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The non-linear out-of-plane displacements of partially unsymmetric laminates are mod-
elled using both finite element analysis and an analytical method. Attention is focused
on the effects that thermal stresses have on the potential multiple shapes of a composite
structure. The paper extends previous analytical models which could only take into
account ‘‘free-free” boundary conditions. The shape functions that model the out-of-plane
displacements are modified to include variations of the curvatures within the domain. The
new analytical formulation is compared with literature and finite element analysis for a
square plate and then it is tested for laminates with piecewise variation of lay-up in the
planform. The results are validated against finite element analysis and experimental tests
and a good correlation is obtained. Finally, a parametric study is made on the effect of
changing the fibres orientation and the laminate thickness. The results confirm that it is
possible to introduce bi-stable composites within structures to obtain systems that are
both flexible and stiff depending on the loading environment.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials made of orthotropic layers may develop residual stresses when subjected to a thermal field that
varies with time (Hyer, 1982). The thermal stresses are caused by the mismatch of coefficients of thermal expansion longi-
tudinal and transverse to the fibre direction (e.g. o(10�8) for the longitudinal direction and o(10�6) for the transverse direc-
tion). Furthermore, if the material is not stacked symmetrically with respect to the mid-plane, then during the cool-down
from high curing temperatures, it is possible that bending and twisting moments are generated within the laminated struc-
ture, resulting in out-of-plane displacements. At room temperature, the structure has built-in residual stresses that establish
equilibrium in more than one configuration. For square plates, the stable configurations are cylindrical with generators par-
allel to the x and y-axes and, moreover, it is possible to snap from one configuration to another by applying moments or
forces to counteract the curvature. This type of behaviour presents some interesting advantages when designing structures
that have the requirements of variable geometries and several studies on their applicability to morphing structures have
been published (Diaconu et al., 2008; Mattioni et al., 2007; Schultz, 2008). Iqbal and Pellegrino (2000) investigated the
use of bi-stable composite shells as hinges for deployable structure while Dano and Hyer (2002, 2003) and Portela et al.
(2008) studied actuation systems based on piezo-electric patches. Most of the studies that can be found in the literature
are focused on square or rectangular plates. Configurations different from these are usually analysed through an experimen-
tal analysis (Potter and Weaver, 2004; Gigliotti et al., 2004) or numerical simulation (Mattioni et al., 2008). Finite element
analysis (FEA), in particular, is essential for preliminary studies on complex geometries and different stacking sequences but,
. All rights reserved.
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because of the non-linear nature of the behaviour of these plates, it is particularly time consuming and often requires
continuous user input to achieve convergence. A reduced order model based on analytical techniques can be helpful to draw
guidelines for the design of multi-stable structures both quickly and inexpensively. Most analytical models are based on
using Rayleigh–Ritz minimisation of the total potential energy in conjunction with polynomial approximations of the
displacements of the mid-plane strains (Dano and Hyer, 1998; Hufenbach and Gude, 2002; Jun and Hong, 1990). This paper
extends these models to account for boundary conditions different from the free-free type so far used. Taking into account
boundary conditions is essential when studying the interaction of bi-stable structures as components of larger structures and
is also the first step required to be able to model different geometries with analytical techniques.

2. Analytical background

The analysis shown in this paper is based on the model by Dano and Hyer (2002) where the strain energy of an unsym-
metric panel, subjected to thermal loads, is minimised by using a Rayleigh–Ritz technique to analyse the energetic content
of the structure. The total potential energy (P) of a composites structure in plane-stress and subjected to a difference in
temperature, can be expressed as a function of the mid-plane strains (e0), of the curvatures (k0) and of the laminate stiff-
ness, as
P ¼
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are the thermal forces and moments per unit length. In order to be able to predict the stable configurations after cool-down,
the mid-plane strain components e0 and j0 are expressed as polynomial functions with unknown coefficients that have to be
determined by minimising the total potential energy. It is noteworthy that the function chosen for the approximation must
satisfy at least the essential boundary conditions. The approximation function chosen by Hyer to model the out-of-plane dis-
placement is
wðx; yÞ ¼ �1
2
ðw20x2 þw02y2 þw11xyÞ; ð4Þ
where w20, w02, w11 are unknown coefficients which represent, respectively, the negative of the curvatures in the x and y
directions and the negative of the twist curvature, as
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This choice of displacement function assumes the curvature to be constant throughout the domain. To obtain the shear
deformation c0

xy, compatibility relations are applied. The total strain vector e = e0 + zj0 includes von Kàrman non-linear terms
for the mid-plane strains. This requirement is a mandatory feature as Hyer and Bhavani (1984) showed that the classical
lamination theory fails to capture the room-temperature shape of cross-ply laminates. The mid-plane strain vector formu-
lation then becomes
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while the curvature vector is
k0 ¼ �
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w11
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>;: ð7Þ
Dano and Hyer (2002) assumed that the strain is given by
e0
x ¼ ex00 þ ex20x2 þ ex11xyþ ex02y2;

e0
y ¼ ey00 þ ey20x2 þ ey11xyþ ey02y2:

ð8Þ
The in-plane displacement function is then
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The unknown functions h(y) = u01y + u03y3 and h(y) = v10x + v30x3 are chosen to obtain the required degrees of freedom for
the displacements. Rigid body rotations are eliminated by equating the coefficients of the first order terms of the variables
x and y. The shear strain deformation is simply
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3. Extension of the existing models

As shown in Section 2, the procedure to express the total potential energy P as a function of the displacement coefficients,
material properties and temperature change, is well-established and so far it has been successfully applied to panels with
uniform stacking sequence. The study presented herein modifies the existing models to consider piecewise variation of
the lay-up in the planform, thus accounting for boundary conditions embedded into the structure. The purpose is to provide
an engineering tool that can help at the preliminary design stage of unsymmetrical laminated structures. With such a model
it is possible to analyse the equilibrium configurations of structures for more practical applications, such as those described
by Diaconu et al. (2008).

It has been observed that, to model boundary conditions that are not simply free edges, the hypothesis of constant cur-
vatures has to be removed since it is too restrictive. This is clearly understood by examining the bending behaviour of a
plate in the region close to the edge where a constraining moment is applied. From the kinematics it is known that the
bending moment in a plate is proportional to the curvature and therefore whenever a moment is applied to an edge, a
variation in the local curvature is expected. For this reason the curvature must be allowed to vary across the domain
and therefore a fourth order displacement function is chosen as a basis to extend the model. The out-of-plane displace-
ment function can be regarded as the result of the product of two parabolas along the principal directions (i.e. parabolic
variation of the curvatures)
wðx; yÞ ¼ PðxÞ � GðyÞ; ð11Þ
where
PðxÞ ¼ p0 þ p1xþ p2x2;

GðyÞ ¼ g0 þ g1yþ g2y2:
ð12Þ
To simplify the computation of derivatives and integrals, the previous expression is re-arranged as
wðx; yÞ ¼ w00 þw10xþw01yþw20x2 þw02y2 þw11xyþw12xy2 þw21x2yþw22x2y2: ð13Þ
Within this notation, the first subscript refers to the order of the x-variable while the second one refers to the order of the
y-variable. The polynomial functions chosen by Hyer to model the strain displacements provide an adequate number of
degrees of freedom and therefore their expression is unchanged. For completeness they are presented, with the different
notation adopted here, as
e0
x ¼ ex00 þ ex20x2 þ ex11xyþ ex02y2;

e0
y ¼ ey00 þ ey20x2 þ ey11xyþ ey02y2:

ð14Þ
The shear deformation is determined using the procedure outlined in Eqs. (9) and (10). The drilling degree of freedom is
eliminated by imposing u01 = v10. This model has 20 unknown coefficients.
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4. Application to a square plate

To validate the effectiveness of the modified model and before applying it to more complex types of structures, it is
applied to a square plate with all edges free. The results obtained are then compared with Hyer’s model and FEA. The total
potential energy is assembled and minimised with the help of the symbolic manipulation software Maple 9.5. The equilib-
rium configurations are obtained by using a non-linear optimisation subroutine ‘‘NLPSolve” that finds the local minima of a
non-linear function. This greatly simplifies the solution of the system of non-linear equations that are obtained when min-
imising the total energy. Furthermore, the boundary conditions and the other constraints imposed on the model can be
directly implemented as constraints for the optimisation process. In this way, it is easier to automate the process for para-
metric studies and it is possible to avoid the difficulties encountered when finding the solution through a Newton–Räphson
scheme (typically the sensitivity with respect to the initial guess). The comparison is carried out for a square plate with side
length L of 180 mm and stacking sequence [04/904]T. Table 1 shows the values of the total potential energy and of the prin-
cipal curvatures (kx and ky) for the two equilibrium configurations. Fig. 1 shows a superposition of the three equilibrium
shapes obtained respectively with Hyer’s model, the extended model and FEA. Fig. 2 shows three sections of the plate
obtained at the centre and at 80% of the semi-span of the panel, respectively. To highlight the differences between the three
models the vertical displacement has been amplified by a factor of 5. As can be seen, the differences between the three mod-
els are very small all over the panel and the greater difference is found within the regions close to the edges. Here, the con-
figuration computed with the higher order model has a slight parabolic variation of the edge shape, whereas the panel
obtained with Hyer’s model shows an almost perfectly straight edge. The FEA predicts an edge that is almost flat in the
Table 1
Curvature comparison for the square plate

Hyer’s model (m�1) Extended model (m�1)

Configuration 1 P �0.874 �0.878
kx �3.52 �28.02y2 + 3.58
ky 0.04 �28.02x2 + 0.0089

Configuration 2 P �0.874 �0.878
kx 0.04 �28.02x2 + 0.0089
ky �3.52 �28.02y2 + 3.58

Fig. 1. Hyer’s model and extended model overlaid onto the FE model.



Fig. 2. Cross-section comparison at different stations.

Fig. 3. Principal curvatures comparison.
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central part and slightly curved towards the corners. In this area, the displacements are particularly difficult to match with
those obtained with the FEA because of the steep variation of the curvatures. Both the model developed by Hyer and its exten-
sion are not able to describe accurately the local displacement in this region since they have been developed to obtain a good
approximation of the overall deformation and not of the local effects close to the boundary. A detailed analysis of the bound-
ary layer area requires a different type of approximation functions and it is beyond the scope of this study. Fig. 3 shows a com-
parison of the values of the curvatures for the two analytical models at a section taken at the centre of the plate. It is clear that
the higher order model predicts quadratic curvature while the previous model has a constant value throughout the domain.

5. Application to a compound plate

The results obtained for the square plate show a satisfactory agreement between the two analytical models and therefore
the higher order model is applied to the analysis of panels with piecewise variation of the laminate in the planform. A test
structure for this purpose is obtained by joining together two square plates with different stacking sequences. The panel is



Fig. 4. Test model geometry and coordinate system.
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180 mm � 360 mm and the coordinate systems used throughout this section are shown in Fig. 4. The material properties are
those of typical pre-preg carbon–epoxy laminates and are listed in Table 2. The left-hand side of the plate has a symmetric
stacking sequence (02/902]SYM) while the right-hand side has an unsymmetric lay-up (04/904]T). This is equivalent to impos-
ing an elastic boundary condition at the edge where the two plates are joined together. An experimental demonstrator of the
aforementioned structure has been built and its equilibrium configurations are shown in Fig. 5.

Let A be the domain representing the whole structure so that A = A1 [ A2, where A1 represents the symmetric plate and A2

the unsymmetric plate. Using a domain decomposition, if the functions that describe the displacements are piecewise
smooth over the domain A, it is possible to take into account the interaction between the symmetric and unsymmetric por-
tions of plate. The displacement field of each part of the panel is modeled according to Eqs. (9) and (14). For clarity, the func-
tion for the assumed out-of-plane displacement for each plate is presented
Table 2
Typical
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whilst the strain functions are
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where the superscript i refers to the symmetric (i = 1) or unsymmetric (i = 2) part. The strain energy is formulated for each
substructure separately, thus accounting for the different stacking sequences, and then the two contributions are summed to
obtain the energy for the complete structure, P = P1 + P2.
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values for the material properties used throughout the paper

l E11 (GPa) E22 (GPa) G12 (GPa) m12 a1 (�C�1) a2 (�C�1) t (mm)

14 130 10 4.4 0.33 �0.18e � 6 30e � 6 0.125

Fig. 5. Experimental model. (a) First equilibrium shape. (b) Second equilibrium shape.
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The strain energy P is now a function of 42 unknown coefficients and its local minima correspond to the equilibrium
configurations of the plate. To simplify the minimisation process, the following assumptions are made

� The geometric centre of the symmetric part is clamped to eliminate rigid body translation (i.e. wð1Þ00 ¼ 0).
� From the experimental observation, it has been noticed that the equilibrium configurations are symmetric with respect to

the y-axis (i.e. wðiÞ10 ¼ wðiÞ11 ¼ wðiÞ12 ¼ 0 for i = 1,2).
� The drilling degree of freedom is eliminated in both parts (i.e. uðiÞ01 ¼ vðiÞ10 for i = 1,2).

With this approach, the number of unknown coefficients is reduced to 33. To account for the interaction between the sym-
metric part and the unsymmetric part of the panel, it is necessary to impose the continuity of the displacement across the
whole domain A, and therefore the following conditions must hold:
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The continuity on ow=oy is not imposed since this is implicitly satisfied from within the continuity of the out-of-plane dis-
placement. The solutions have been found with the same technique as for the square plate. The analytical model successfully
captures the behaviour of the multi-stable structure as shown in Fig. 6.

It must be pointed out that Eq. (18) are assumed to be valid on a macroscopic basis (i.e. at laminate level). The under-
standing of what happens at ply level requires a different approach. Because of the particular stacking sequence, fibres
and matrix continuity at ply level can only be obtained for those layers with fibres at 00 (i.e. parallel to the y-axis), which
are continuous through the symmetric and the unsymmetric laminates. For the layers at 90�, such continuity relies entirely
on the matrix since the fibres are parallel to the boundary. This creates resin-rich zones that also induce stress-concentra-
tions that might cause cracks to develop when the load axis is along the 0� direction. To reduce this, it is possible to modify
the interface between the two parts by offsetting the position of the ply drop for the layers at 90�. This would create a tran-
sition zone rather that an abrupt change as it is now, but could also modify the stiffness of the constraint introducing further
difficulties for the analytical model. For these reasons, for engineering modelling purposes, the assumption of structural con-
tinuity at laminate level is considered acceptable.

A detailed comparison with the numerical and experimental configurations is presented in the following section.
Fig. 6. Equilibrium shapes obtained with the analytical model. (a) First equilibrium shape. (b) Second equilibrium shape.



Fig. 7. Analytical vs FE shape for the 4-layered plate. (a) Flat configuration. (b) Curled configuration.
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6. Finite element analysis and experimental results

In this section, the results obtained with the analytical model and their comparison with numerical and experimental
data is presented. Residual stresses are generated by the temperature difference and no external force is applied to the
specimen. Since there is more than one equilibrium configuration, the main difficulty is presented by the existence of a
bifurcation point, a value for the temperature beyond which two solutions are possible. The general approach is to impose
a geometric imperfection to the structure, to coax it to converge to one configuration rather than the other. This approach
generally works well for square plates where removing the double symmetry coaxes the algorithm to converge to one solu-
tion. However, for the chosen configuration there is no such symmetry, the sensitivity with respect to imperfections is less
evident and therefore a different method was required. It has been observed that the static algorithm converges to one equi-
librium shape whereas the dynamic algorithm always converges to the other shape. This difference is due to the inertia
contribution, which the dynamic analysis accounts for (Mattioni et al., 2007). This evidence suggested that using a
pseudo-dynamic solution scheme it could be possible to converge to either of the equilibrium states by modifying the
amount of artificial damping used. FEA has been performed with the commercial software ABAQUS where the pseudo
dynamic analysis is performed by using the ‘‘*Static, stabilize” option which makes use of an automatic stabilisation
based on the addition of viscous forces to the global equilibrium equation. The viscous forces are introduced into the numer-
ical scheme as soon as instabilities are detected in the stiffness matrix of the system and have the form of Fv = cM*v, where M*

is the artificial mass matrix calculated with unit density, c is the damping factor chosen as a fraction of the dissipated energy
and v is the vector of nodal velocities. This stabilisation technique is, in fact, equivalent to adding the inertia contribution
only for those numerical steps that would otherwise present singularities. A more detailed description of the numerical
analysis procedure is given in Mattioni et al. (2007). The panel is modelled using 800 four-node-square shell elements
(S4R) with a total of 861 nodes and 5166 degrees of freedom. The cool-down is simulated by applying an initial temperature
of 140 �C and a final temperature of 0 �C to all the nodes of the model. If no stabilisation is used, the solution analysis always
converges to one of the equilibrium shapes and ‘‘negative eigenvalue warnings” are issued by the solver. This confirms the
presence of a singular point and that the algorithm followed one branch of the solution until convergence is achieved. To
capture the second equilibrium shape, a separate analysis makes use of the ‘‘stabilize” option. The stabilisation technique
adds viscous forces to damp local instabilities when convergence is difficult to achieve and allows the system to jump to
the other branch of the solution and to converge to the other equilibrium shape.

Figs. 7 and 8 show an overall comparison between the FEA and the analytical data for the 4- and the 8-layered panels. The
comparison is carried out according to the system of reference shown in Fig. 9. The markers represent the analytical data,
whereas the mesh represents the FEA results. As can be seen, the two models have a satisfactory overall agreement, the
greatest difference being towards the unsymmetric edge. The 8-layered panel shows a better agreement compared to the
4-layered one. The analytical model, because of its reduced number of degrees of freedom, is in a sense stiffer and therefore
it better captures the reduced displacements of the 8-layered panel. Figs. 10 and 11 show a similar comparison but the re-
sults are also compared against experimental data. This latter comparison highlights the effect that the FEA is also stiffer
with respect to experimental data, presumably due to the mesh density chosen as a compromise between accuracy and com-
putational efficiency.

7. Parametric studies: effects of boundary conditions

In this section, the analytical model is used to investigate the effects of different lay-ups and thicknesses of the
symmetric part of panel. The scope of this section is to highlight the effect of the boundary conditions on the bi-stable



Fig. 8. Analytical vs FE shape for the 8-layered plate. (a) Flat configuration. (b) Curled configuration.

Fig. 9. Test model geometry and coordinate system.
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properties of the unsymmetric part of the panel. The base state is represented by the 8-layered unsymmetric panel with-
out any constraint. As observed in the previous sections, the two cylindrical configurations that are obtained with a
square unsymmetric panel are identical in terms of curvature values. By constraining one of the edges of the panel,
the curvature along the constrained edge is considerably reduced, as expected. At the boundary between the two 8-lay-
ered plates, the transverse curvature is 37% of the unrestrained panel curvature. Moving away from the restrained edge,
the effect of the constraint diminishes and the curvature is gradually recovered. At the maximum distance from the con-
straint (i.e. the ‘‘unsymmetric-edge”), the curvature reaches approximately 60% of the unrestrained plate curvature. By
examining the longitudinal curvature (i.e. perpendicular to the constrained edge), the curvature is 99% of the value
achieved by the free panel (i.e. it is almost unaffected by the presence of the symmetric panel). This effect is explained
by the fact that the constraint increases the stiffness in the transverse direction and therefore the associated curvature
changes. Along the longitudinal direction, the shape is almost perfectly cylindrical, there is little transverse curvature
and therefore a very small effect is observed. In fact, the shape is never exactly cylindrical but has a small anticlastic
component that is highly dependent on the thickness/side-length ratio. For plates with geometry similar to those ana-
lysed here, it is expected that this response does not affect the global behaviour of the panel and therefore as a first
approximation, the effects of the anticlastic curvature are neglected.

The parametric study was done using seven different panels with different lay-ups for the symmetric part:

- 8 layers: [0�2, 90�2]SYM

- 16 layers: [0�4, 90�4]SYM

- 24 layers: [0�6, 90�6]SYM

- Ninety dominant laminate: [90�3, 0�]SYM

- Zero dominant laminate: [0�3, 90�]SYM

- Quasi-isotropic laminate: [45�, �45�, 90�, 0�]SYM

- Antisymmetric angle ply: [45�, �45�2, 45�]ANTISYM

The principal difference between the laminates tested is the transverse stiffness. For the first three stacking sequences, the
driving factor is the thickness, while for the last four it is the fibre orientation. Throughout the analysis the unsymmetric part



Fig. 10. Analytical vs. FEA section for the 4-layered plate. (a) Unsymmetric edge cross-section. (b) Symmetric edge cross-section. (c) Longitudinal cross-
section for the curled configuration.
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remains unchanged, with stacking sequence [90�4, 0�4]T, as this maximises the bi-stable behaviour. The values of the trans-
verse curvature kx and the difference with respect to the free-free square plate are shown in Tables 3 and 4. From a physical
point of view it is easier to understand the differences by examining Figs. 13 and 14 where the different cross-sections (see
Fig. 12) of the plate are shown.

Fig. 13 presents the results obtained by varying the number of layers. As expected, an increase in thickness results in a
reduction of the transverse curvature of the flat configuration as shown by Fig. 13(a) and (b). Fig. 13(c) shows almost iden-
tical values for all configurations and this result confirms the reduced sensitivity of the longitudinal curvature with respect
to a variation of the constraint characteristics.

The effects of using different stacking sequences with the symmetric panel are summarised in Fig. 14. Fig. 14(a) and (b)
shows the same result as above but with a much smaller range of variation since the thickness of the two plates is the
same. Fig. 14(c) shows (Fig. 13(c) likewise) that the longitudinal curvature is not affected by the constraint. In both cases,
the curvature at the unsymmetric edge is very similar and reaches approximately 60% of the unrestrained panel. These
results highlight the robustness of the bi-stable behaviour of unsymmetric laminates. Even if one of the edges is con-
strained, almost 60% of their bi-stable behaviour is retained and moreover it is possible to tailor the final geometry with
reasonable accuracy.

8. Concluding remarks

A non-linear analytical model to predict the equilibrium configurations of multistable composite with piecewise variation
of the laminate in the planform has been presented.

The model is aimed at helping the preliminary design phases of unsymmetric laminates and is based on an empirical
approach that relies on experimental tests to validate the results. The goal was to extend previous analytical techniques



Fig. 11. Analytical vs. FE section for the 8-layered plate. (a) Unsymmetric edge cross-section. (b) Symmetric edge cross-section. (c) Longitudinal cross-
section for the curled configuration.

Table 3
Transverse curvatures kx for different thicknesses

Constrained cross-section (m�1) D% Unsymmetric cross-section (m�1) D%

8 layers �1.25 37.2 �2.03 60.5
16 layers �0.67 20.0 �2.04 60.9
24 layers �0.33 9.8 �2.03 60.5

Reference Square plate kx �3.351

Table 4
Transverse curvatures kx for different laminates

Constrained cross-section (m�1) D% Unsymmetric cross-section (m�1) D%

[02�, 902�]SYM �1.25 37.2 �2.03 60.5
[0�3, 90�]SYM �2.25 67.0 �2.76 82.2
[90�3, 90�]SYM �1.21 36.1 �2.01 60.1
[45�, �45�2, 45�]ANTISYM �1.56 46.6 �2.32 69.2
[45�, �45�, 90, 0�]SYM �1.56 46.6 �2.32 69.2

Reference Square plate kx �3.351
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by adding the capability to map curvatures that are non-constant within the domain. A new formulation for the displace-
ment field is undertaken and used to predict the deformation of a bi-stable square plate. The results have been validated
against previous models and FEA. The extended model is then applied to a compound plate obtained by joining together



Fig. 12. Parametric study geometry and cross-sections.

Fig. 13. Effects of the thickness of the symmetric part. (a) Constrained cross-section. (b) Unsymmetric edge cross-section. (c) Longitudinal cross-section for
the curled configuration. (d) Effects of the stacking sequence of the symmetric part.
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two square plates with symmetric and unsymmetric stacking sequences. The results obtained are compared with FEA and
experimental tests achieving a satisfactory agreement. Finally, the technique is used to investigate the effects of the bound-
ary conditions on the bi-stable behaviour of unsymmetric panels. It has been observed that if one edge is constrained, the
curvature parallel to it is considerably reduced whereas the curvature perpendicular the edge remains almost unchanged.
A parametric study performed by changing the thickness and the stacking sequence of the symmetric plate is used to confirm
these results and to prove that the bi-stable behaviour of unsymmetric laminates is quite robust. This confirms that the inte-
gration of bi-stable patches within bigger structures could be a potential solution for the realisation of new structural sys-
tems where the requirement of flexibility and stiffness must be combined together.



Fig. 14. (a) Constrained cross-section. (b) Unsymmetric edge cross-section. (c) Longitudinal cross-section for the curled configuration.
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