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Abstract. The statistical process control (SPC) chart is effective in detecting process
faults. One important assumption for using the traditional SPC charts requires that the
plotted observations are independent to each other. However, the assumption of inde-
pendent observations is not typically applicable in practice. When the observations are
autocorrelated, the false alarms are increased, and these improper signals can result in
a misinterpretation. Therefore, the use of engineering process control (EPC) has been
proposed to overcome this difficulty. Although EPC is able to compensate for the effects
of faults, it decreases the monitoring capability of SPC. This study proposes the combina-
tion of SPC, EPC and artificial neural network (SPC/EPC/ANN) and SPC, EPC and
support vector machine (SPC/EPC/SVM) mechanisms to solve this problem. Using the
proposed schemes, this study introduces a useful technique to detect the starting time of
process faults based on the execution of the binomial random experiments. The effective-
ness and the beneficial results of the proposed schemes are demonstrated through the use
of series simulations.
Keywords: Fault detection, SPC, EPC, Artificial neural networks, Support vector ma-
chine

1. Introduction. Statistical process control (SPC) charts have been continuously de-
veloped and implemented in practice for more than 80 years. The primary function of
SPC charts is to detect the presence of faults as soon as they intrude in the process. One
important assumption for using the traditional SPC charts requires that the monitored
observations are independent from each other. Otherwise, the false alarms are increased,
and these improper signals result in misinterpretation and decrease capability of SPC
charts.

However, autocorrelation commonly exists in real-life processes. The typical reasons
include a shorter sampling interval, higher frequency of sampling time (i.e., they may
be due to the use of automatic measuring systems or sensors), or the dynamic response
time of the chemical materials. Consequently, autocorrelation occurs most frequently in
the continuous and chemical processes [1-4]. The process personnel need to pay more
attention while using traditional SPC charts on those autocorrelated processes.
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Several studies have discussed this important issue. For example, [5] indicated that the
false alarm signals would be increased even if a moderate autocorrelation exists among
the observations. The algorithmic statistical process control (ASPC) which was proposed
by [6] can be used to monitor an autocorrelated process. This is feasible since the con-
trolled process would be independently and identically distributed (iid) as long as the
proper control action is implemented and the original process model pertains. [7-9] all
suggested to fit an appropriate ARIMA model to the autocorrelated observations and
then the resulting independent residuals can be monitored by SPC charts. However, the
ARIMA modeling could be a time-consuming task, [11,12]. In addition, [10] studied the
performance of a Cusum control chart for monitoring the residuals. [6] discussed the prob-
lems and addressed the potential research direction about monitoring the autocorrelated
observations. Some other research can also be referenced in [13-20].
The use of engineering process control (EPC) has been mainly suggested and imple-

mented to deal with the difficulties of monitoring the autocorrelated process [21,22]. How-
ever, little work has been done on addressing the drawbacks of the integration of EPC
and SPC. That is, although the good feature of fault compensation can be achieved by
using EPC, it results in a decrease of insensitivity of the SPC monitoring capability.
In this study, we propose the combination of SPC, EPC and artificial neural network
(SPC/EPC/ANN), as well as SPC, EPC and support vector machine (SPC/EPC/SVM)
mechanisms to solve the problem of insensitivity of SPC monitoring. Using the proposed
mechanisms, we are able to effectively detect the starting time of a fault in an autocorre-
lated process. The superiority of the proposed approaches is also demonstrated with the
use of simulated experiments.
The structure of this study is organized as follows. Section 2 discusses the difficulty

of SPC/EPC system for monitoring an autocorrelated process. the basic concepts for
the EPC are introduced in this section as well. Section 3 introduces the proposed ap-
proaches for detecting the fault of a process. Section 4 demonstrates a series of simulated
experiments which are used to report the performance of the typical and the proposed
approaches. Section 5 concludes this study.

2. Problem Statement. The integration of SPC and EPC has become a promising area
of research in recent years, and the benefits have been reported in several studies [18-20].
One of the important features of using proper EPC is to compensate for the effects of
process faults, and consequently, the resulting process observations should be independent
from each other. That is, the proper use of EPC results in a lack of autocorrelation among
the observations. The traditional SPC chart is then able to monitor these independent
observations. However, the method of using EPC to remove the autocorrelation has a
drawback. When a proper EPC is used to fine-tune the process, the autocorrelation
structure is removed; however, the effects of the fault are also obscured. This would cause
the problem in which a fault can not be clearly detected by the SPC charts. Therefore,
even when the autocorrelation is removed by a proper EPC, the SPC charts are still
unable to effectively detect the process faults. As a consequence, the resulting average
run length (ARL) would be larger than the exact ARL.
Consider a zero order process with an AR(1) noise [19]:

Yt+1 = qXt + dt+1, dt+1 =
at+1

(1− ϕB)
(1)

where
Yt+1: the output deviation at time t+ 1,
Xt: deviation from the manipulate variable at time t,
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q: the process parameter,
at+1: the white noise at time t+ 1, and they are iid with normal distribution.
dt+1: the noise.

A minimum mean squared error (MMSE) control is commonly used to tune the process
[14,15]. To compensate for the noise, dt, it is can be shown that the following MMSE
control action can be obtained:

X̂t = ϕXt−1 −
ϕ

q
at = ϕXt−1 −

ϕ

q
Yt (2)

In addition, substituting Equation (2) into Equation (1), the following equation holds:

Yt+1 = at+1 (3)

Equation (3) implies that the output deviations from the target would follow a sequence
of white noise, and therefore, these output deviations from the target are independent to
each other. Consequently, it is appropriate to use the SPC charts to monitor the output
deviations when a suitable EPC control action is used to tune the process.

Now consider a step-change fault (or level shift) has been introduced in the process,
and Equation (1) can be reformed as:

Yt+1 = qXt + dt+1 + δ (4)

where δ stands for magnitude of the fault. When the MMSE is used to tune the process
(i.e., Equation (4)), it can be shown that the following equation holds:

Yt+1 = δ(1− ϕ) + at+1 (5)

Equation (5) implies that the fault would be compensated by the MMSE control action.
However, the fault becomes more difficult to detect since the magnitude of effects of the
fault also becomes smaller.

Consider a process which is represented by Equation (1) with the following parameter
settings: q = 0.3, ϕ = 0.8 and the variance of the white noise is 1. Suppose that a
fault, δ = 1, is introduced at time 51. Figures 1 and 2 show the corresponding process
outputs without and with use of MMSE control, respectively. Observing Figure 2, one can
apparently notice that the fault is mainly compensated by the MMSE. However, from a

Figure 1. The process outputs (without use of MMSE) in the case of
ϕ = 0.8 and δ = 1
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Figure 2. The process outputs (with use of MMSE) in the case of ϕ = 0.8
and δ = 1

monitoring point of view, the out-of-control signal needs more time to be triggered. That
is, the out-of-control ARL becomes larger when EPC is used.

3. Proposed Methodologies. In this section, we present the concept of ANN and SVM.
In addition, the fault detection technique is addressed.

3.1. ANN. An artificial neural network is a massively parallel system comprised of highly
interconnected, interacting processing elements, or units that are based on neurobiological
models. ANNs process information through the interactions of a large number of simple
processing elements or units, also known as neurons. Knowledge is not stored within
individual processing units, but is represented by the strength between units [23]. Each
piece of knowledge is a pattern of activity spread among many processing elements, and
each processing element can be involved in the partial representation of many pieces of
information.
Owing to its associated memory characteristic and its generalization capability, ANN

has increasingly found use in modeling nonstationary processes [24]. Recently, more and
more computer scientists and statisticians have become interested in the computational
potential of ANN algorithms. The capability of ANN and SPC charts in identifying a shift
in the mean level were discussed by [25]. It concluded that an ANN can be designed which
equal or exceed the performance of the standard X̄ control chart. The ANN was trained
to recognize shifts in process mean and variability values with a rational subgroup size
of ten [26]. The SPC, EPC and ANN were combined to identify the types of underlying
faults in a process [27]. The ANN was used to detect and classify three types of non-
random faults [28]. The SPC/EPC was integrated with ANN to identify process faults
[29]. The ANN and multivariate adaptive regression splines (MARS) were employed to
classify the pattern of breast cancer [30]. For more related research issue, we refer readers
to [31-36] and the references therein.
ANN can be classified into two different categories, feedforward networks and feedback

networks [23]. The nodes in the ANN can be divided into three layers: the input layer,
the output layer and one or more hidden layers. The nodes in the input layer receive
input signals from an external source and the nodes in the output layer provide the target
output signals.
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The output of each neuron in the input layer is the same as the input to that neuron.
For each neuron j in the hidden layer and neuron k in the output layer, the net inputs
are given by

netj =
∑
i

wji∗oi and netk =
∑
j

wkj∗oj,

where i(j) is a neuron in the previous layer, oi(oj) is the output of node i(j) and wji(wkj)
is the connection weight from neuron i(j) to neuron j(k). The neuron outputs are given
by

oi = neti

oj =
1

1 + exp−(netj + θj)
= fj(netj, θj) (6)

ok =
1

1 + exp−(netk + θk)
= fk(netk, θk) (7)

where netj(netk) is the input signal from the external source to the node j(k) in the input
layer and θj(θk) is a bias. The transformation function shown in Equations (6) and (7)
is called sigmoid function and is the one most commonly utilized to date. Consequently,
sigmoid function is used in this study.

The generalized delta rule is the conventional technique used to derive the connection
weights of the feedforward network [23]. Initially, a set of random numbers is assigned to
the connection weights. Then for a presentation of a pattern p with target output vector
tp = [tp1, tp2, ..., tpM ]T , the sum of squared error to be minimized is given by

Ep =
1

2

M∑
j=1

(tpj − opj)
2

whereM is the number of output nodes. By minimizing the error Ep using the technique of
gradient descent, the connection weights can be updated by using the following equations:

∆wji(p) = ηδpjopj + α∆wji(p− 1)

where for output nodes
δpj = (tpj − opj)opj(1− opj)

and for other nodes

δpj =

(∑
k

δpk ∗ wkj

)
opj(1− opj)

Note that the learning rate affects the network’s generalization and the learning speed to
a great extent.

3.2. SVM. The concept about support vector machine was initially addressed by [37]. It
became an attractive learning method due to the successful kernel-based framework [38].
Basically, the aim of SVM is to find a hyperplane in the middle of the most separated
margins between two classes; so that, this hyperplane can be applied for classifying the
new testing samples. In addition, the SVM has been successfully implemented in different
areas, and they can be referenced by [39-44].

The use of SVM algorithm can be described as follows. Let {(xi, yi)}Ni=1, xi ∈ Rd,
yi ∈ {−1, 1} be the training set with input vectors and labels. Here, N is the number of
sample observations and d is the dimension of each observation, yi is known target. The
algorithm is to seek the hyperplane w · xi + b = 0, where w is the vector of hyperplane
and b is a bias term, to separate the data from two classes with maximal margin width
2/ ∥w∥2, and the all points under the boundary is named support vector. In order to
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obtain the optimal hyperplane, the SVM was used to solve the following optimization
problem [45]:

Min Φ(x) =
1

2
∥w∥2

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, ..., N

(8)

It is difficult to solve Equation (8), and we need to transform the optimization problem
to the dual problem by Lagrange method. The value of α in the Lagrange method must
be non-negative real coefficients. The Equation (8) is transformed into the following
constrained form [45]:

Max Φ(w, b, ξ, α, β) =
N∑
i=1

αi −
1

2

N∑
i=1,j=1

αiαjyiyjx
T
i xj

s.t.
N∑
j=1

αjyj = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., N

(9)

In Equation (9), C is the penalty factor and determines the degree of penalty assigned
to an error. It can be viewed as a tuning parameter which can be used to control the
trade-off between maximizing the margin and the classification error.
In general, it could not find the linear separate hyperplane for all data. For problems

that cannot be linearly separated in the input space, the SVM uses the kernel method
to transform the original input space into a high dimensional feature space where an
optimal linear separating hyperplane can be found. The common kernel function are
linear, polynomial, radial basis function (RBF) and sigmoid.

3.3. An illustrative example for the fault detection technique. The concept of
the fault detection technique is described as follows. When a set of input variables is
applied to the proposed SPC/EPC/ANN or SPC/EPC/SVM mechanisms, we obtain a
target output. In this study, the outcome of the output variable is classified into either 1
or 0. The values of 1 and 0 correspond to the success and failure of a binomial experiment.
Typically, a binomial experiment possesses the following properties:

(1) There are two types of outcomes, success or failure, in each trail.
(2) The success rate of each trail is p and the failure rate of each trial is 1− p.
(3) Each experiment is mutually independent.

The decision about the starting time of a fault cannot be accurately made through
observing the outcome of a signal trail. Instead, we should employ the cumulative prob-
ability distribution of a binomial experiment to determine the fault.
To clearly explain the concept of the proposed techniques, this study provides an il-

lustrative example. Consider a process which can be represented by Equation (1), where
q = 0.3, ϕ = 0.8 and the variance of the white noise is 1. This autocorrelated pro-
cess is tuned by Equation (2). After time 101, a fault has occurred in the process, and
the process can now be represented by Equation (4). In addition, we initially applied
SPC/EPC/ANN to obtain the outcomes of the process state. The detailed structures of
the ANN will be described in the next section. An X control chart is used to monitor
this autocorrelated process. In this example, an out-of-control signal is triggered at time
136.
Table 1 shows the outputs for performing the simulation. The first column of Table 1 is

the sampling number which starts from time 1 to the signal time t (i.e., t = 136 in here).
The second column of Table 1 is the backward number, recording list from the signal time
t to 1 in a backward sequence. The value of this column can be deemed as the number of
binomial experiments. The third column of Table 1 stands for the outcomes of the output
variable in the SPC/EPC/ANN model. A value of 1 indicates that the process fault has
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occurred, while a value of 0 implies that the fault has not yet appeared. The fourth
column of Table 1 is the total sum of cumulative occurrence of “1”, starting from the
time t−1. The last column of Table 1 is the binomial cumulative distribution probability.
Now consider the value of the cumulative probability is 0.905 when the sampling number
is 128. This means that the cumulative sum of “1’s” (i.e., column 4) is 7 and the number
of experiment (i.e., column 2) is 8, and thus, we can calculate the binomial probability
by using Equation (10):

f(x) =

(
n
x

)
px(1− p)n−x, x = 1, 2, ...n(

n
x

)
=

n!

x!(n− x)!

(10)

where
n: the number of binomial experiments (i.e., column 2 of Table 1),
x: the number of success in n experiments (i.e., column 4 of Table 1), and
p: the probability of obtaining the outcome of success in an experiment (i.e., the accurate
identification rate of the ANN or SVM classifier).

By observing Table 1, we can see that the cumulative probability is 1 and 0.905 at
sampling number 129 and 128, respectively. A higher value of cumulative probability
indicates that a large proportion of “1’s” has occurred in the experiments. This large
proportion of “1’s” implies that there is a very strong tendency for the presence of a
process fault. If the value of cumulative probability is 1, we can be almost 100% sure
that the fault has already occurred. In this example, since the value of the cumulative
probability is 1 at time 129 (i.e., cumulative calculation from time 135 to time 129), we
can be almost certain that the process fault has occurred at time 129, instead of the
signal time 136. At time 128, the value of the cumulative probability is 0.905. Is the
value of 0.905 large enough to draw the conclusion that a fault has occurred? There
seems no theoretical answer for the question. According to our experience, the value of
the cumulative probability would be set at 0.9 or higher. If the value of 0.9 is set to be
our threshold, we may conclude that the process fault has occurred at time 128 (instead
of time 136). One thing we have to understand is that the cumulative probability should
be large in order to confidently determine the starting time of a fault.

4. Simulated Experiments. This study combines the methodologies of SPC/EPC/AN-
N and SPC/EPC/SVM with the use of binomial experiments in order to establish fault
detection mechanisms with the goal of overcoming deficiency of SPC/EPC systems. In
order to show the efficiency of the proposed approaches, this study performs a series of
simulations. The results are reported and discussed.

Again, suppose a process can be represented in Equation (1) in which q = 0.3, ϕ = 0.8
and the variance of the white noise is 1. This autocorrelated process is fine-tuned with
the use of MMSE control action, Equation (2). After time 101, a fault has intruded in
the process, and the process has been represented by Equation (4).

To use the ANN and SVM, we need to design the structure of the ANN and SVM
models. All training data sets include 20 simulation runs of data vectors. For a single
simulation run, the first 100 observations are all from an in-control state (i.e., no fault
involved), and after time 101, the remaining data are all from an out-of-control state (i.e.,
a fault intruded into the process after 101). The last collected observation in a simulation
run is the time at which the SPC signal was triggered. Also, the faults consist of two
different values of δ. In this study, two types of training data sets were developed for the
autocorrelated process series. The first and the second training data sets were generated



5424 Y. E. SHAO, C.-J. LU AND C.-C. CHIU

Table 1. The use of fault detection technique

Sample Backward ANN Cumulative Binomial cumulative
number number output sum of “1” distribution probability (P )

1 135 1 63 0.000
2 134 0 62 0.000
3 132 0 62 0.000
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
127 9 0 7 0.712
128 8 0 7 0.905
129 7 1 7 1
130 6 1 6 1
131 5 1 5 1
132 4 1 4 1
133 3 1 3 1
134 2 1 2 1
135 1 1 1 1
136

in the cases of δ = 1 and δ = 2, respectively. These two different values of δ represent the
small and moderate values of the faults. The large value of the process fault is ignored
here since this large value could easily be detected.
The test data sets involve 10 simulation runs of data vectors. The inputs to the ANN

and SVM were the values of Y and X. The ANN and SVM outputs consist of one node.
This output node indicates the prediction of the process status. The value of 0 concludes
that the process is no fault, and the value of 1 indicates that the process has faults. Table
2 shows the accurate identification rate (AIR) for both ANN and SVM models for the
two different values of δ.

Table 2. Accurate identification rate (AIR) for ANN and SVM models

δ = 1 δ = 2
ANN 0.801 0.745
SVM 0.816 0.753

In addition, this study performed another 100 simulation runs to confirm the usefulness
of the proposed fault detection technique. Six threshold values were considered, i.e.,
P = 0.7, P = 0.75, P = 0.8, P = 0.85, P = 0.9 and P = 0.95. Although there is no
theoretical aspect to choose the optimal value of P , we should set the P as a large number
in order to have strong confidence for determining the starting time of a fault. Tables 3
and 4 demonstrate the simulation results in the case of δ = 1 and δ = 2, respectively.
Observing Table 3, we can notice that the average out-of-control signal is given at time
386.64 when the typical SPC/EPC is used. The ideal or true out-of-control signal should
be triggered at time period 101. Remember that the EPC action would decrease the
SPC monitoring capability, and it causes a late signal time. In the case of P = 0.7, the
proposed SPC/EPC/ANN detection technique provides average starting time of a fault
at time 343.47. This is more close to the true value of signal time, 101. This could reach
an 11.17% improvement. Additionally, the proposed SPC/EPC/SVM detection technique
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reports an average starting time of a fault at time 231.46. This improvement, 40.14%,
is even better. The results apparently indicate that the proposed detection technique
outperforms the typical SPC/EPC alone. The simulation results also seem to imply that
the improvement is greater when P is smaller. However, it is not applicable in the case
of δ = 2.

Table 3. Performance comparison between SPC/EPC alone and the pro-
posed approaches when δ = 1

P = 0.7 P = 0.75 P = 0.8 P = 0.85 P = 0.9 P = 0.95

SPC/EPC alone 386.64 386.64 386.64 386.64 386.64 386.64

Proposed
343.47 348.94 353.29 356.16 359.18 363.94

SPC/EPC/ANN
Proposed

231.46 241.87 249.51 259.33 265.17 277.70
SPC/EPC/SVM

Table 4. Performance comparison between SPC/EPC alone and the pro-
posed approaches when δ = 2

P = 0.7 P = 0.75 P = 0.8 P = 0.85 P = 0.9 P = 0.95

SPC/EPC alone 293.05 293.05 293.05 293.05 293.05 293.05

Proposed
84.05 89.95 92.24 96.25 102.12 119.39

SPC/EPC/ANN
Proposed

74.36 79.42 84.18 88.13 90.85 101.12
SPC/EPC/SVM

Observing the case of δ = 2 in Table 4, we can notice that the average out-of-control
signal is triggered at time 293.05 when the typical SPC/EPC is used. However, in the
case of P = 0.7, the proposed SPC/EPC/ANN and SPC/EPC/SVM detection techniques
give the average starting time of a fault at time 84.05 and time 74.36, respectively. In our
simulation, since the first 100 observations are all in a state of in-control, the ideal signal
would occur at time 101. The setting of P = 0.7 seems to over-estimate the starting time
of a process fault. When a larger value of P is chosen, the resulting average starting time
of a process fault is much more reasonable. For example, in the case of P = 0.95, the
proposed SPC/EPC/ANN and SPC/EPC/SVM techniques provide the average starting
time of a fault at 119.39 and 101.12, respectively. In fact, in the case of P = 0.95, 59.26%
and 65.49% of process improvements are achieved when the proposed two techniques are
employed. It is a satisfactory achievement.

5. Conclusions. The combination of SPC and EPC is an effective way to monitor and
control a manufacturing process. Specifically, the EPC is typically used for controlling
the autocorrelated process. However, the EPC compensation of the process fault also de-
creases the SPC monitoring capability. This study is motivated to overcome the deficien-
cies of an SPC/EPC system. This study combines the SPC/EPC/ANN, SPC/EPC/SVM
with the use of a binomial distribution concept to effectively determine the starting time
of a process fault. The effectiveness of the proposed approach is tested through a series
of simulated experiments.
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In this study, the new features of our proposed approaches and the main advantages
of the results over other related research works are addressed. The apparent advantages
include the less conservativeness of the process model used and the conditions imposed
to derive the results. Also, the proposed approaches are simple to use, and the practical
usefulness are clearly observed. From our research, we are able to draw the following con-
clusions. Firstly, when the magnitude of the fault is small, both proposed SPC/EPC/ANN
and SPC/EPC/SVM detection techniques can achieve process improvements for all the
values of P . Even when the threshold value of P is small, we can still obtain good results.
Furthermore, it seems that the performance of SPC/EPC/SVM is better than that of
SPC/EPC/ANN. Secondly, when the magnitude of the fault is moderate, we discovered
that we have to pay more attention to the selection of P for both SPC/EPC/ANN and
SPC/EPC/SVM detection techniques. In particular, P = 0.95 is strongly suggested.
When P = 0.95 is chosen, 59.26% and 65.49% improvements are achieved. And finally,
one important implication is that we should choose P = 0.95, for all possible magnitudes
of a fault, in order to accurately obtain the starting time of a fault.
The proposed approach is simple to use and effective in categorizing the starting time

of a fault. As a result, the proposed fault detection techniques would be of great help to
process personnel in determining the root causes of a fault. Consequently, our proposed
approaches result in a significant enhancement of overall process improvement. Neverthe-
less, this study discusses the case of mean shift faults, an attempt to categorize variance
shift faults would also be a valuable contribution to this area of research.
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