleviate the deficiencies illustrated above
by proposing boundary conditions that are free of artificial crack closure
on the SVE boundary without severely underestimating the effective stiff-
ness. We recognize that the so-called window method, initially proposed by
Babuška et al. [6], could be a suitable alternative to be investigated for our
purposes. This since the window method has indicated to show faster con-
vergence than Dirichlet and Neumann BCs and since it is readily applicable

1We prefer the notation SVE over Representative Volume Element (RVE), since a
volume element of finite size will, in general, not be truly representative, cf. Ostoja-
Starzewski [3]
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Figure 1: SVE used for illustration of the problems associated to conventional BCs.

Figure 2: SVE subject to a macroscopic strain of ε̄xx = 0.1, ε̄yy = 0.1, ε̄xy = 0: Qualitative
comparison of Dirichlet BCs (left), Strong periodic BCs (center) and Neumann BCs (right).

when voids (or cracks) are present at the boundary, in contrast to strong
periodic boundary conditions in their standard form [7]. In this method, the
SVE is embedded into a frame of a homogeneous material with a stiffness (up-
dated iteratively) that matches the homogenized response of the SVE. This
could potentially overcome some of the overstiffening effects obtained when
enforcing crack closure at the boundaries using Dirichlet or strong periodic
BCs.

However, in order to avoid the add-ons from the window method (iterative
update of the stiffness of the frame material and an enlarged SVE), we in-
stead develop a weak format of microperiodicity in the spirit of [6], restricting
ourselves in the first step to microstructures with stationary cracks. Within
this framework, we propose a novel piecewise constant traction approxima-
tion, that is free from artificial crack closure on the SVE boundary without
leading to severe underestimation of the effective stiffness. In particular, we
show analytically that the LBB (inf-sup) condition is fulfilled for the pro-
posed discretization and give a numerical example illustrating the stability
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properties of the approximation. We also give numerical examples showing
that the proposed approximation performs well in terms of convergence with
increasing SVE size.

Regarding crack modeling, we note that several options are available,
e.g. embedded discontinuities [8], cohesive zone elements (i.e. inter-element
cracks) [9] or the Extended Finite Element Method (XFEM) [10, 11, 12].
In the present work, we choose to use XFEM, but any of the approaches
mentioned above could be used together with weak periodicity. An advantage
of XFEM is that it allows accurate modeling of both discontinuities and
strong gradients (or even singularities) in the solution field and its derivatives.
In particular, XFEM has been successfully applied to brittle cracks by adding
a step enrichment in completely cut elements and enriching with singular
asymptotic functions close to crack tips [13]. We note that various features
of more complex crack problems can be included in an XFEM framework.
For example, branching or intersecting cracks can be modeled by employing
special enrichments at the crack intersections [14]. Furthermore, it is possible
to model contact and friction along the crack faces in an XFEM setting
[15]. Intersecting cracks are considered in the present work, but we will
only consider traction free cracks, since we are primarily interested in the
performance of different boundary conditions for the SVE problem.

We remark that the present work is concerned with homogenization of mi-
crostructures containing stationary cracks. Hence, we postpone the difficult
question of how to properly treat macroscopic strain localization, see e.g. the
percolation path aligned BCs in [16, 17, 18] or the Multiscale Aggregating
Discontinuities (MAD) method by Belytschko et al. [19]

The remainder of the paper is organized as follows: We start by presenting
the variational format of the resolved problem in Section 2 and proceed by
employing variationally consistent homogenization to arrive at an expression
for the effective macroscale stress in Section 3. The resulting SVE prob-
lem is presented in Section 4, followed by a brief description of the crack
modeling in Section 5 and a detailed discussion on the construction of the
traction mesh in Section 6, where we also discuss stability and solvability of
the mixed variational format. More precisely, we propose a piecewise con-
stant traction approximation, with traction discontinuities at crack-boundary
intersections and SVE corners, and prove solvability for this discretization.
The numerical examples presented in Section 7 show that the prediction of
effective stiffness depends strongly on the choice of boundary conditions and
traction discretization. In particular, the proposed piecewise constant trac-
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tion approximation performs well. Some final remarks and a short summary
conclude the paper in Section 8.

2. A fractured continuum

In order to establish the weak form of the resolved problem (before intro-
ducing homogenization), we consider a domain Ω with external boundary Γ.
The specimen contains cracks, represented by internal boundaries Γint with
predefined normal nint as shown in Figure 3. More precisely, the internal
boundary Γint is a two-sided surface, with a positive side Γ+

int and a negative

side Γ−int. nint is taken as the outward unit normal on Γ−int, nint
def
= n−int.

The domain boundary therefore consists of the external boundary and the
internal crack boundaries:

∂Ω = Γext ∪ Γ+
int ∪ Γ−int.

The external boundary Γext consists of a part Γext,D with Dirichlet boundary
conditions and a part Γext,N with Neumann boundary conditions. In the
following, we let superscripts + and − define quantities on Γ+

int and Γ−int,
respectively. Furthermore, we define the jump of a quantity over the internal

boundary as JuK def
= u+ − u−.

Assuming small strains, the quasistatic equilibrium equations are given
by

− σ ·∇ = f in Ω,

t+ + t− = 0 on Γint,

t = t̂ on Γext,N ,

u = û on Γext,D,

(1)

where σ = σ([u⊗∇]sym) is the Cauchy stress, ∇ is the gradient operator, f
is the body force, t̂ is a prescribed traction and û is a prescribed displacement.
Furthermore,

t+ = −σ|Γ+
int
· nint,

t− = σ|Γ−
int
· nint.

A cohesive zone law may be postulated to describe t = t+ = −t− in terms
of the jump JuK over the internal boundary.
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The weak form corresponding to Equation (1) is given by: Find u ∈ U
such that∫

Ω

σ : [δu⊗∇] dΩ−
∫

Γ+
int

t · JδuK dΓ =

∫
Ω

f · δu dΩ +

∫
Γext

t̂ · δu dΓ ∀δu ∈ U0,

U =
{
v ∈

[
H1(Ω)

]d
, v = û on Γext,D

}
,

U0 =
{
v ∈

[
H1(Ω)

]d
, v = 0 on Γext,D

}
,

(2)

where H1(Ω) denotes the (Sobolev) space of functions with square integrable
gradients on Ω, and d denotes the dimension of the problem. We note that
u and δu do not need to be continuous across Γint.

nint

Γ
-
int

Γ
+
int

Ω

Γext

Ω

Γ

Γ
,int

Figure 3: Domain Ω with external boundary Γext and internal boundaries Γint. An SVE
with domain Ω� and boundary Γ� is also shown.

3. Variationally consistent homogenization - macroscale problem

In order to derive an expression for the effective macroscale stress, we
consider a macroscopically homogeneous domain Ω̄ = Ω ∪ Γint. We wish to
replace integrals over the nonsmooth domain Ω and the internal boundaries
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Γint by a “quadrature”2 for the macroscopically homogeneous domain Ω̄.
Hence, a running average is introduced according to∫

Ω

y dΩ−
∫

Γ+
int

z dΓ→
∫

Ω̄

1

|Ω�|

(∫
Ω�

y dΩ−
∫

Γ+
�,int

z dΓ

)
dΩ, (3)

where Ω� is a Statistical Volume Element (SVE), and Γ+
�,int = Γ+

int ∩ Ω� is
the part of the internal boundary located inside Ω�.

We introduce the smoothing approximation given by Equation (3) in
Equation (2) to get∫

Ω̄

1

|Ω�|

(∫
Ω�

σ : [δu⊗∇] dΩ−
∫

Γ+
�,int

t · JδuK dΓ

)
dΩ =

=

∫
Ω̄

1

|Ω�|

(∫
Ω�

f · δu dΩ

)
dΩ +

∫
Γext

t̂ · δu dΓ.

(4)

In each SVE, the solution field u is split into a smooth part uM and a subscale
fluctuation us according to u = uM + us. First order homogenization is
used, implying that uM varies linearly within each SVE. Hence, uM can be
expressed in terms of the macroscale displacement ū for any x in the SVE
as

uM = ū+ (ū⊗∇) · [x− x̄] (5)

where x̄ = 1
|Ω�|

∫
Ω�
x dΩ and ū ⊗∇ is the gradient of the macroscale dis-

placement evaluated at x̄. To find the weak form of the macroscale problem,
we take the variation of Equation (5) to obtain

δuM = δū+ (δū⊗∇) · [x− x̄]

on each Ω�. Hence, the task is to find ū ∈ Ū that solves∫
Ω̄

σ̄ : [δū⊗∇] dΩ =

∫
Ω̄

f̄ · δū+ f̄
(2)

: [δū⊗∇] dΩ +

∫
Γext,N

t̂ · δū dΓ ∀δū ∈ Ū0,

Ū =
{
v ∈

[
H1
(
Ω̄
)]d

, v = û on Γext,D

}
,

Ū0 =
{
v ∈

[
H1
(
Ω̄
)]d

, v = 0 on Γext,D

}
,

(6)

2Note that an identical formulation results from choosing Ω = ∪Ω� and interpreting
the integrand on Ω̄ to be piecewise constant in each Ω̄�.
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where

f̄
def
=

1

|Ω�|

∫
Ω�

f dΩ,

f̄
(2) def

=
1

|Ω�|

∫
Ω�

f ⊗ [x− x̄] dΩ,

and the effective macroscale stress is

σ̄
def
=

1

|Ω�|

∫
Ω�

σ dΩ. (7)

Remark. The last identity in Equation (7) follows from the assumption
of continuous uM. Hence, macroscopic localization is not considered in the
present work.

Remark. Only volume homogenization is considered in the present work.
Hence, we assume u ≡ ū on the external boundary Γext.

4. Microscale problem

Prolongation conditions defining the relation between u and ū need to
be specified to obtain the effective relation σ̄{ū, ū⊗∇}, cf. Equation (6).
In light of Equation (5), we choose the coupling

ū
def
=

1

|Γ�|

∫
Γ�

u dΓ, ū⊗∇ def
=

1

|Ω�|

∫
Γ�

u⊗ n dΓ. (8)

We note that ū⊗∇ is equal to the volume average of u⊗∇ if no internal
boundaries (e.g. cracks) are present in the SVE. However, equality does
not hold when open cracks are present in the SVE. Thereby, we choose the
definition given by Equation (8) because it measures the effective deformation
and translation of the SVE frame independent of presence of cracks inside
the SVE. Macroscale rigid body translation is here defined in a non-standard
fashion along the lines of that for transient problems in [20]. However, since
the effective stress response is invariant to any translation, this condition
may be expressed in any (reasonable) way we choose, i.e. either by a volume
average or by prescribing the displacement of a single node for a finite element
discretization.

Next, we turn to the definition of quantities on the SVE boundary. First,
we divide the SVE boundary into an image part Γ+

� and a mirror part Γ−� as
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shown in Figure 4. Furthermore, we introduce a mapping ϕper : Γ+
� → Γ−�

such that points on Γ+
� and Γ−� are associated to each other according to

x− = ϕper(x
+). We define the jump between a point x+ on Γ+

� and the
associated point x− = ϕper(x

+) on Γ−� as

JuK�
def
= uΓ+

�
− uΓ−

�
= u− u ◦ϕper on Γ+

�.

Strong periodicity is obtained by prescribing periodic displacements and
antiperiodic tractions. More precisely, in the case of strong periodicity, we
require

JuK� = ε̄ · Jx− x̄K� on Γ+
�, (9)

t+ + t− = 0 on Γ+
�, (10)

1

|Γ�|

∫
Γ�

u dΓ = 0, (11)

where ε̄
def
= [ū⊗∇]sym. Strong periodicity requires Equation (9) and Equa-

tion (10) to hold pointwise on Γ+
�. In the present work, we instead assume

that the subscale field is periodic across the SVE boundaries in a weak sense
as proposed by Larsson et al.[21]. Thus, we introduce an independent dis-
cretization for the boundary traction and require JuK� = ε̄ ·Jx− x̄K� to hold
weakly instead of pointwise to get the following SVE problem: Find u ∈ U�

and tλ ∈ T� such that

a� (u, δu)− d� (tλ, δu) = 0 ∀δu ∈ U�,

−d� (δtλ,u) = −d� (δtλ, ε̄ · [x− x̄]) ∀δtλ ∈ T�,
(12)

U� = {v ∈
[
H1(Ω�)

]d
,

∫
Γ�

v dΓ = 0}, (13)

T� = {t ∈
[
L2

(
Γ+
�

)](d−1)}, (14)

where we introduced the expressions

a� (u, δu)
def
=

1

|Ω�|

[∫
Ω�

σ : ε [δu] dΩ−
∫

Γ+
�,int

t · JδuK dΓ

]
, (15)

d� (tλ, δu)
def
=

1

|Ω�|

∫
Γ+
�

tλ · JδuK� dΓ (16)
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and where L2

(
Γ+
�

)
denotes the space of square integrable functions on Γ+

�.
Solving Equation (12) and employing Equation (7) allows σ̄ = σ̄{ε̄} to

be computed. As to the complete prolongation conditions in Equation (8),
we remark that Equation (11) and Equation (9) correspond to ū = 0 and
ū⊗∇ = ε̄. We note, however, that the effective stress response σ̄ would be
invariant to any ū 6= 0 and [ū⊗∇]skw 6= 0.

In a continuous setting, the second identity in Equation (12) is fulfilled for
all δtλ ∈ T�, so that u = ε̄ · Jx− x̄K� holds pointwise on Γ+

�. Hence, strong
microperiodicity is fulfilled in the continuous setting. On the other hand,
coarsening of U� and T� leads to different modeling, due to weak fulfillment
of the second identity in Equation (12). Dirichlet and Neumann boundary
conditions are obtained by restricting the spaces U� and T�, respectively.
More precisely, Neumann boundary conditions are obtained as the coarsest
possible traction discretization, with piecewise constant traction on each face
of the SVE.

Furthermore, we note that u as well as tλ are discontinuous on Γ� where
cracks intersect the SVE boundary as discussed further below. Before pro-
ceeding, we also remark that the Hill-Mandel condition is satisfied for arbi-
trary choices of Uh

� and Th� [21].

p1ϕper(p1)

p2

ϕper(p2)

Image Γ
+

Mirror Γ
-

Figure 4: Statistical Volume Element (SVE) with boundary divided into image and mirror
parts.
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5. Crack modeling

Solving the mixed variational form, Equation (12), when cracks are present
in the SVE requires that displacement discontinuities across cracks are prop-
erly taken into account in Uh

�. In the present work, we choose to use an
XFEM approximation to account for displacement discontinuities, see e.g.
the classical work by Belytschko and Black [10] or the review by Fries and
Belytschko [12]. Regarding the numerical treatment of intersecting cracks,
as also considered herein, see Daux et al. [14].

We note that numerical problems occur if a part of the microstructure is
completely cut loose by cracks, because the thereby emerging but irrelevant3

rigid body motion will not be prevented in the piece cut loose. In order to
obtain a solvable problem even if this occurs, we use an elastic cohesive zone,
with very low stiffness, as regularization. We remark that this regularization
is added to avoid unrestricted rigid body displacement in the SVE. Hence,
this regularization is not related to the stability of the traction approxima-
tion presented below.

6. Stable traction approximations in 2D

6.1. Preliminaries

To solve the mixed variational form in Equation (12), we need to con-
struct a suitable test space Th� for the boundary traction, e.g. with a global
polynomial basis [22] or with a piecewise polynomial approximation repre-
sented by a traction mesh on the SVE boundary [21]. In the following, we
restrict the analysis to 2D4, and choose the latter option, i.e. we specify Th�
by dividing Γ+

� into (one-dimensional) segments Te and requiring tλ to be
piecewise polynomial on each Te. Furthermore, we let Q denote the set of
points either where cracks intersect the SVE boundary or where the normal
of the SVE boundary is discontinuous (i.e. at SVE corners).

3The rigid body motion of a cut loose part will not affect the effective stress result,
and thus represents an additional invariant for the system.

4We restrict ourselves to 2D in order to simplify the traction mesh generation. We
note, however, that both weakly periodic boundary conditions and XFEM are applicable
to 3D problems. See e.g. Öhman et al. [23] regarding weakly periodic BCs and Areias et
al. [24] regarding XFEM.
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We now consider piecewise linear continuous approximations given by

Th,lin� = {t is piecewise linear on each Te and continuous everywhere except at qi ∈ Q} .
(17)

We also consider piecewise constant discontinuous approximations given by

Th,const� = {t is piecewise constant on each Te with discontinuities at qi ∈ Q}
(18)

as discussed further below.
We note that no special regularity requirements need to be fulfilled by the

traction discretization, other than that specified in Equation (14). However,
the stability of the mixed formulation in terms of the LBB condition needs
to be addressed.

6.2. Piecewise linear traction approximation

To construct a traction mesh suitable for a piecewise linear approximation
tλ ∈ Th,lin� , we may start by following along the same lines as Larsson et
al.[21]. As a first step, all nodes on the image boundary as well as the mirror
boundary are projected onto the image boundary as shown in Figure 5. Also,
points where cracks intersect the boundary are projected in the same way.
The next step is to remove nodes that are closer to each other than a given
tolerance, in order to avoid traction elements that are too small, see [21] for
details. The mesh obtained in this way, or meshes obtained by coarsening this
mesh, as shown to the right in Figure 5, have been shown to give LBB-stable
approximations for piecewise linear functions in Uh

� and Th� [21].

6.3. Lowest order stable approximation

In the following, we aim to establish the lowest order stable approxi-
mation with nontrivial response. As discussed previously, strong periodic
BCs (corresponding to well resolved weak periodic BCs) may give overstiff
response when cracks are present in the SVE, because strong periodic BCs
will close cracks that are not aligned with the periodicity directions. On the
other hand, as also discussed above, Neumann BCs (corresponding to weak
periodic BCs with the coarsest possible traction discretization) will predict
zero stiffness if only a tiny part of the SVE is “cut loose” by cracks. Hence,
to find a more suitable BC, we are interested in traction discretizations that
are sufficiently fine to predict a stiffness greater than zero, but not so fine

12



that cracks intersecting the boundary are forced to be closed. To this end,
we propose a piecewise constant traction approximation tλ ∈ Th,const� , with
traction discontinuities only at the SVE corners and where cracks intersect
the boundary only, as shown in Figure 6. This discretization is stable in
terms of the LBB condition as we prove below.

6.4. Proof of stability

It is known that a piecewise constant traction approximation on each
linear displacement element fails to fulfill the LBB condition, cf. El-Abbasi
and Bathe [25] in the context of contact. Therefore, the stability of the
piecewise constant traction approximation tλ ∈ Th,const� proposed above needs
to be studied in detail. In order to ensure existence and uniqueness of the
solution for the special case considered in our work, we need to ensure that

inf
0 6=tλ∈T�

sup
0 6=u∈U�

d�(tλ,u)

‖tλ‖T‖u‖U
≥ β, (19)

where β is a positive constant and the norms are given by

‖tλ‖T =

√∫
Γ+
�

tλ · tλ dΓ, (20)

‖u‖U =
√
a� (u,u). (21)

We remark that solvability of the discrete problem is guaranteed if Equa-
tion (19) is satisfied for the chosen discretization. Furthermore, if β is in-
dependent of the element size, Equation (19) represents the classic LBB
condition, implying numerical stability. To see that Equation (19) is indeed
satisfied for the piecewise constant traction approximation shown in Figure
6, we first note that

inf
0 6=tλ∈T�

sup
0 6=u∈U�

d�(tλ,u)

‖tλ‖T‖u‖U
≥ inf

0 6=tλ∈T�

d�(tλ, ũ)

‖tλ‖T‖ũ‖U
(22)

for an arbitrarily chosen nonzero ũ ∈ U�. Hence, the proof of stability
can be obtained by constructing a ũ that fulfills Equation (19). To this
end, let ũ be bilinear on each traction element as shown in Figure 7. ũ is
zero at the ends of the traction element and reaches a maximum value ũi
somewhere in the element, where i denotes the index of the traction element.
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To derive a bound, we now choose the specific amplitude ũi = 2tλi. We
remark that the maximum point, where ũ = ũi, can be located anywhere
within the traction element. In practice, this case corresponds to having at
least one (displacement) node somewhere in each traction element. This is
a reasonable requirement on a good mesh, and it will always be fulfilled in
the limit of a very fine mesh. Furthermore, we set ũ = 0 on Γ−� as well as
along the dashed blue lines shown in Figure 7. For this choice of ũ, it can
be shown that d�(tλ, ũ) is given by (see Appendix Appendix A)

d�(tλ, ũ) =
∑
i

(tλi · tλi) si =

∫
Γ+
�

tλ · tλ dΓ = ‖tλ‖2
T. (23)

In Appendix Appendix A, we also show that

‖u‖U ≤ C1‖tλ‖T, (24)

where

C1 =

√
8λmaxL�

s2
min

. (25)

In Equation (25) above, λmax is the largest eigenvalue of the constitutive
stiffness tensor, L� is the SVE size and smin is the smallest distance between
a traction discontinuity and a point where ũ = ũi as indicated in Figure 7.

Now, by inserting Equation (23) and Equation (24) in Equation (22), we
obtain

inf
06=tλ∈T�

d�(tλ, ũ)

‖tλ‖T‖ũ‖U
= inf

0 6=tλ∈T�

‖tλ‖T
‖ũ‖U

≥ inf
0 6=tλ∈T�

‖tλ‖T
C1‖tλ‖T

=
1

C1

. (26)

Comparing with Equation (19), we have

inf
0 6=tλ∈T�

sup
0 6=u∈U�

d�(tλ,u)

‖tλ‖T‖u‖U
≥ 1

C1

> 0, (27)

where the constant C1 =
√

8λmaxL�
s2min

is positive and independent of the mesh

size. Hence, Equation (19) is fulfilled for the discrete problem, provided that
there is at least one (displacement) node within each traction element.
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6.5. Implications of stability analysis

We have shown that a traction approximation that is piecewise constant
between crack-boundary intersections is stable provided that the displace-
ment approximation allows a bilinear displacement on each traction element
as shown in Figure 7. This condition is fulfilled if the displacement mesh has
at least one node inside each traction element. A simple example of stable
and unstable approximations is given in Figure 8.

Since fulfillment of the LBB condition requires C1 to be independent of the
mesh size, the size of the traction elements must be kept fixed when refining
the displacement mesh. This is the case here, where the traction mesh is
constructed from the location of crack-boundary intersections that do not
change under mesh refinement. Refining the traction mesh together with
the displacement mesh would cause smin to decrease under mesh refinement
and hence 1

C1
would tend to zero, which would imply violation of the LBB

condition as given by Equation (19).

Mesh

Traction node candidates

Cracks

Crack-boundary intersections

Projected nodes

Figure 5: Traction discretization: unprocessed (left) and processed (right) traction meshes.
Addition of traction nodes where cracks intersect the boundary is indicated to the left.
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t
4

Figure 6: Piecewise constant traction approximation with traction discontinuities at SVE
boundaries and crack-boundary intersections.

s
min

t 

u
∼

 

u
∼

 = 0 

Figure 7: Definition of ũ for solvability considerations: ũ is bilinear on each traction
element.
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(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 8: Traction meshes for illustration of the stability analysis: Mesh A gives unstable
response whereas Mesh B and Mesh C give stable response (provided that the traction
mesh is kept fixed when refining the displacement mesh).
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7. Numerical examples

In this section, we first demonstrate the implications of the stability anal-
ysis by solving a simple problem using stable and unstable traction approxi-
mations in Section 7.1.

Since first order homogenization is used, a Representative Volume Ele-
ment (RVE) that gives the “exact” unique response needs to be infinitely
large. Hence, subsequent to the stability analysis, in this section we also
study how large the SVE needs to be in order to obtain accurate results. We
start with an example of a periodic microstructure in Section 7.2, in order to
show the convergence properties of the formulation in a simple case. To show
the behavior of different BCs when cracks intersect the SVE boundary, we
then proceed by analyzing a single realization of a random microstructure in
Section 7.3. Finally, we consider several realizations of a random microstruc-
ture in Section 7.4, in order to obtain results of average properties.

In all examples, we consider a two-dimensional linear elastic microstruc-
ture. Plane strain and quasistatic loading is assumed. Following standard
procedures, the cracks are modeled with a combination of Heaviside enrich-
ment in completely cut elements and asymptotic enrichments in tip elements.

For the examples in Sections 7.2, 7.3 and 7.4, we consider a material with
Young’s modulus E = 210 MPa and Poisson’s ratio ν = 0.3. The element
size is kept fixed and a (displacement) mesh consisting of 10 × 10 4-node
quadrilaterals is used for the smallest SVE in all analyses5.

To analyze the results of the numerical simulations, we will study the
smallest eigenvalue of the effective stiffness tensor. The reason for showing
the smallest eigenvalue, rather than e.g. the largest, is that the smallest
eigenvalue better captures the sensitivity (or insensitivity) to spurious soft-
ening for different boundary conditions.

The model has been implemented in the open source code OOFEM [26,
27].

7.1. Stability of the mixed formulation

As a supplement to the analytical stability proof provided in Section
6.4, we will illustrate the assumptions behind the proof with a numerical
example. The proof states that the LBB condition is fulfilled if at least one

5This is sufficient because asymptotic enrichment functions are used in elements con-
taining crack tips.
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displacement node is located inside each traction element and the size of the
traction elements is kept constant when refining the displacement elements.

To illustrate this condition with the simplest possible example, we con-
sider a homogeneous SVE (pure, homogeneous material without cracks or
inclusions) discretized with 10 × 10 quadrilateral elements. The material is
linear elastic with Young’s modulus E = 10 and Poisson’s ratio ν = 0.3. We
use weakly periodic boundary conditions to apply a uniaxial effective strain
ε̄xx = 1.

Three different traction meshes are considered as shown in Figure 8. We
note that Mesh B and Mesh C have at least one displacement node inside each
traction element, so we expect these discretizations to give stable response.
However, Mesh A does not meet this requirement, so we cannot expect Mesh
A to give stable response. Solving the SVE problem with these three meshes
and computing the condition number of the global stiffness matrix gives the
following result:

• Mesh A gives a condition number of 1025,

• Mesh B gives a condition number of 108,

• Mesh C gives a condition number of 107.

Mesh A results in a very high condition number that indicates numerical
problems, whereas Mesh B and Mesh C lead to well conditioned matrices.
Furthermore, the instability indicated by the high condition number obtained
with Mesh A pollutes the solution for the boundary traction as shown in
Figure 9: Mesh B and Mesh C lead to smooth boundary tractions, whereas
Mesh A leads to an oscillatory solution.

With the simple example above in mind, we emphasize that the piecewise
constant traction approximation is stable provided that:

1. At least one displacement node is located inside each traction element.
This is a reasonable assumption for a sufficiently fine displacement
mesh, provided that the traction elements are not allowed to be too
small (see also the discussion on removing traction nodes that are too
close in [21]).

2. The length of the traction elements must not tend to zero as the dis-
placement elements are refined. This requirement is fulfilled in the
present work, because the traction mesh is created based on the loca-
tions of cracks or grain boundaries, and these positions do not change
under mesh refinement.
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(a) Y-axis range from −1.0 · 103 to 1.0 ·
103.
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Figure 9: Traction along Γ+
� computed with different traction meshes. We display the

results with a wide y-axis range (left) to show the oscillatory response obtained with Mesh
A and a zoomed in plot (right) to show the smooth response obtained with Mesh B and
Mesh C. We note that the densest traction discretization (Mesh A) is unstable. (We also
note that the traction is discontinuous across the SVE corner, since the normal of the
boundary is discontinuous there.)

7.2. Cracks in a periodic microstructure

In this example, we consider cracks in a periodic microstructure and in-
vestigate the effect of different piecewise linear traction discretizations. The
microstructure considered, with a unit cell length of 10 µm, is shown in Fig-
ure 10. A crack of length Lc = 5 µm is centered in the unit cell and oriented
such that the angle to the horizontal axis is 30 degrees.

The smallest eigenvalue of the effective stiffness tensor, computed with
Dirichlet, Neumann and strong periodic boundary conditions, is shown in
Figure 11. We note, as expected, that Dirichlet boundary conditions con-
verge from above while Neumann boundary conditions converge from below
when increasing the SVE size. Strong periodic boundary conditions are ex-
act for the smallest SVE, because the microstructure is periodic. Keeping
these standard results in mind, we proceed and study the performance of
weakly periodic BCs with different traction discretizations. In particular, we
consider the following coarsenings from the densest piecewise linear traction
mesh:

• Mesh Lin1: All traction nodes are retained and piecewise linear inter-
polation is used.
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Figure 10: Periodic microstructure with cracks considered in Example 7.2.

• Mesh Lin2: Every second traction node is retained and piecewise linear
interpolation is used.

• Mesh Lin3: Every fifth traction node is retained and piecewise linear
interpolation is used.

• Mesh Lin4: Coarsest possible traction discretization, only corner nodes
are retained and piecewise linear interpolation is used.

Examples of two traction discretizations are shown in Figure 12. The effective
stiffness predicted with different traction meshes and piecewise linear traction
interpolation is shown in Figure 13. The coarsest possible discretization
corresponds to Neumann boundary conditions, while the finest discretization
gives strong periodic boundary conditions. It is interesting to note that a
traction node spacing of 5, which is the smallest possible refinement from
the Neumann case, gives results that are very close to the strong periodic
case. For this example, the results thus converge quickly towards the strong
periodic solution when refining the traction mesh.

7.3. Single realization of a random microstructure

We consider a single realization of a microstructure with randomly dis-
tributed cracks. In this example, all cracks are straight and have the same
length Lc = 10 µm. A large sample is created and SVEs of different sizes are
cut out from the large sample. Figure 14 shows SVEs of a few different sizes.
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Figure 11: Convergence of effective stiffness for the periodic microstructure considered in
Example 7.2.

The effective stiffness of the SVE is computed with Dirichlet, Neumann
and weakly periodic boundary conditions. For the weakly periodic BCs, three
different traction discretizations are considered:

• Mesh Lin5: All traction nodes are retained and piecewise linear inter-
polation is used.

• Mesh Lin6: Only traction nodes located at corners and where cracks
intersect the boundary are retained. Piecewise linear interpolation is
used.

• Mesh Const1: As Lin6, but with piecewise constant interpolation on
each traction element. This is the lowest order stable approximation
with nontrivial response discussed in Section 6.3.

The three discretizations defined above are shown in Figure 15 for the small-
est SVE.

The effective stiffness predicted with different BCs and traction discretiza-
tions is shown in Figure 16. The stiffness predicted with Dirichlet BCs con-
verges from above, while zero or almost zero stiffness is predicted with Neu-
mann BCs. In general, zero stiffness will be predicted with Neumann BCs if
a part of the boundary is completely cut loose by cracks. This phenomenon
is increasingly likely to occur somewhere along the boundary when the SVE
size increases, and the zero stiffness predicted with Neumann BCs is therefore
expected.
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(a) Mesh Lin1: Traction mesh with all
nodes retained.

(b) Mesh Lin3: Traction mesh with every
fifth node retained.

Figure 12: Different traction discretizations used in Example 7.2.

Turning our attention to the weakly periodic BCs, we note that the so-
lution obtained with Lin5, corresponding to (almost) strong periodic BCs,
converges from above and it converges faster than Dirichlet BCs. However,
the solution is still notably overstiff. A weaker response is predicted when
mesh Lin6 or mesh Const1 is used. We note that the curves in Figure 16
are nonsmooth because the small SVEs are not statistically representative.
Hence, our next step is to perform simulations on several realizations of the
microstructure and study the convergence of the mean value.

7.4. Statistical properties of a random microstructure

In the last example, we consider several realizations of the random mi-
crostructure studied in Example 7.3. The number of realizations for each
SVE size is chosen such that the 95% confidence interval6 for the smallest
eigenvalue of the effective stiffness is within ±5% of the mean value.

The mean value of the effective stiffness may be computed using Voigt
sampling,

EV = 〈E〉 , (28)

or using Reuss sampling,

ER =
〈
E−1

〉−1
. (29)

6Assuming a normal distribution.
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Figure 13: Convergence of effective stiffness for the periodic microstructure considered in
Example 7.2.

Figure 14: Statistical Volume Elements (SVEs) of different sizes for the random mi-
crostructure considered in Example 7.3.

In the above equations, 〈•〉 def
= 1

N

∑N
i=1 •i denotes the ensemble average of N

realizations.
The mean effective stiffness predicted with different BCs and discretiza-

tions is shown in Figure 17 (Voigt sampling) and Figure 18 (Reuss sampling).
As one can expect, the curves are smoother than for the single realization
shown in Figure 16. Weakly periodic BCs with mesh Lin5 give an improve-
ment compared to Dirichlet BCs, but weakly periodic BCs with meshes Lin6
and Const1 give a considerable improvement compared to weakly periodic
BCs with mesh Lin5. Using weakly periodic BCs in combination with Reuss
sampling further improves the stiffness prediction, in particular for Const1.
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(a) Lin5 (b) Lin6 and Const1

Figure 15: Different traction discretizations considered in Example 7.3.

8. Summary and conclusions

In this paper, we study (first order) computational homogenization of mi-
crostructures with cracks, whereby the effective macroscale stress is obtained
by solving a boundary value problem on Statistical Volume Elements (SVEs).
In particular, we discuss the performance of different boundary conditions
(BCs) on the SVE when cracks intersect the SVE boundary. We remark
that conventional BCs (Dirichlet, Neumann, strong periodic) perform poorly
when cracks intersect the SVE boundary. Therefore, we employ a weak for-
mat of microperiodicity that allows more freedom in adapting the BCs to the
problem at hand.

The resulting SVE problem leads to a mixed variational format with dis-
placements and boundary tractions as unknowns, whereby different choices
for the traction approximation are possible. We choose to create a traction
mesh on the image part of the SVE boundary and propose traction approx-
imations that are piecewise constant between points where cracks intersect
the boundary. The novel feature of this paper is the proposition of suitable
traction approximations when cracks intersect the boundary, including the
analysis of stability and accuracy properties for these approximations. In
particular, we prove analytically that the LBB (inf-sup) condition is fulfilled
for the chosen discretization and give a numerical example of stable and un-
stable approximations. We emphasize that even though the stability analysis
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Figure 16: Effective stiffness of a random microstructure predicted with different BCs and
discretizations.
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Figure 17: Effective stiffness for several realizations of a random microstructure. Mean
value computed with Voigt sampling.

is carried out within the setting of weakly periodic boundary conditions, it
also applies to other mixed problems with similar structure, e.g. contact
problems.

With the numerical examples, we also show that the prediction of the
effective stiffness depends strongly on the choice of boundary conditions and
traction approximation. In particular, we demonstrate that the proposed
novel traction approximation can give a substantial improvement compared
to Dirichlet and strong periodic BCs, allowing for use of SVEs much smaller
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Figure 18: Effective stiffness for several realizations of a random microstructure. Mean
value computed with Reuss sampling.

than what would be expected to be representative.
As for Neumann boundary conditions, we show that, (as expected), zero

stiffness is predicted if cracks are located in such a way that a piece of the
microstructure is completely “cut loose”. As mentioned above, we propose
a piecewise constant traction approximation, with traction discontinuities
at corners and crack-boundary intersections. The proposed discretization is
identical to Neumann BCs when no cracks intersect the boundary. In the
case that cracks do intersect the boundary, the proposed piecewise constant
discretization differs from Neumann BCs in the crucial sense that it does not
predict zero stiffness if only a small part of the material is “cut loose” by
cracks.

As to future developments, we remark that the boundary conditions pro-
posed in this work do not enforce artificial closure of cracks on the SVE
boundary. An interesting extension of the present work is to investigate how
this feature affects the numerical results when crack propagation and damage
progression occurs in the microstructure.
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Appendix A. Solvability

In order to complete the stability proof in Section 6.4, we will here derive
the estimates for d�(tλ, ũ) and ‖ũ‖U. To this end, recall the definition of ũ
shown in Figure 7, where ũ is defined to be bilinear on each traction element.
Furthermore, we define ũ to be zero on Γ−� as well as along the dashed blue
lines in Figure 7. Next, we divide the SVE into triangles γi as shown in Figure
A.19, so that each traction element (index i) is associated to a triangle γi.
Each triangle γi is in turn split into two triangles γAi and γBi .

As also shown in Figure A.19, we denote the length of the boundary
segment associated to γAi and γBi by sAi and sBi , respectively. Furthermore,
we let smin denote the smallest value of all sAi and sBi .

γ
  A

i

γ
  B

i

s  A
i

s  B
i

s
min

u
∼

 = 0 

γ i

(xi, yi)

Figure A.19: Partitioning of SVE for solvability considerations: Each traction element
(index i) is associated to a triangular part of the domain denoted by γi. Each triangle
γi is in turn split along the dashed red line intersecting Γ+

� at (xi, yi), forming two trian-
gles γAi and γBi . We also show the shortest distance smin between (xi, yi) and traction
discontinuities.
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Appendix A.1. Evaluation of d�(tλ, ũ)
In order to evaluate d�(tλ, ũ), we start from Equation (16) and note that

JũK� = ũ+ − ũ− = ũ+ − 0. By exploiting the fact that tλ is piecewise
constant and noting that Γi = ΓAi ∪ ΓBi , we get

d�(tλ, ũ) =

∫
Γ+
�

tλ · JũK� dΓ =

∫
Γ+
�

tλ · ũ dΓ =

=
∑
i

∫
Γi

tλi · ũ dΓ =
∑
i

tλi ·
∫

Γi

ũ dΓ =

=
∑
i

tλi ·

[∫
ΓAi

ũ dΓ +

∫
ΓBi

ũ dΓ

]
,

(A.1)

where tλi denotes the traction on traction element i. On each ΓAi and ΓBi , ũ

varies linearly between 0 and some maximum value ũi. If we let si
def
= sAi +sBi ,

we can therefore express Equation (A.1) as∑
i

tλi ·

[∫
ΓAi

ũ dΓ +

∫
ΓBi

ũ dΓ

]
=
∑
i

tλi ·
[
ũi
sAi
2

+ ũi
sBi
2

]
=

=
∑
i

sAi + sBi
2

tλi ·ũi =
∑
i

si
2
tλi ·ũi.

(A.2)

Recall that the purpose is to choose a clever ũ in order to prove Equation
(19) via Equation (22). The choice ũi = 2tλi inserted in Equation (A.2)
results in

d�(tλ, ũ) =
∑
i

si
2
tλi ·ũi =

∑
i

(tλi · tλi) si =

∫
Γ+
�

tλ · tλ dΓ = ‖tλ‖2
T. (A.3)

Appendix A.2. Estimation of bound for ‖ũ‖U
In order to compute a bound for ‖ũ‖U, we start from

‖ũ‖U =
√
a� (ũ, ũ) =

√∫
Ω

ε : E : ε dΩ. (A.4)

By splitting the domain into triangles as described previously, we may eval-
uate Equation (A.4) as

‖ũ‖U =

√√√√∑
i

(∫
γAi

ε : E : ε dΩ +

∫
γBi

ε : E : ε dΩ

)
. (A.5)
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Below, we utilize that the strain is piecewise constant on each triangle, and
can be expressed in terms of the traction amplitude ti.

Appendix A.2.1. Evaluation of the strain on γAi
Consider a triangle γAi with an associated part of the boundary ΓAi . Let

the boundary part be located at x = L�. The displacement varies linearly
according to

ũα = A1α + A2αx+ A3αy, (A.6)

where α denotes x− or y−direction. The conditions on the displacement at
the triangle corners allow us to solve for the coefficients as follows:

ũα(0, 0) = 0
ũα
(
L�, yi − sAi

)
= 0

ũα(L�, yi) = ũαi

⇒


A1α = 0

A2α = (ũαi/L�)(1− yi/sAi )
A3α = ũαi/s

A
i

Hence, the displacement in a triangle γAi is given by

ũα = (ũαi/L�)(1− yi/sAi )x+
ũαi
sAi
y.

The components of the displacement gradient are trivially obtained as

∂ ũα
∂x

= (ũαi/L�)(1− yi/sAi ),
∂ ũα
∂y

=
ũαi
sAi
.
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The (Euclidean) norm of the strain7 in a triangle γAi is bounded by

|εAi | = |[u⊗∇]sym| =

√(
ũxi
L�

(
1− yi

sAi

))2

+
1

2

(
ũyi
L�

(
1− yi

sAi

)
+
ũxi
sAi

)2

+

(
ũyi
sAi

)2

=

=
1

sAi

√
ũ2
xi

L2
�

(sAi − yi)
2

+
1

2

ũ2
yi

L2
�

(sAi − yi)
2

+
ũyi
L�

(sAi − yi) ũxi +
1

2
ũ2
xi + ũ2

yi

≤ 1

sAi

√
ũ2
xi

L2
�

|sAi − yi|
2

+
1

2

ũ2
yi

L2
�

|sAi − yi|
2

+
|ũyi|
L�
|sAi − yi| |ũxi|+

1

2
ũ2
xi + ũ2

yi{
Insert that |ũxi| ≤ |ũi|, |ũyi| ≤ |ũi| and

∣∣sAi − yi∣∣ ≤ L�

}
≤ 1

sAi

√
|ũi|2

L2
�

L2
� +

1

2

|ũi|2

L2
�

L2
� +
|ũi|
L�

L�|ũi|+
1

2
|ũi|2 + |ũi|2

≤ |ũi|
sAi

√
1 +

1

2
+ 1 +

1

2
+ 1 = 2

|ũi|
sAi

.

Inserting the choice ũi = 2tλi, we obtain

|εAi | ≤ 2
|2tλi|
sAi

= 4
|tλi|
sAi

. (A.7)

Clearly, the same procedure can be carried out for a triangle sharing an edge
with the part of Γ+

� parallel to the x-axis.

Appendix A.2.2. Evaluation of the strain on γBi
Consider a triangle γBi with an associated part of the boundary ΓBi . Let

the boundary part be located at x = L�. The displacement varies linearly
according to

ũα = A4α + A5αx+ A6αy,

where α denotes x− or y−direction. We may employ the same procedure as
in Appendix A.2.1 to solve for the coefficients:

ũα(0, 0) = 0
ũα(L�, yi) = ũαi

ũα
(
L�, yi + sBi

)
= 0
⇒


A4α = 0

A5α = (ũαi/L�)(1 + yi/s
B
i )

A6α = −ũαi/sBi

7We simply define the norm of the strain tensor as |ε| =
√
ε : ε.
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Therefore, the displacement in a triangle γBi is given by

ũα =
ũαi
L�

(
1 +

yi
sBi

)
x− ũαi

sBi
y,

so that the displacement gradient can be computed as

∂ ũα
∂x

=
ũαi
L�

(
1 +

yi
sBi

)
,

∂ ũα
∂y

= − ũαi
sBi

.

Following the same procedure as in Appendix A.2.1 and noting that
sBi + yi ≤ L�, we compute a bound for the strain as

|ε| =

√(
ũxi
L�

(
1 +

yi
sBi

))2

+
1

2

(
ũyi
L�

(
1 +

yi
sBi

)
− ũxi
sBi

)2

+

(
ũyi
sBi

)2

≤ |ũi|
sBi

√
3

2

(
1

L�
(sBi + yi)

)2

+
1

L�
(sBi + yi) +

3

2

≤ |ũi|
sBi

√
3

2

(
1

L�
(L�)

)2

+
1

L�
(L�) +

3

2

= 2
|ũi|
sBi

.

In summary, we have the estimate

|εBi | ≤ 2
|ũi|
sBi

= 4
|tλi|
sBi

.

Appendix A.2.3. Evaluation of bound for ‖u‖U
For a piece γAi , we have∫

γAi

ε : E : ε dΩ ≤ λmax|ε|2A = λmax|ε|2
L�s

A
i

2

≤ λmax

(
4
|tλi|
sAi

)2
L�s

A
i

2
= 8λmax

|tλi|2L�

sAi
,

where |ε| is constant over the triangle and bounded according to Appendix
A.2.1, and λmax is the largest eigenvalue of the stiffness tensor anywhere in
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the domain Ω�. Similarly, from Appendix A.2.2, we conclude for a piece γBi
that ∫

γBi

ε : E : ε dΩ ≤ 8λmax
|tλi|2L�

sBi
.

Now return to the expression for ‖u‖U in Equation (A.5):

‖u‖U =

√∑
i

∫
γAi

ε : E : ε dΩ +

∫
γBi

ε : E : ε dΩ

≤

√√√√∑
i

8λmax
|tλi|2L�

sAi
+ 8λmax

|tλi|2L�

sBi

≤
√

8λmax
L�

s2
min

∑
i

(sAi + sBi ) |tλi|2

=

√
8λmax

L�

s2
min︸ ︷︷ ︸

def
=C1

‖tλ‖T.

In short, we have

‖u‖U ≤ C1‖tλ‖T,

where

C1 =

√
8λmaxL�

s2
min

.

Since C1 > 0 and independent of the mesh size, we now have the results we
need to complete the stability proof in Section 6.4.
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