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Exemplar-based accounts of “multiple-system”
phenomena in perceptual categorization

ROBERT M. NOSOFSKY and MARK K. JOHANSEN
Indiana University, Bloomington, Indiana

We demonstrate that a wide variety of recently reported “rule-described” and “prototype-described”
phenomena in perceptual classification, which have led to the development of a number of multiple-
system models, can be given an alternative interpretation in terms of a single-system exemplar-similarity
model. The phenomena include various rule- and prototype-described patterns of generalization, dis-
sociations between categorization and similarity judgments, and dissociations between categorization
and old-new recognition. The alternative exemplar-based interpretation relies on the idea that simi-
larity is not an invariant relation but a context-dependent one. Similarity relations among exemplars
change systematically because of selective attention to dimensions and because of changes in the level
of sensitivity relating judged similarity to distance in psychological space. Adaptive learning principles
may help explain the systematic influence of the selective attention process and of modulation in sen-

sitivity settings on judged similarity.

Recent theorizing in the field of perceptual classifica-
tion has seen a proliferation of models that posit the op-
eration of multiple categorization systems (e.g., Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Erickson &
Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994;
Palmeri & Nosofsky, 1995; J. D. Smith & Minda, 1998;
Vandierendonck, 1995). Although the models differ inim-
portant details, a general theme is that one system com-
putes category summary representations such as rules or
prototypes, whereas the second system relies on more
specific representations such as stored exemplars or com-
plex, nonverbalizable decision boundaries. The idea that
multiple systems serve category learning and representa-
tion is highly plausible; however, the adoption of multiple-
system models comes at a price. In particular, because
such models are so powerful and flexible and typically
involve numerous free parameters, they may resist falsi-
fication. On grounds of scientific parsimony, an important
alternative approach is to consider single-system models
with fewer free parameters and attempt to push them as
far as they will go. Beyond their potential to provide a con-
ceptually simpler account of classification, a concerted
effort at applying such models is highly instructive even
if it fails. In particular, the failures of such models may
provide firmer grounds on which to base the argument that
the more complex multiple-system approaches are needed.
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An excellent candidate for a single-system approach to
modeling categorization is the class of models known as
exemplar models (e.g., Brooks, 1978; Hintzman, 1986;
Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky,
1986). According to exemplar models, people represent
categories by storing individual exemplars in memory,
and classify objects on the basis of their similarity to these
stored exemplars. Beyond accounting for diverse catego-
rization phenomena, exemplar models have been suc-
cessful at explaining relations between categorization
and other fundamental cognitive processes, including in-
dividual object identification, old—new recognition mem-
ory, problem solving, and the development of automatic-
ity in tasks of skilled performance (e.g., Estes, 1986, 1994;
Hintzman, 1986, 1988; Logan, 1988; Nosofsky, 1986, 1987,
1988, 1991a; Nosofsky & Palmeri, 1997; Palmeri, 1997;
Ross, 1987).

Furthermore, exemplar models have shown success at
accounting for phenomena that previous investigators
have cited as evidence in favor of prototype abstraction
or rule induction. For example, a well-known phenome-
non in the categorization literature involves prototype
enhancement effects, in which category prototypes that
are not experienced during training are nevertheless clas-
sified as well as or sometimes better than the old train-
ing exemplars (Homa, 1984). Although such results were
often taken as evidence of prototype abstraction processes,
exemplar theorists have demonstrated repeatedly that
prototype enhancement effects are well predicted by pure
exemplar models (e.g., Busemeyer, Dewey, & Medin,
1984; Hintzman, 1986; Medin & Schaffer, 1978; Nosof-
sky, 1988, 1991a; Shin & Nosofsky, 1992). The general
idea is that, although not presented during training, the
category prototypes are often highly similar to numerous
training instances from their own category and tend to be
quite dissimilar from the training instances of alternative
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categories. By contrast, any given training exemplar may
be highly similar only to itself. The redundancy afforded
the prototype often gives it an advantage in tests of clas-
sification transfer.

Likewise, Nosofsky (1984, 1986, 1991b; Nosofsky,
Gluck, Palmeri, McKinley, & Glauthier, 1994) demon-
strated that an exemplar model provided excellent quan-
titative accounts of a variety of phenomena that seemed
interpretable in terms of rule abstraction. For example, the
exemplar model provided excellent accounts of Shepard,
Hovland, and Jenkins’s (1961) classic study of the diffi-
culty of learning classification problems defined by rules
of differing complexity (Nosofsky, 1984; Nosofsky, Gluck,
etal., 1994). Furthermore, it accounted for typicality judg-
ments and response—speed effects in a series of classifi-
cation problems described by unidimensional and con-
junctive rules (Nosofsky, 1991b). Finally, it provided
excellent quantitative accounts of classification choice
probabilities during transfer in a wide variety of catego-
rization conditions involving continuous-dimension logi-
cal rules (e.g., Nosofsky, 1986, 1987; Nosofsky, Clark,
& Shin, 1989).

The purpose of the present article is to consider some
of the more modern results in the classification literature
that have led investigators away from the single-system,
exemplar-model approach in favor of the more complex
multiple-system models. In each section of our article, we
first review the basic empirical result being considered
and explain why the original investigators interpreted the
result in terms of rule use, prototype formation, or the op-
eration of multiple systems. We then develop an alterna-
tive exemplar-based account of the same phenomenon.

Before proceeding with our investigation, we offer here
some important caveats. First, we do not claim that the
exemplar model provides a superior account of the phe-
nomena than do the multiple-system models. Moreover,
we do not claim that other alternative accounts of these
phenomena are unavailable. Rather, each of the reported
phenomena is a major source of evidence that investiga-
tors have used to challenge the exemplar model. We argue
instead that reasonable applications of a single-system
exemplar model may be sufficient to account for these
phenomena, thereby bringing into question the need to
posit the more complex multiple-system accounts.

Second, we limit consideration to “free-strategy” sit-
uations involving perceptual classification in which
novel categories are learned via induction over individ-
ual training exemplars. We do not doubt, for example,
that people can in large measure apply specific rules if
provided with explicit instructions to do so. Rather, the
key question is whether a single exemplar-based system
tends to subserve performance on typical perceptual cat-
egorization tasks in which the strategy is left to the op-
tion of the observer. The extent to which exemplar mod-
els may be applicable to more general situations, such as
those involving explicit instructions for alternative strat-
egy use, prior knowledge, abstract/conceptual forms of
categorization, or to other cognitive activities related to

categorization such as inference and feature prediction,
remains an open question. We briefly consider some of
these more complex issues in the General Discussion.

OVERVIEW OF THE FORMAL MODEL

The exemplar model that guides the present research
effort is the generalized context model (GCM; Ashby &
Maddox, 1993; Nosofsky, 1984, 1986, 1991a). The GCM
generalizes the original version of the context model
proposed by Medin and Schaffer (1978) and integrates it
with classic theories and ideas proposed in the areas of
choice and similarity (Carroll & Wish, 1974; Garner, 1974;
Luce, 1963; Shepard, 1958; Shepard & Chang, 1963).

The GCM uses a multidimensional scaling (MDS) ap-
proach to modeling similarity. According to the model,
exemplars are represented as points in a multidimen-
sional psychological space, and similarity between ex-
emplars is a decreasing function of their distance in the
space. Selective attention processes systematically mod-
ify the structure of the space in which the exemplars are
embedded. An important working hypothesis is that, with
experience in a given task, observers often learn to dis-
tribute their attention over psychological dimensions in
a manner that tends to optimize performance.

These ideas are illustrated schematically in Figure 1.
In the top panel, there are two categories, X and O, de-
fined by five exemplars each. The exemplars reside in a
two-dimensional space. Exemplars X2 and O4 are close
together in the space, and so are highly similar to one an-
other, whereas Exemplars X5 and O2 are far away, and
so are dissimilar. Suppose that an observer needs to clas-
sify item i (illustrated in the space). According to the
model, the observer sums the similarity of item i to all the
X exemplars and to all the O exemplars. The classification
decision is based on the relative magnitude of these sums.
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Figure 1. Schematic category structure for illustrating the
workings of the generalized context model. X, exemplars of Cat-
egory X; O, exemplars of Category O. Panel A: Category struc-
ture with equal attention to both dimensions. Panel B: Cate-
gory structure with selective attention to the horizontal dimension.
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Specifically, in an experiment involving multiple categor-
ies and in which there are no response biases, the prob-
ability that item i is classified into Category J is given by
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where s;; denotes the similarity of item i to exemplar j and
the index jJ denotes that the sum is over all exemplars j
belonging to Category J. The parameter y;, first introduced
into the GCM response rule by Ashby and Maddox (1993),
is a response-scaling parameter. When y = 1, the ob-
server responds by “probability matching” to the relative
summed similarities, whereas when y grows greater than
one, the observer responds more deterministically with
the category that yields the largest summed similarity (for
more detailed discussion and closely related models, see
Ashby & Maddox, 1993; Maddox & Ashby, 1993; Mc-
Kinley & Nosofsky, 1995; Nosofsky, 1991a). A direct pro-
cess interpretation for the emergence of the summed sim-
ilarity computation and the y response-scaling parameter
was recently developed by Nosofsky and Palmeri (1997)
in terms of their exemplar-based random walk model of
categorization.

A critical component assumption in the GCM is that sim-
ilarity between exemplars is not an invariant relation but a
highly context-dependent one. In particular, it is assumed
that selective attention processes modify psychological sim-
ilarity relations among exemplars, usually in a manner that
tends to optimize performance for any given task. This se-
lective attention process can have a dramatic influence on
the classification predictions that are made by the model.

For example, in the top panel of Figure 1, item i is
roughly equally similar to the exemplars of Category X
and Category O, and so would be classified in each cate-
gory with roughly equal probability. Note, however, that
the horizontal dimension is far more relevant than is the
vertical dimension for discriminating the categories. An
experienced observer would presumably learn this aspect
of the category structure and would attend selectively to
this relevant dimension. This process is represented in
the model in terms of a set of selective attention weights
that “stretch” the space along attended relevant dimen-
sions and “shrink” it along unattended irrelevant ones,
as illustrated in the bottom panel of Figure 1. Note from
the illustration that this selective attention process would
tend to optimize performance because it would separate
further in psychological space the two categories that need
to be discriminated. In addition, note that whereas item i
was roughly equally similar to the X and O exemplars
when equal attention was given to the dimensions (top
panel), it takes on far greater similarity to the exemplars
of Category X following selective attention to the rele-
vant dimension (bottom panel).

P [i)= M)
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These ideas are represented formally in the model
as follows. Assume that the exemplars reside in an
M-dimensional psychological space, and let x;,, denote
the value of exemplar i on psychological dimension m.
(These psychological coordinate values for the exem-
plars are often derived by conducting a variety of similar-
ity-scaling studies in which MDS solutions for the exem-
plars are derived; for a review, see Nosofsky, 1992.) The
distance between exemplars i and j is computed by using
the weighted Minkowski power-model formula,

dijzgwmqjxim_xjmrg”- )

In this equation, the value r defines the distance metric
of the space. Common values are r = 1, which defines a
city block distance metric; and r = 2, which defines a
Euclidean distance metric (see, e.g., Garner, 1974; Shep-
ard, 1964). The city block metric is typically assumed when
modeling distances among highly separable dimension
stimuli, whereas the Euclidean metric is used to model
distances among integral-dimension stimuli (Shepard,
1987). The parameters w,, are the “attention weights” (Car-
roll & Wish, 1974). The w,,, parameters model the degree
of attention that an observer gives to each dimension in
making psychological distance judgments among exem-
plars. As illustrated previously, a geometric interpreta-
tion for the attention weights is that of stretching and
shrinking the psychological space along its dimensions.

On the basis of a large body of research from the field
of stimulus generalization (see Shepard, 1987, for a re-
view), the similarity between exemplars i and j (s;;) is as-
sumed to be a nonlinearly decreasing function of their
distance (d;),

sij = exp(—c -df}), 3)

where c is an overall scaling or sensitivity parameter and
the value p defines the precise form of the similarity
gradient. Common values of the generalization gradient
are p = 1, which defines an exponential similarity gra-
dient (Shepard, 1958, 1987), and p = 2, which defines a
Gaussian similarity gradient (Nosofsky, 1985, 1986).
The exponential model is favored in situations in which
observers learn to classify fairly discriminable, noncon-
fusable stimuli (Shepard, 1986, 1987), and this model is
used exclusively in the remainder of this article.

The sensitivity parameter ¢ in Equation 3 determines
the rate at which similarity declines with distance. Its
role isillustrated in Figure 2. The top panel shows an ex-
ample in which the value of c is relatively high. In this
case, the generalization gradient relating similarity to
distance is steep, so that exemplars that are even a mod-
erate distance apart in the space are judged as very dis-
similar. By contrast, as shown in the bottom panel, when
c is small, the generalization gradient is shallow, and ex-
emplars that are separated by large distances in the space
may still be judged as similar.
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Figure 2. lllustration of exponential gradients relating similar-
ity to distance. Top panel: high value of sensitivity. Bottom panel:
low value of sensitivity.

Finally, the s;; values computed from Equations 2 and
3 are substituted into Equation 1 to yield the classifica-
tion predictions made by the GCM.

In summary, the GCM is defined by the system of Equa-
tions 1-3. Its free parameters include the response-scaling
parameter y, the sensitivity parameter ¢, and the attention
weights wi,.

ACCOUNTS OF THE PHENOMENA

With this formal background in mind, we now turn to
the recently reported phenomena that have been interpreted
as challenging the exemplar model and that have promoted
the multiple-system categorization approaches. In many
of the cases that we consider, the standard version of the
GCM that we have just presented is shown to account for
the phenomena with no modifications. In other cases, we
introduce extensions to the model that are, in our view,
sensible to make in light of the experimental procedures
that were used or the goals of the analysis. For example, in
some sections we consider the extent to which the exemplar
model can account for individual-subject differences in
performance. In these sections, we make allowance for
the idea that the exemplar-model parameter values may

vary across the individual subjects. Other extensions will
involve deeper proposed revisions of the standard model,
but the essential spirit of the single-system exemplar
model is left intact. Although such extensions are ad-
mittedly post hoc, we will argue that they are conceptu-
ally well grounded. That is, there is a strong sense in
which the extensions should have been proposed in ad-
vance of seeing the data. For example, we introduce the
idea that the same principles of parameter optimization
that have always been hypothesized to influence the atten-
tion weights in the exemplar model may influence the set-
ting of the sensitivity parameter as well. It is important to
acknowledge at the outset, however, that the effectiveness
of our case will rest on the degree to which our proposed
extensions are viewed as reasonable and compelling.

A Bias Toward \erbal Rules

In experiments conducted by Ashby et al. (1998), sub-
jects learned to classify stimuli into two bivariate nor-
mally distributed categories. The category structures are
illustrated in Figure 3, where “+” and “0” indicate stim-
uli that belong to Categories A and B, respectively. A key
aspect of the design was that the categories were dis-
placed more in the vertical direction than in the horizon-
tal direction, as is illustrated schematically in Figure 4A.
Ashby et al. used this design to test a prediction of their
newly proposed COVIS (competition between a verbal
and an implicit system) model of categorization. Accord-
ing to COVIS, two mental systems compete with each
other in making categorization responses. First, there is
a nonverbal, implicit system that learns optimal decision
boundaries for separating a space into category regions.
The optimal decision boundary for the present design is
the solid linear decision boundary with a .60 slope, il-
lustrated in Figure 3. To maximize accuracy, an ideal ob-
server would classify all objects falling to the upper left
of the boundary into Category A and all objects falling
to the lower right of the boundary into Category B. Sec-
ond, there is an explicit system that learns verbal rules.
According to COVIS, this system would develop the
boundary represented by the dashed horizontal line in
Figure 3. In using this boundary, the subject sets a crite-
rion along the orientation dimension in such a way that
any object with orientation greater than this criterion is
classified into Category A, whereas any object with ori-
entation less than the criterion is classified into Cate-
gory B. Finally, according to COVIS, on some propor-
tion of trials the implicit system chooses the response,
whereas on the remaining proportion of trials the explicit
system chooses the response.

Ashby et al. (1998) demonstrated that if these ideas
are correct, then an individual subject’s observable per-
formance should be well described by a linear decision
boundary with a slope that is shallower than the optimal
bound slope of .60. Intuitively, the slope of the best-fitting
linear boundary should be “pulled” in the direction of
the horizontal line verbal rule.

Ashby et al. (1998) tested 5 individual subjects in this
experimental design and fitted a linear decision-boundary
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Figure 3. Category structure tested by Ashby, Alfonso-Reese, Turken, and Waldron (1998). +, exemplar
from Category A; O, exemplar from Category B. The optimal population decision boundary is represented
by the solid line with a .60 slope. The vertical and horizontal dashed lines are the most accurate single-
dimension rule boundaries available on each dimension. The numerical values are the accuracies yielded
by each decision boundary. Note—From “A Neuropsychological Theory of Multiple Systems in Category
Learning,” by F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, & E. M. Waldron, 1998, Psychological Re-
view, 105, p. 467. Copyright 1998 by the American Psychological Association. Reprinted with permission.

model to each of the individual subject’s classification
responses. In all cases, the best-fitting linear boundary did
indeed have a slope that was significantly less than .60,
as predicted by COVIS. Beyond concluding that the re-
sults were consistent with the COVIS predictions, how-
ever, Ashby et al. argued that the results challenged the
predictions of the exemplar model. They wrote:

As a consequence, COVIS predicts that even experienced
participants will adopt a bound with a slope of less than
0.6 [i.e., the slope of the optimal bound]. To our knowl-
edge, COVIS is the only model of category learning that
predicts (a priori) such an asymptotic bias in categoriza-
tion performance. For example, consider Nosofsky’s (1986)
generalized context model, which, arguably, has been the
most successful of the formal exemplar models . . . the gen-
eralized context model predicts a priori that there will be
no systematic bias in this experiment. (pp. 467—468)

Contrary to Ashby et al.’s (1998) claim, we suggest
here that the GCM does predict a priori this bias in the

slope of the best-fitting bound. As described in the Over-
view of the Formal Model section, one of the central as-
sumptions of the GCM is that people selectively attend
to psychological dimensions, and that, with learning,
greater attention will be given to relevant dimensions than
to irrelevant ones. A good working hypothesis, which
has often gained support in past empirical investigations,
is that observers learn to distribute attention in a manner
that tends to optimize performance. Now, as illustrated
in the Figure 4A design, the vertical dimension is more
relevant than is the horizontal dimension for purposes of
classification, so observers would be expected to give
greater attention to the vertical dimension. Thus, the space
would be “stretched” along the vertical dimension and
“shrunk™ along the horizontal dimension, as illustrated
in Figure 4B. As can be seen in the figure, if this selective
attention strategy operated, the boundary of equal simi-
larity between the exemplars of the two categories would
take on an increasingly more shallow slope.
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Figure 4. Schematic illustration of the category structure de-
picted in Figure 3. Panel A: the category structure with equal at-
tention to both dimensions. Panel B: the structure with selective
attention to the vertical dimension.

To verify these intuitions, we conducted the following
series of computer simulations. First, we generated two
bivariate normally distributed categories with 500 ex-
emplars each that satisfied the constraints of Ashby
etal.’s (1998) experimental design (for the parameters of
these distributions, see Ashby et al., 1998, p. 469). Next,
for each of a set of combinations of values of the sensi-
tivity parameter ¢ and the response-scaling parameter y,
we conducted a search for the value of the attention-
weight parameter that would optimize performance (i.e.,
maximize percentage correct) in Ashby et al.’s experi-
mental design. The values of c and y that were chosen in
these investigations are in the range of values that have
produced good fits of the GCM to previous data sets ob-
tained in this type of paradigm (McKinley & Nosofsky,
1995, 1996). Furthermore, because the stimuli in these
experiments were fairly discriminable and composed of
separable dimensions, we assumed a city block metric
(r = 1in Equation 2) and an exponential similarity func-
tion (p = 1in Equation 3) in applying the GCM in these
investigations (Nosofsky, 1998b; Nosofsky et al., 1989;
Shepard, 1987).

The results are summarized in Table 1, where w; indi-
cates the value of the Dimension 1 attention weight that
would optimize performance. In all cases, the value of this
Dimension 1 attention weight is less than .50, which in-
dicates, as expected, that it is optimal to give less attention
to the horizontal dimension than to the vertical dimen-
sion. Next, we used the GCM to predict the classification
probabilities associated with each stimulus in Ashby
et al.’s (1998) design, assuming that a subject used these

optimal values of the attention weights. Finally, we con-
ducted modeling analyses in which the linear decision-
boundary model was fitted to these GCM-predicted
classification probabilities. Representative results are
summarized in Table 2. The key point is that whenever
the Dimension 1 attention weight is less than .50, the best-
fitting linear decision boundary has a slope that is sig-
nificantly less than .60, in accord with the intuitions de-
veloped above. Only when the attention weight is equal
to .50 does the slope of the best-fitting linear decision
boundary come close to the .60 value.

In summary, assuming that subjects learn to give
greater attention to the relevant vertical dimension, which,
according to the GCM, is the optimal strategy in this ex-
perimental design, the GCM does indeed predict the phe-
nomenon that Ashby et al. (1998) described as a “bias
toward the verbal rule” (p. 467).1 Thus, one of the major
phenomena that Ashby et al. used to challenge the ex-
emplar model and to suggest the need for the more com-
plex multiple-system categorization model is apparently
not diagnostic. Furthermore, previously reported work
(Maddox & Ashby, 1993; McKinley & Nosofsky, 1995)
indicates that the GCM (with the y response-scaling pa-
rameter) and the decision-boundary models give virtually
identical quantitative fits to the data obtained in this type
of classification paradigm when the models’ parameters
are allowed to vary freely. Thus, this paradigm fails to
distinguish the models on quantitative grounds as well.

It might be noted that even a simple prototype model
that assumes optimal weighting of dimensions will also
predict the bias-toward-verbal-rule phenomenon in this
particular paradigm. Again, we remind readers that we
are not claiming that the exemplar model provides the only
viable account of the present phenomena. Rather, we are
defending the exemplar model as also providing a viable
account in those situations in which it has been chal-
lenged. Results from other closely related paradigms with
more diagnostic category structures have strongly favored
the predictions of the exemplar model over those of proto-
type models, however (e.g., Maddox & Ashby, 1993;
McKinley & Nosofsky, 1995).

There is a potential limitation associated with our
exemplar-based account of Ashby et al.’s (1998) bias-
toward-verbal-rule phenomenon. The concern is that, for
Ashby et al.’s paradigm, the GCM often predicts only
small performance benefits when the optimal attention
weights are used as opposed to when equal weighting of
the dimensions occurs. For example, in the case in which
c =.05and y = 3, the GCM predicts .683 correct per-

Table 1
Optimal Dimension 1 Attention Weight (w,) for the GCM as a
Function of c and y in Ashby et al.’s (1998) Experimental Design

y=1 y=3 y=>5
c=.02 .00 .00 .00
c=.05 .00 15 33
c=.10 20 38 45

Note—GCM, generalized context model.
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Table 2
Linear Decision Boundaries Fitted to GCM-Predicted Data
in Ashby et al.’s (1998) Experimental Design

GCM Parameters Best-Fitting Linear Boundary

c=.05y=3w, =.15 Y =.13X+89
c=.05y=5w, =.33 Y =.27X + 65
c=.05y=3,w; =.50 Y =.56X+9

Note—GCM, generalized context model.

formance when the dimensions are weighted equally,
whereas it predicts .697 correct performance when the
dimensions are weighted optimally. Perhaps this differ-
ence is too small to lead observers systematically away
from an equal attention weighting toward a more nearly
optimal weighting. To explore this issue, we conducted
additional simulations using a closely related exemplar-
based model known as ALCOVE (Kruschke, 1992; Nosof-
sky, Kruschke, & McKinley, 1992). This model basically
incorporates key principles of the GCM within a connec-
tionist framework. An important advantage of ALCOVE,
however, is that it provides an explicit mechanism that
learns the attention weights on a trial-by-trial basis. Be-
cause the mechanism is error driven, it tends to learn those
weights that optimize performance in a given task (e.g.,
Nosofsky, Gluck, et al., 1994). Although a detailed dis-
cussion goes beyond the scope of this article, our simula-
tions with ALCOVE generally corroborated our attention-
optimization arguments involving the GCM. In particular,
when applied to Ashby et al.’s paradigm, the ALCOVE
model learned to place greater attention weight on the
more relevant vertical dimension than on the less rele-
vant horizontal dimension, and therefore it too predicted
that the best-fitting linear decision boundary would be
pulled in the direction of the verbal rule. This result is im-
portant because it shows that, even though the predicted
performance differences are sometimes small, they are
still sufficient to drive an explicit learning mechanism in
the direction of the optimal attention weights.

Predicting Distributions of Individual-Subject
Generalization Patterns

A second study that suggested a major limitation of
exemplar models was one reported by Nosofsky, Palmeri,
and McKinley (1994), who advanced an alternative rule-
plus-exception (RULEX) model of classification. Accord-
ing to RULEX, people learn to classify objects by form-
ing simple logical rules along single dimensions and
then by storing occasional exceptions to those rules. To
illustrate the workings of the model, consider the cate-
gory structure shown in Table 3, which is the classic
structure used by Medin and Schaffer (1978) in their sem-
inal studies of category learning. The stimuli vary along
four binary-valued dimensions. There are five Category A
training exemplars, four Category B training exemplars,
and seven transfer stimuli. Logical Value 1 on each dimen-
sion tends to indicate Category A, and Logical Value 2
tends to indicate Category B, but there are no singly nec-
essary and jointly sufficient sets of features that define
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the categories. According to RULEX, by the time the
learning process is completed, an individual observer
might have stored the following information in memory.
First, the observer might store the (imperfect) single-
dimension rule that objects with Value 1 on Dimension 1
belong to Category A, and that objects with Value 2 on
Dimension 1 belong to Category B (Table 3). We sum-
marize these rules by using the notation 1*** _, A, 2***
- B, where the asterisks denote dimension “wild cards”
that match any value. Exemplars A5 and B1 are excep-
tions to this rule, so the observer must store additional
information to learn the categories. For example, the ob-
server might store the exceptions 2*11 - A, 1*22 - B
(Table 3). Note that, with these rules, the categorization
problem is solved, even though no complete exemplars
are stored in memory. The learning process in RULEX
is stochastic, and a key property of the model is that
different observers form alternative rules and excep-
tions. For example, numerous observers might instead
form rules along Dimension 3, **1* _ A, **2* _, B,
and store information to classify the A4 and B2 excep-
tions, for example, 1*21 — A, 2*12 - B. Averaged clas-
sification data are assumed to represent probabilistic
mixtures of these idiosyncratic rules and exceptions. An
explicit learning process is formalized in the RULEX
simulation that incorporates classic principles of hy-
pothesis testing (e.g., Levine, 1975; Trabasso & Bower,
1968) and probabilistic storage of exception information.
Thus, although a vast array of different rules and excep-
tions are involved in predicting the averaged classifica-
tion data, these rules and exceptions emerge from a prob-
abilistic learning process described by relatively few free
parameters.

Nosofsky, Palmeri, and McKinley (1994) demonstrated
that RULEX provided excellent quantitative fits to aver-
aged classification data, fits that were essentially the same
as those achieved by the exemplar-based GCM. Beyond
predicting averaged classification data, however, RULEX
also fared well at predicting patterns of performance at
the individual observer level. A highly challenging form
of data is what Nosofsky, Palmeri, and McKinley referred
to as a distribution of generalizations (see also Nosofsky
etal., 1989; Pavel, Gluck, & Henkle, 1988). Consider the
transfer stimuli in Table 3. During test, each transfer stim-
ulus is classified by an individual observer into either
Category A or Category B. The specific pattern of clas-

Table 3
Category Structure Tested in
Medin and Schaffer’s (1978) Experiments

Category A Category B Transfer Stimuli
Al 1112 B1 1122 T1 1221
A2 1212 B2 2112 T2 1222
A3 1211 B3 2221 T3 1111
A4 1121 B4 2222 T4 2212
A5 2111 T5 2121

T6 2211
T7 2122

Note—A, training exemplar of Category A; B, training exemplar of
Category B; T, transfer stimulus.
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sification responses given to the transfer stimuli defines
a generalization profile for an individual observer. For
example, an observer classifying T1-T3 into Category A,
and T4-T7 into Category B, yields the generalization
profile AAABBBB. (Note that this particular profile
would be produced, for example, by observers using the
RULEX strategy 1*** - A, 2*** _, B, with the com-
plete A5 and B1 exemplars learned as exceptions.) The
distribution of generalizations is then obtained by com-
puting the frequency of individuals displaying each pro-
file. The top panel of Figure 5 shows the distribution of
generalizations observed in Nosofsky, Palmeri, and
McKinley’s replication of Medin and Schaffer’s (1978)
experiment. The middle panel shows the distribution
predicted by RULEX. As can be seen, RULEX performed
reasonably well (although it underestimated the fre-
quency of Profile ABABBAB). Nosofsky, Palmeri, and
McKinley deemed this achievement important, because
in addition to accounting for the averaged transfer data,
RULEX simultaneously characterized the patterns of
performance observed at the individual observer level.
By contrast, the exemplar-based GCM failed dramati-
cally to predict the distribution-of-generalization data
(see Nosofsky, Palmeri, & McKinley, 1994, Figure 11).
These model-fitting results were the major lines of evi-
dence that led Nosofsky, Palmeri, and McKinley to argue
in favor of RULEX over the exemplar model in this ex-
perimental paradigm.

However, we argue here that there was an important
lack of comparability between the models that makes it
difficult to draw strong conclusions. The RULEX model
incorporates a stochastic learning process that leads to
heterogeneous individual subject behavior. By the time
learning is complete, for example, some subjects may
have formed rules along Dimension 1 and stored excep-
tions to the Dimension 1 rule, whereas other subjects may
have formed rules along Dimension 3 and stored excep-
tions appropriate to this alternative rule. By contrast, the
standard version of the GCM that was fitted to the data
assumed homogeneous individual-subject behavior: All
subjects were assumed to store all exemplars in memory,
and similarity comparisons to the exemplars were de-
scribed by an identical set of free parameters across sub-
jects. Thus, Nosofsky, Palmeri, and McKinley’s (1994)
model-fitting analyses confounded the issue of whether
subjects classify by using rules or exemplars with the
issue of whether individual subjects behave identically.
Clearly, an important goal is to test versions of the ex-
emplar model that allow for heterogeneity in the behav-
ior of individual subjects.?

As a first step toward achieving this goal, we report
here a model-fitting analysis involving an extended ver-
sion of the GCM that includes the idea that there are dis-
tinct subgroups of subjects who employ different atten-
tion-weight configurations to learn the Table 3 category
structure. Our main idea was that observers are likely to
start their learning of the category structure by selectively
attending to a single dimension and then gradually spread-
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ing attention to other dimensions composing the exem-
plars. We modeled the behavior of Subgroups 1-4 as re-
flecting such an attentional distribution. Thus, Subgroup 1
was assumed to place attention weight w on Dimension 1
and to divide evenly the remaining attention (1 — w)
among Dimensions 2—-4. Likewise, Subgroup 2 placed
attention weight w on Dimension 2 and divided evenly the
remaining attention among Dimensions 1, 3, and 4, and
so forth for Subgroups 3 and 4. Finally, we supposed that
there was a fifth subgroup of subjects who had learned
to divide attention optimally among the four dimensions.
(The optimal attention distribution for learning the Table 3
category structure was reported in a previous study by
Nosofsky, 1984, p. 113, Figure 4. It places the majority
of attention on Dimensions 1 and 3, which are the most
diagnostic dimensions; somewhat less attention on Dimen-
sion 4; and nearly zero attention on Dimension 2, which
is the least diagnostic dimension.) Presumably, with ex-
tended learning, numerous subjects might eventually
move toward such an optimal attention distribution. In
Nosofsky, Palmeri, and McKinley’s (1994) study, how-
ever, learning took place for a total of only 144 trials, so
it seemed reasonable to posit that most subjects were still
attending primarily to just a single dimension at the time
of classification transfer.

We tested this five-subgroup version of the GCM by
fitting it to the data obtained in Nosofsky, Palmeri, and
McKinley’s (1994) experiment. In this experiment, 227
subjects learned the Table 3 category structure. During
the training phase of the experiment, there were 16 blocks
of nine trials each, with each training stimulus presented
once per block in a unique random order for each subject.
Following the training phase, a transfer phase was con-

Table 4
Average Probability With Which Each Stimulus Was
Classified into Category A During the Transfer Phase of
Nosofsky, Palmeri, and McKinley’s (1994) Experiment

Stim. Obs. GCM
Category A
Al1112 770 779
A2 1212 .780 .854
A3 1211 .830 .882
A41121 .640 .588
A5 2111 .610 .590
Category B
B1 1122 .390 462
B2 2112 410 465
B3 2221 210 .186
B4 2222 .150 119
Transfer

T11221 .560 .548
T2 1222 410 463
T3 1111 .820 .805
T4 2212 400 AT71
T52121 .320 .335
T6 2211 .530 .555
T7 2122 .200 .238

Note—Stim., stimulus; Obs., observed probability; GCM, generalized
context model predicted probability.
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Table 5
Probability of Each Generalization Profile in
Nosofsky, Palmeri, and McKinley’s (1994) Experiment

Profile Obs. GCM
AAAAAAA .009 .001
AAAABAB .013 .020
AAABAAB .013 .017
AAABABB .013 .035
AAABBAB .026 .044
AAABBBA .013 .013
AAABBBB 141 .130
AABBABA .009 .001
AABBBBB .013 .007
ABAAAAB .018 .018
ABAABAB .022 .046
ABABAAA .009 .002
ABABAAB .026 .017
ABABABA .009 .002
ABABABB .009 .011
ABABBAB .070 .043
ABABBBB .026 .032
ABBABAB .013 .003
ABBBAAB .009 .001
ABBBBBA .009 .001
BAAABAB .013 .020
BAABBAB .009 .017
BAABBBB .013 .018
BABBBBB .009 .002
BBAAAAA .013 .009
BBAAAAB .031 .038
BBAABAB 132 .130
BBAABBB .013 .019
BBABAAA .018 .002
BBABAAB .018 .011
BBABABA .009 .001
BBABABB .031 .004
BBABBAB .035 .034
BBABBBA .009 .002
BBABBBB .044 .017
BBBAABB .009 .001
Other .001 .002

Note—Obs., observed probability; GCM, generalized context model
predicted probability; Other, average probability of all other general-
ization profiles.

ducted in which all 16 stimuli (including the transfer
stimuli) were presented three times each, and subjects
judged whether each stimulus belonged to Category A
or B. The average probability with which each transfer
stimulus was classified in Category A is reported in Ta-
ble 4, whereas the distribution-of-generalization data are
reported in Table 5. Recall that the latter data set gives the
probability with which each generalization profile was
observed across the 227 subjects.

We fitted the five-subgroup version of the GCM si-
multaneously to the Table 4 and 5 data. As a criterion of
fit, we searched for the free parameters that maximized
the summed percentage of variance accounted for in each
data set. The free parameters were the overall sensitivity
parameter ¢ (Equation 3) and the response-scaling pa-
rameter y (Equation 1), the values of which were held
fixed across the five subgroups; a common attention
weight w (Equation 2) given to the “primary” dimension
in each of Subgroups 1-4; and the proportions of sub-

jects p, through ps, making up Subgroups 1-5, respec-
tively. Because the five subgroup proportions are con-
strained to sum to one, this model makes use of seven free
parameters.

The predicted data are shown along with the observed
data in Tables 4 and 5, with the predicted distribution-of-
generalization results also illustrated in Figure 5 (bottom
panel). (The best-fitting free parameters were ¢ = 8.648,
y=1702,w=.949,p, = 31,p, = .21,p; = .30,p, =
.11, and p; = .08.) Whereas the standard exemplar model,
which did not allow for individual-subject parameter
variability, had failed dramatically to account for the dis-
tribution-of-generalization data (see Nosofsky, Palmeri, &
McKinley, 1994, Figure 11), the present application is
quite successful: The model accounts for 95.4% of the
variance in the averaged classification transfer data (Ta-
ble 4), and, more importantly, for 88.0% of the variance
in the distribution-of-generalization data (Table 5 and
Figure 5).

Interestingly, according to the parameter estimates re-
ported above, it was most common for observers to at-
tend selectively to Dimension 1 or 3 when learning the
Table 3 category structure. This result is sensible because
these two dimensions are the most diagnostic ones for clas-
sifying objects into the two categories (Table 3). We also
remark that it is the inclusion of the fifth subgroup in our
modeling analysis, namely the one that is assumed to
adopt an optimal distribution of attention, that allows the
exemplar model to predict fairly well the central peak in
the distribution of generalizations (i.e., Profile ABAB-
BAB). If this subgroup is removed (i.e., if the param-
eter ps is held fixed at zero), then the model is still able
to achieve fairly good fits (94.5% of the variance in the
averaged transfer data, 78.1% of the variance in the dis-
tribution-of-generalization data); its main failing is that,
like RULEX, it then underestimates the probability of
Profile ABABBAB.

To gain converging evidence regarding the plausibil-
ity of an exemplar-based account of the distribution-of-
generalization data, we also applied Kruschke’s (1992)
ALCOVE model to this experiment. Whereas our analy-
ses involving the GCM relied on our positing particular
patterns of attention weights across five hypothetical
subgroups, in our ALCOVE simulations the variability in
performance was produced solely by virtue of the mod-
el’s attention-weight learning mechanism. Specifically,
to introduce individual-subject heterogeneity, ALCOVE
learned the Table 3 category structure by being trained on
aunique random sequence of the stimuli for each of 1,000
individual-subject simulations. Because the attention-
weight learning mechanism in the model is highly sensi-
tive to the sequence of stimuli (Lewandowsky, 1995), the
attention weights can vary dramatically across individual
subjects, especially at early stages of learning. Using the
same analytic techniques as already described for the
GCM, a standard four-parameter version of ALCOVE
(see Kruschke, 1992, for details) accounted for 95.9% of
the variance in the averaged classification transfer data
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(Table 4) and for 84.3% of the variance in the distribution-
of-generalization data (Table 5). Furthermore, the learn-
ing mechanism tended to produce attention-weight con-
figurations similar to those posited in our five-subgroup
version of the GCM, with many individual subjects at-
tending primarily to a single dimension (particularly Di-
mensions 1 and 3) and a smaller subgroup distributing
attention in a more nearly optimal manner.

In summary, the key point made in this section is that
the heterogeneity in the distribution-of-generalization
data reported by Nosofsky, Palmeri, and McKinley (1994)
is apparently not as diagnostic of rule use and multiple
categorization systems as was originally argued. Exem-
plar models that make allowance for forms of individual-
subject variability in attention weighting can account for
these data as well.

On Evidence for a Hybrid Connectionist Model
of Categorization

Another major source of evidence that has been used
to argue in favor of the need for a multiple-system cate-
gorization model comes from work reported by Erickson
and Kruschke (1998). These investigators developed a
hybrid connectionist model known as ATRIUM that in-
corporates both rule- and exemplar-based representa-
tions. Specifically, ATRIUM is composed of a rule mod-
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Figure 6. Schematic illustration of the category structure tested
by Erickson and Kruschke (1998). Filled squares, training in-
stances from Rule Category 1; filled circles, training instances
from Rule Category 2; open circle, training instance for Excep-
tion Category 3; open square, training instance for Exception
Category 4. Tg, critical transfer stimuli that are near to one of the
exception categories; T, critical transfer stimuli that are near to
the rule categories. Note—From “Rules and Exemplars in Cate-
gory Learning,” by M. A. Erickson and J. K. Kruschke, 1998,
Journal of Experimental Psychology: General, 127, p. 110. Copy-
right 1998 by the American Psychological Association. Reprinted
with permission.
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ule that learns to establish single-dimensional decision
boundaries, an exemplar module that learns associations
between exemplars and categories, and a competitive
gating mechanism that links the two modules together.
The system basically learns which of the two modules,
the rule module or the exemplar module, is best suited
for classifying objects in specific regions of the psycho-
logical space. In general, the model learns to rely on the
exemplar module when classifying objects that are ex-
ceptions to the category rule; otherwise it favors the rule
module.

A key source of evidence in favor of ATRIUM and
that challenged a single-system exemplar model was ob-
tained by Erickson and Kruschke (1998) in their Exper-
iment 1. The experiment is illustrated schematically in
Figure 6. As shown in the figure, the stimuli varied along
two continuous dimensions, one referred to as a primary
dimension and the other as secondary. The solid circles
and solid squares represent training exemplars assigned
to Categories 1 and 2, respectively. The stimulus repre-
sented by the open circle was assigned to Category 3,
whereas the stimulus represented by the open square was
assigned to Category 4. Note that a simple rule, namely the
horizontal-line boundary formed along the primary dimen-
sion, exists to separate the members of Categories 1 and 2.
The members of Categories 3 and 4, however, can be
viewed as “exceptions” to this rule. In essence, ATRIUM
learns the structure by having the rule module form the
single-dimension boundary, while having the exemplar
module learn associations for the exception items.

A key prediction from ATRIUM is that the exemplar
module will contribute to classification judgments pri-
marily for stimuli that are similar to the learned excep-
tions; otherwise the rule module will tend to be used. To
test this prediction, Erickson and Kruschke (1998) pre-
sented a large number of transfer stimuli following the
learning phase of their experiment. The transfer stimuli
of major interest are those labeled Tg and Tg in Figure 6.
Tg and T are equidistant from the rule boundary. How-
ever, T lies closer to one of the exception items than
does Tg. Given the properties of this proximity structure,
Erickson and Kruschke argued that exemplar models
predict that Tg should be classified into the exception
category with higher probability than Tg. They argued,
however, that T was sufficiently far from the exception
category so that in ATRIUM the exemplar module would
contribute negligibly to performance on this item. In-
stead, the rule module would be used to classify both T,
and T, so both transfer items should be classified into the
exception category with low and equal probability. This
prediction was strongly supported by Erickson and Krusch-
ke’s data: T was classified into the nearest-exception
category with probability .10 and T was classified into
the nearest-exception category with probability .11.

Nevertheless, even the standard exemplar model can
account for this single result if it is assumed that the ob-
server gives virtually all attention to the primary dimen-
sion when making classification judgments. Therefore, to
sharply distinguish between ATRIUM and the exemplar
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model, Erickson and Kruschke (1998) quantitatively fit
the models to the complete set of classification data and
compared the models on their indices of fit. They found
that ATRIUM provided far better fits to the complete set
of classification data than did the pure exemplar model.

We believe that a potential limitation of Erickson and
Kruschke’s (1998) design, however, involves the fact that
in the presentations of the stimuli, numeric labels were
included to indicate the precise magnitude along each
perceptual dimension. This procedure was used to im-
prove subjects’ ability to learn this very difficult category
structure. An unintended consequence of this procedure,
however, is that the psychological representation for the
objects may not have corresponded simply to the two-
dimensional layout pictured in Figure 6. Instead, the nu-
meric labels may also have been part of the psychologi-
cal representation and may have altered the presumed
similarity relations that hold among the objects.3

Indeed, we have formulated extended versions of the
exemplar model that make explicit allowance for the
idea that the labels themselves are stored in memory as
part of the category representation, and these extended
exemplar models yield fits to Erickson and Kruschke’s
(1998) classification transfer data that are nearly as
good as those of ATRIUM. Unfortunately, however, these
extended exemplar models rely on post hoc assumptions
concerning the manner in which the numeric labels may
have been represented. We decided that a more com-
pelling approach to investigating this issue was simply
to replicate Erickson and Kruschke’s original experi-
ment but to withhold the numeric labels when present-
ing the stimuli. Under these modified experimental con-
ditions, our prediction was that there would be little
difference in quantitative fit between the baseline ver-
sion of the GCM and the more elaborate rule-plus-
exemplar ATRIUM model.

Experiment

In this experiment, we replicated Erickson and Kru-
schke’s (1998) Experiment 1, except that we withheld the
presentation of the numeric labels in the stimulus dis-
plays. Because we used Erickson and Kruschke’s origi-
nal computer program and procedure for controlling the
experiment (except for the modification of the program
code to withhold the numeric labels), we refer the reader
to the original article for details regarding the stimulus
materials and procedures. These aspects of the study are
simply summarized below.

Method

Subjects. The 156 subjects participated to receive experimental
credit for an introductory psychology course at Indiana University.

Stimulus materials. Each stimulus was composed of a rectan-
gle with 1 of 10 possible heights and an interior vertical line seg-
ment near the bottom of the rectangle with 1 of 10 possible posi-
tions from left to right. Assignment of the physical dimensions to
the abstract dimensions of the category structure was counterbal-
anced across subjects.

Procedure. As was the case in Erickson and Kruschke’s (1998)
study, the general procedure was that in each block of 14 trials, each
of the training stimuli was presented once in a random order except
for the exception stimuli, which were presented twice. Each subject
was trained on 29 blocks of 14 trials each for a total of 406 training
trials. A test phase followed the training phase and consisted of the
presentation of 50 transfer stimuli in random order (see Appendix A
for details regarding the transfer stimuli that were used). Feedback
was withheld during transfer. The only differences between our pro-
cedure and the one used by Erickson and Kruschke were as follows:
(1) As a source of motivation for good performance, the subjects
were instructed that the 3 subjects with the highest average accura-
cies for the latter part of training would receive a bonus of $25.
(2) Subjects were given a maximum of 30 sec rather than 6 sec to
respond on each trial. (3) We withheld a warning tone for incorrect
responses and presented only visual corrective feedback.

Results

Following Erickson and Kruschke (1998), we were in-
terested in modeling the results for only those observers
who learned the category structure fairly accurately.
Therefore, we included in the results only those subjects
whose average accuracies in the last two blocks of train-
ing for the stimuli in the rule categories and exception
categories were both at least 60% correct. Ninety-six out
of 156 subjects met this criterion. (Erickson and Kruschke
used similarly strict criteria involving both accuracy and
reported strategy use, which led them to cull 125 out of
187 subjects in their modeling analyses. It is an issue of
concern that learning the categories was very difficult
for many subjects, but in the present case we were con-
strained to use the same category structure as in the orig-
inal study.)

The complete set of transfer data from the subjects
who met the learning criterion is reported in our Appen-
dix A. These data consist of the probability with which
each of 50 transfer stimuli was classified into Categories
1-4, respectively. An initial qualitative result of interest
concerns the classification probabilities for Transfer Stim-
uli Tg and Tg. Recall that in Erickson and Kruschke’s
(1998) study, the probability with which these items were
classified into the nearest-exception category was virtu-
ally identical. By contrast, in our follow-up experiment,
Te was classified into the nearest-exception category with
probability .34, whereas T was classified into the nearest-
exception category with probability only .04. This dif-
ference in classification probabilities was statistically
significant [t(95) = 6.12, p <.001]. The finding that T
was classified into the exception category with higher
probability than Ty is consistent with the predictions of
the exemplar model and provides initial evidence that the
use of the labels in Erickson and Kruschke’s original de-
sign may indeed have had an important influence on the
patterns of generalization.

The key question concerns the ability of the alternative
models to quantitatively fit the complete sets of transfer
data. To begin, as a source of comparison, we fitted both
ATRIUM and the GCM to the classification transfer data
from Erickson and Kruschke’s (1998) original experi-
ment. We fitted the alternative models to these data by
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Table 6
Fits of ATRIUM and the Generalized Context Model (GCM)
to the Classification Transfer Data From
Erickson and Kruschke’s (1998) Experiment 1 Paradigm

Study
Original Follow-Up
Model —InL %Var. SSD —InL %Var. SSD
ATRIUM 324.0 977 0403 321.0 985 0.335
GCM 547.1 899 1810 3383 97.3 0.600

Note—SSD, sum of squared deviations.

using a maximum-likelihood criterion (see, e.g., Wickens,
1982). The criterion is to minimize the statistic —In L,
given by

—InL=ZIn Ni!—ZZIn fu“ZZ fydnpy,  (4)

where f;; is the observed frequency with which stimulus i
was classified in category j, p;; is the predicted probabil-
ity from the model with which stimulus i was classified in
category j, and N; is the total frequency with which stim-
ulus i was presented. As auxiliary measures of fit, we re-
port the sum of squared deviations (SSD) between pre-
dicted and observed classification probabilities and the
percentage of variance in the observed classification prob-
abilities accounted for by each model. Fitting ATRIUM re-
quired the estimation of eight free parameters (for details
regarding these parameters, see Erickson and Kruschke,
1998, pp. 117-120), whereas fitting the GCM required the
estimation of three free parameters (the sensitivity param-
eter c, the response-scaling parameter y, and a single at-
tention weight w,).

The model-fitting results are summarized in the left por-
tion of Table 6. The GCM performs dramatically worse
than does ATRIUM in quantitatively fitting Erickson and
Kruschke’ (1998) classification transfer data. The value
of the log-likelihood statistic is more than 50% higher for
the exemplar model than for ATRIUM (smaller values of
—In L indicate a better fit for a model), and the SSD for
the exemplar model is over four times greater than that of
ATRIUM. These dramatically better fits for ATRIUM cor-
roborate Erickson and Kruschke’s findings regarding the
superiority of the multiple-system categorization model
over the exemplar model in their original study.

However, when the models are fitted to the classifica-
tion transfer data obtained in our follow-up experiment,
the results are quite different. As shown in the right por-
tion of Table 6, the GCM now provides an excellent over-
all fit to the complete set of transfer data, nearly as good
as that of the eight-parameter multiple-system ATRIUM
model. (The predictions from the GCM are shown along
with the observed data in Appendix A.) The best-fitting
parameters were ¢ = .767, w; = .322,and y = 2.140. The
attention-weight parameter estimate indicates that ob-
servers gave more weight to Dimension 2 (the primary di-
mension in Figure 6) than to Dimension 1 (the secondary
dimension), which is sensible given that the primary di-
mension is more diagnostic of category membership.
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Overall, then, the results are consistent with our hy-
pothesis that the single-system exemplar model may be
sufficient to account for the pattern of data observed in
Erickson and Kruschke’s (1998) paradigm. In the situation
in which labels were presented as part of the stimulus
display, they apparently formed part of the exemplar rep-
resentation and accordingly had a strong influence on the
pattern of generalization. A reasonable application of the
exemplar model to such a design would therefore need to
explicitly incorporate the labels as part of the multidimen-
sional similarity representation for the stimuli. By con-
trast, in the situation in which the labels were not presented
as part of the display, the pattern of generalization is as pre-
dicted by the standard exemplar model, and it provides
an excellent quantitative account of the data.

Performance on Prototypes Versus Exceptions

Thus far in our article, we have considered cases in
which investigators argued in favor of multiple-system
models involving rule formation. In this section we con-
sider evidence that has been used to argue for a multiple-
system model involving prototypes. Specifically, J. D.
Smith, Murray, and Minda (1997; J. D. Smith & Minda,
1998) argued for a mixed prototype-plus-exemplar model
of categorization. According to their view, prototypes are
often abstracted during early stages of category learning
or when categories have highly coherent structures. Ex-
emplar storage is used to supplement prototype abstrac-
tion as learning is extended in time. In the J. D. Smith
et al. (1997) model, the term prototype refers to an ide-
alized object that is composed of the most frequently oc-
curring dimension values of the members of a category.

The main experimental design that J. D. Smith and col-
leagues used to support their hypothesis of prototype ab-
straction is shown in Table 7. The stimuli varied along
six binary-valued dimensions, with Logical Value 1 tend-
ing to indicate Category A and Logical Value 2 tending
to indicate Category B. In this design, the prototype of
Category Ais 111111, and the prototype of Category B is
222222. Note also that each category in J. D. Smith
et al.’s design contains an “exception” item. Specifically,
222212 is an exception stimulus that belongs to Cate-
gory A, whereas 111211 is an exception stimulus that be-
longs to Category B.

As a representative example of the use of this design,
we consider J. D. Smith et al.’s (1997) Experiment 1. In
this experiment, J. D. Smith et al. tested 16 individual

Table 7
Nonlinearly Separable Category Structure
Tested by J. D. Smith, Murray, and Minda (1997)

Category A Category B
1.111111 8.222222
2211111 9.122222
3121111 10.212222
4112111 11.221222
5111121 12.222122
6.111112 13.222221
7.222212 14.111211
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Figure 7. Solid line shows the average observed percentage of
correct category decisions displayed by the “prototype subjects”
for each of the 14 stimuli in J. D. Smith, Murray, and Minda’s
(1997) Experiment 1 (nonlinearly separable, easy condition). Dot-
ted line shows the average percentage of correct category decisions
for each stimulus predicted by the generalized context model.
Note—From “Straight Talk About Linear Separability,” by J. D.
Smith, M. J. Murray, & J. P. Minda, 1997, Journal of Experi-
mental Psychology: Learning, Memory, & Cognition, 23, p. 669.
Copyright 1997 by the American Psychological Association.
Adapted with permission.

subjects on the Table 7 category structure and compared
a prototype model and the GCM on their ability to fit the
individual-subject learning data. Although the GCM
provided better fits to the data of 8 of the subjects, the
prototype model fared better on the remaining 8 sub-
jects. The averaged observed and GCM-predicted data
for this latter “prototype subgroup” of subjects are dis-
played in Figure 7 (from J. D. Smith etal., 1997, Figure 5).
As can be seen, the GCM underpredicted the observed
performance on the prototype stimuli (Stimulus 1 [111111]
and Stimulus 8 [222222]), but overpredicted performance
on the exceptions (Stimulus 7 [222212] and Stimulus 14
[111211]).

Furthermore, J. D. Smith et al. (1997) argued that these
deviations represented a fundamental qualitative short-
coming of the exemplar model. Figure 8 provides a scatter-
plot, for each of a set of 16 “prototype subjects” (across
two experiments), of the mean percent correct perfor-
mance observed on the prototypes and exceptions (from
J. D. Smithetal., 1997, Figure 10). In general, these sub-
jects are ones who performed extremely accurately on
the prototypes but who classified the exceptions with
low accuracy. By way of comparison, Figure 9 illustrates
the “response surface” of the exemplar model, that is, the
set of all possible performances that it can predict on
these items under any of its parameter settings (after J. D.
Smith et al., 1997, Figure 10). It is easily observed that
the behavior of the “prototype subjects” lies in a region

of the performance space where the exemplar model
cannot go.

However, the version of the exemplar model fitted by
J. D. Smith et al. (1997) assumed y = 1 in the response-
rule equation (Equation 1), which is the value assumed
in the original version of the context model of Medin and
Schaffer (1978). Although J. D. Smith et al.’s “prototype
subjects” effectively rule out this special-case model, we
know of no very strong reason why one should assume
y = 1. In an early article that tested the context model,
Medin and Smith (1981) justified use of this particular
response rule simply by saying, “The best defense of the
response rule is that it is a fair approximation and that it
seems to work” (p. 250). Numerous independent lines of
evidence since then have indicated that when fitting
individual-subject data with the exemplar model, it is im-
portant to allow y to take on values greater than 1 (see, e.g.,
Maddox & Ashby, 1993; McKinley & Nosofsky, 1995;
Nosofsky & Palmeri, 1997). As discussed in our Overview
of the Formal Model section, the y response-scaling pa-
rameter describes the extent to which observers use
probabilistic as opposed to deterministic response strate-
gies in classification, and values of y > 1 allow the ex-
emplar model to account for the types of deterministic
responding that are often evidenced at the individual
subject level 4

In Figure 10, we plot the response surface of the ex-
emplar model with y allowed to vary freely. Inspection of
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Figure 8. Scatterplot of performances for each of a set of 16
“prototype subjects” (across two experiments) from the study of
J. D. Smith, Murray, and Minda (1997). The vertical axis gives
the exception-items performance of each subject, and the hori-
zontal axis gives the prototype-items performance. Note—From
“Straight Talk About Linear Separability,” by J. D. Smith, M. J.
Murray, & J. P. Minda, 1997, Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 23, p. 675. Copyright 1997
by the American Psychological Association. Adapted with per-
mission.
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Figure 9. The set of all possible performances that the GCM
can jointly predict for the prototype and exception items in J. D.
Smith, Murray, and Minda (1997; Experiment 1—nonlinearly
separable, easy condition). These predictions assume y = 1in the
response-rule equation (Equation 1).

the figure indicates that the exemplar model can easily
accommaodate the performance profiles displayed by the
“prototype subjects” in Figure 8. At the same time, the
model can account for the performances of all of the “ex-
emplar subjects” who are not illustrated in Figure 8 (but
who were just as prevalent as the “prototype subjects”).
To provide a complete account of J. D. Smith etal.’s (1997)
data, a single-system model is required to account for both
types of performance.

The performance profiles of the “prototype subjects”
are well predicted by the exemplar model when the over-
all level of sensitivity (c) in the model is low and when the
response-scaling parameter (y) is at least moderately high.
As discussed previously, when sensitivity is low, there is
a great deal of stimulus generalization. Because the ex-
ception items in the Table 7 structure are highly similar
to numerous objects from the contrast category, their
summed similarity to members of the contrast category
exceeds their summed similarity to members of their
own category, so the observer classifies them into the
wrong category. Note that it is at early stages of learning
that one expects the sensitivity parameter to take on lower
values. One of the major learning mechanisms in the ex-
emplar model has always involved the idea that overall
sensitivity (ability to discriminate objects in memory)
increases with training (Nosofsky, 1987; Nosofsky et al.,
1992). By comparison, once sensitivity reaches high lev-
els, as would be expected later in training, the exception
items will have low summed similarity to the members
of the contrast category; that is, there is little stimulus
generalization. The exception items perfectly match their
own memory traces, however, so still have high similar-
ity to themselves. Thus, at late stages of learning, the ex-
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emplar model predicts correctly that the exception items
will be accurately classified. Finally, the role of the y pa-
rameter is simply to scale the extremeness of the re-
sponse-probability predictions made by the model, that
is, the degree to which the probabilities deviate from .50
in the direction of either zero or unity.

To gain further evidence bearing on the adequacy of
the exemplar model, we conducted maximum-likelihood
fits of the model to J. D. Smith et al.’s (1997, Experi-
ment 1) individual subject data. Figure 11 provides a com-
posite summary of the results of these individual-subject
fits, analogous to the composite summary that was dis-
played previously for the y = 1 model. The figure plots
the observed and predicted classification probabilities
for each of the 14 stimuli, averaged across the 16 indi-
vidual observers. The figure now reveals no systematic
deviations between predicted and observed data values.
Indeed, as shown in Table 8, the exemplar model gives a
better overall maximum-likelihood fit to J. D. Smith
et al.’s individual subject data than does the alternative
prototype model, and for none of the individual subjects
is there a substantial advantage for the prototype model.
(We fitted the same version of the prototype model as was
used by J. D. Smith et al., 1997. Details of the model-
fitting procedures are provided in our Appendix B.)

We emphasize that we are not claiming here a strong
advantage for the exemplar model over the prototype
model in this paradigm. Drawing strong conclusions is
particularly difficult in view of the fact that the exem-
plar model makes use of an additional free parameter rel-
ative to the prototype model (see Appendix B). Rather,
we argue that J. D. Smith et al.’s (1997) strong claim of a
qualitative advantage of the prototype model over the ex-
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Figure 10. The set of all possible performances that the GCM
can jointly predict for the prototype and exception items in J. D.
Smith, Murray, and Minda (1997; Experiment 1—nonlinearly
separable, easy condition), with the vy response-scaling param-
eter allowed to vary freely.
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Figure 11. Solid line, observed percentage of correct category
decisions for each of the 14 stimuli in J. D. Smith, Murray, and
Minda’s (1997) Experiment 1 (nonlinearly separable, easy con-
dition), averaged across all 16 observers. Dotted line, average
percentage of correct category decisions for each stimulus pre-
dicted by the GCM (with yallowed to vary freely).

emplar model is not merited by the data. Apparently, a
more diagnostic experimental paradigm will be needed
to gain clear evidence of the need to extend the exemplar
model with a separate prototype-abstraction system.
Although they did not provide detailed comparisons
of fits to the individual subject data, J. D. Smith and Minda
(1998, pp. 1430-1432) acknowledged that when the y
parameter is allowed to vary freely, the pure exemplar
model could perform well in this paradigm. They argued
against the exemplar-model interpretation, however, by
suggesting that the response-scaling parameter “can be a
prototype in exemplar clothing” (J. D. Smith & Minda,
1998, p. 1431). In other words, their suggestion was that
the exemplar model with the response-scaling parameter
was simply mimicking what is a simpler description pro-
vided by the prototype model. Our view, however, is that
simplicity is in the eye of the beholder. It is true that for
some of the individual subjects or stages of learning, the
exemplar model with an additional free parameter is pro-
viding roughly the same fits as is the prototype model.
For numerous other subjects or stages of learning, how-
ever, the prototype model performs substantially worse
than does the exemplar model. The preferred interpreta-
tion of J. D. Smith and his colleagues is that subjects are
both abstracting prototypes and storing exemplars, with
the particular representational system that is dominant
varying across individual subjects and stages of learning.
By contrast, we are pointing out that a single-system ex-
emplar model can account for all of J. D. Smith et al.’s
data, without the need to posit the second representa-
tional system. In a nutshell, in the comparisons that J. D.
Smith and his colleagues have conducted in their para-
digm, the “competition” is between an exemplar model

with seven free parameters versus a multiple-system model
in which the exemplar system uses six free parameters,
the prototype system uses six free parameters, and where
the assumed system for any individual subject at a given
stage of learning is based on post hoc fits to the data.
Viewed from this perspective, the exemplar model with
the response-scaling parameter seems at least as parsi-
monious as the alternative multiple-system approach
proposed by J. D. Smith and Minda (1998). It is true that
our exemplar-based account does not predict in advance
which individual subjects will use smaller values of y and
which will use larger ones; but neither does J. D. Smith
and Minda’s multiple-system account predict in advance
which individual subjects will use exemplars and which
will use prototypes.

Dissociations Between Categorization
and Similarity Judgment

A classic study that challenged the sufficiency of ex-
emplar-similarity accounts of categorization is one re-
ported by Rips (1989; see also Rips & Collins, 1993). In
this study, Rips demonstrated certain dissociations be-
tween categorization and similarity judgments that were
interpreted as evidence for the role of rule-based cate-
gorization.>

An example of the type of phenomenon documented
by Rips (1989) is as follows. Subjects were asked to imag-
ine a circular object with a 3-in. diameter. One group was
asked to judge whether the object was more similar to
the category QUARTER or to the category pizzA. (It was
previously established in the study that the 3-in. object
was intermediate in diameter between the subjects’ ex-
periences of the largest quarter and the smallest pizza.)
A second group, however, was asked to decide to which
of the two categories the object was more likely to be-
long. Whereas the similarity-judgment group judged the
object as more similar to QUARTER, the category-judgment

Table 8
Summary Fits of Exemplar and Prototype Models to the Data
From J. D. Smith, Murray, and Minda’s (1997)
Experiment 1, Nonlinearly Separable (Easy) Condition

—In Likelihood
Subject Exemplar Prototype
1 20.4 22.1
2 22.3 21.8
3 23.9 23.6
4 21.2 20.9
5 14.8 15.6
6 26.3 30.5
7 18.1 22.6
8 17.1 23.8
9 10.8 19.8
10 20.0 20.0
11 18.6 18.5
12 19.2 25.2
13 18.0 14.4
14 18.2 23.0
15 143 26.5
16 19.5 19.6
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Figure 12. Schematic illustration of the types of category structures queried by
Rips (1989) in his studies of effects of variability on categorization and similarity

judgment.

group judged the object as more likely to belong to the
PIzzA category. Thus, Rips demonstrated a dissociation be-
tween similarity and categorization judgments. The key
point is that although the 3-in. object is judged more sim-
ilar to the QUARTER category, it is judged more likely to
belong to the rizzA category because the latter is a high-
variability category on the size dimension. By contrast,
the category QUARTER has virtually no variability on this
dimension. Subjects apparently used their knowledge of
the low variability of the QUARTER category to override
their similarity judgments. The interpretation is that sub-
jects used a “rule” that an object must have virtually the
exact diameter of a QUARTER to be classified in that cat-
egory. Indeed, E. E. Smith and Sloman (1994) summa-
rized the interpretation of Rips’s studies as follows:

The clearest evidence for rule-based categorization, and
for its difference from similarity-based categorization,
comes from studies of Rips (1989) ... Because catego-
rization decisions favored one category but similarity de-
cisions favored the other, the categorization decisions could
not have been based on similarity. (p. 378)

Rips’s (1989) study does indeed pose an interesting
challenge to single-system, exemplar-similarity accounts
of categorization. In this section, we speculate on possi-
ble approaches to meeting the challenge. To begin, we
focus first on the categorization aspect of the study. The
structure of the categorization problem is illustrated
schematically in Figure 12. Category Distribution A is
an extremely low-variability category; Distribution B is
the high-variability category; and x represents an object
that is equidistant from the highest exemplar of Cate-
gory A and the lowest exemplar of Category B. Note
that, according to the standard GCM, the summed simi-
larity of x to the exemplars of Category A exceeds its
summed similarity to the exemplars of Category B (be-
cause all exemplars of A are a fairly small distance from x,
whereas relatively few exemplars from B are a small dis-

tance from x). Yet, the phenomenon observed by Rips was
that subjects tended to classify x into the high-variability
category.

Our main proposal is that the phenomenon can be un-
derstood in terms of the exemplar-similarity model if al-
lowance is made for the idea that separate sensitivity pa-
rameters may govern similarity computations to the low-
and high-variability categories (see also E. E. Smith &
Sloman, 1994, p. 384). Recall that the sensitivity param-
eter determines the rate at which similarity decreases with
distance (Figure 2). Although most applications of the
GCM assume a single sensitivity parameter, a reasonable
extension of the model makes allowance for the role of
category-specific sensitivities. The idea is that, in mak-
ing a classification judgment, an observer learns that an
object should be considered as similar to members of a
low-variability category only if it virtually exactly matches
those members on the relevant attribute. (We will explain
below why we believe that such an assumption is ex-
tremely reasonable.) Thus, the observer adopts a high
setting of the sensitivity parameter when computing sim-
ilarities to the exemplars of the low-variability category.
By contrast, a looser criterion can be used in assessing the
similarity of an object to members of a high-variability
category, so here the sensitivity parameter is set at a low
value. The result is that the summed similarity of ob-
ject x to the exemplars of the high-variability category
exceeds its summed similarity to the exemplars of the
low-variability category, so it is classified into the high-
variability category.

Why is the proposal sensible that separate sensitivities
may govern similarity comparisons to low- and high-
variability categories? We believe that it follows directly
from the same considerations of adaptiveness and opti-
mality that have motivated many of the other predictions
of the exemplar model. For example, as discussed previ-
ously in this article, it has long been hypothesized that
there are adaptive learning principles that lead observers
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to distribute attention across psychological dimensions
in a manner that tends to optimize performance (Nosof-
sky, 1984, 1986). This attention weighting causes system-
atic changes in the structure of psychological space so as
to maximize within-category similarities among exemplars
and minimize between-category similarities. Likewise,
an observer who wished to maximize his/her percentage
of correct classification decisions would adjust the set-
ting of the sensitivity parameter in accord with experi-
enced category variabilities. In Appendix C, we verify that
if an observer’s goal is to maximize his/her percentage of
correct generalizations to new objects generated from
the Figure 12 category distributions, then it is indeed op-
timal to use a lower setting of sensitivity when computing
similarities to the high-variability category than to the
extremely low-variability one.

Note that previous investigators have argued that ob-
servers may adjust the setting of the sensitivity param-
eter in accord with task demands and have provided em-
pirical evidence in support of this hypothesis (e.g., Estes,
1986; Lamberts, 1994; Nosofsky, 1991a; L. B. Smith,
1989), so the current proposal converges with past ones
made in the field. For example, Lamberts reported stud-
ies about how the role of background knowledge may in-
fluence the types of generalization gradients that observers
use when categorizing. In a training phase, subjects ex-
perienced a set of schematic faces that were experimen-
tally defined as belonging to one of two families. In a
transfer phase, new faces were shown and subjects were
required to classify them into the families. The crucial
manipulation was that for each transfer face, subjects
were informed either that it was a brother of one of the
training faces or a cousin of one of the training faces.

30+
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Owing to subjects’ background knowledge that a brother
is likely to closely resemble a particular family member,
whereas a cousin might only vaguely resemble a number
of different family members, it was hypothesized that
subjects would use different generalization gradients for
classifying the two types of items. Specifically, it was hy-
pothesized that subjects would use a steep generalization
gradient (a high level of sensitivity) for classifying broth-
ers, but a shallow gradient (a low level of sensitivity) for
classifying cousins. Lamberts obtained consistent evi-
dence in support of this hypothesis across three separate
experiments.

Although our hypothesis regarding category-specific
sensitivity may allow the exemplar model to account for
subjects’ classification judgments, we have addressed
only half the story. Recall that Rips (1989) also demon-
strated that when asked to make direct similarity judg-
ments, subjects judged the 3-in. object as more similar to
QUARTER than to pizzA.

In a nutshell, we believe that it is a mistake to view the
similarity-judgment question as a “stand-in” for the ex-
emplar model’s predictions of classification judgments.
The type of summed similarity computation that we hy-
pothesize is performed by the exemplar model is not some-
thing that can be assessed simply by asking subjects to
provide a similarity judgment. Even in situations in which
observers are asked to provide similarity ratings between
individual objects, the nature of such ratings has been
treated with extreme caution in the field. It is well doc-
umented that such ratings are highly context dependent
and are strongly influenced by complex cognitive and
decision factors. Although Nosofsky (1991a; Shin &
Nosofsky, 1992) has sometimes collected similarity
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Figure 13. Stimulus histogram from Rips and Collins’s (1993) Experiment 1, illustrating a
sample of 100 daily high temperatures from February and August. Note—From “Categories
and Resemblance,” by L. J. Rips and A. Collins, 1993, Journal of Experimental Psychology:
General, 122, p. 471. Copyright 1993 by the American Psychological Association. Reprinted

with permission.
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Figure 14. Mean ratings from Rips and Collins’s (1993) Experiment 1 for
similarity, typicality, and likelihood as a function of the position of the test value
within the histogram. Note—From “Categories and Resemblance,” by L. J.
Rips and A. Collins, 1993, Journal of Experimental Psychology: General, 122,
p. 473. Copyright 1993 by the American Psychological Association. Reprinted

with permission.

judgments among objects in studies of categorization,
the ratings are never used directly to predict subjects’
classification choices. Instead, the ratings are used to
construct MDS solutions for the objects, which are then
used in combination with the machinery of the formal
exemplar model as a means of predicting classification
(see Nosofsky, 1992, for a review). Processes such as di-
mensional attention weighting and modulation of overall
sensitivity are presumed to modify the structure of the
psychological similarity space in which the exemplars
are embedded (Nosofsky, 1986, 1987). The complex cog-
nitive and decision factors that influence similarity judg-
ment are likely to be further compounded in situations
such as Rips’s (1989) study, in which observers must deal
with linguistically difficult and open-ended questions
such as how similar a single object is to entire categories
of other objects.b

Indeed, it is our view that, in a follow-up study, Rips
and Collins (1993) themselves actually provided a “dem-
onstration proof” that the direct similarity-judgment
question does not serve as a stand-in for the exemplar
model’s predictions of classification. The design of one
of Rips and Collins’s experiments is illustrated in Fig-
ure 13. On each trial, subjects were presented with a histo-
gram similar to the one in the figure along with a particu-
lar test value indicated by an arrow below the histogram’s
x-axis. In the Figure 13 example, the histogram depicts
a single “category” of 100 daily high-temperature read-
ings observed during the months of February and Au-
gust. A similarity group rated the similarity of the indi-
cated test value to the depicted category, whereas a
categorization group rated the likelihood that the test

value was a category member. (A third group rated how
typical the value was of the category.) The main results
are shown in Figure 14, which plots mean ratings from
the three groups against the various test values in the histo-
gram. It is evident from inspection that whereas the high-
est similarity ratings occurred for values located cen-
trally in the histogram, the highest categorization ratings
occurred for the most frequently occurring values in these
bimodal distributions. Rips and Collins argued that the
results posed problems for “resemblance-based” models
of categorization, such as exemplar-similarity models,
because there was again a dissociation between the sim-
ilarity and categorization judgments.

Because the histogram-judgment experiment does not
correspond to a situation in which people have learned
categories by induction over individually presented ex-
emplars, we need to introduce some assumptions to try
to translate it into a format compatible with the exemplar
model. First, we assume that the frequency counts in the
histogram translate directly into copies of exemplars stored
in subjects’ memory; second, that the configuration of
exemplars in psychological space corresponds directly
to the physical layout pictured in the figure; and third,
that the category-likelihood judgment is then monotoni-
cally related to the summed similarity of a value to the
exemplars pictured in the histogram. Given these assump-
tions, it is then straightforward to show that the exem-
plar model predicts that the category-likelihood judg-
ments will follow the bimodal pattern observed in the
figure for the category-judgment group.? In other words,
the most straightforward application of the exemplar
model to the histogram-judgment experiment predicts
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the pattern of categorization results that were reported
by Rips and Collins (1993). This subset of results, there-
fore, can hardly be considered as providing evidence
against the exemplar model.

Equally relevant in the present context, there are no
parameter settings for which the exemplar model would
yield the highest summed similarities for the central values
in the histogram (whereas the subjects in the similarity-
judgment group gave these values the highest similarity
ratings). Therefore, whatever subjects may be doing when
rating how similar an individual value is to the category
of values depicted in the histogram, it does not correspond
to the summed-similarity computation performed by the
exemplar model. A reasonable inference, therefore, is
that the subjects’ similarity judgments in the QUARTER—
PizzA study are also unlikely to correspond to the summed-
similarity computations performed by the exemplar model.

In summary, our view is that Rips (1989; Rips & Col-
lins, 1993) has developed an interesting cognitive task,
namely one in which subjects must make direct judg-
ments of the similarity of an object to categories of ex-
emplars, and a worthwhile goal is to develop models that
can account for such judgments. However, the direct
similarity judgment itself cannot be viewed as a “stand-
in” for what the exemplar model predicts regarding clas-
sification. Rips and Collins’s (1993) own data provide a
demonstration proof that such judgments often do not
correspond to the exemplar model’s predictions of clas-
sification.

Dissociations Between Categorization and
Recognition in Normals and Amnesics

In this final section, we briefly review a recently re-
ported application of the exemplar model (Nosofsky &
Zaki, 1998) to another phenomenon that has been inter-
preted by researchers as providing evidence for the role
of multiple cognitive systems in categorization. In a se-
ries of experiments, Knowlton, Squire, and their col-
leagues demonstrated some intriguing dissociations be-
tween categorization and recognition in normal and
amnesic subjects (Knowlton, Mangels, & Squire, 1996;
Knowlton & Squire, 1993; Squire & Knowlton, 1995).
For example, Knowlton and Squire tested amnesics and
matched normal controls in categorization and recogni-
tion tasks involving the classic Posner and Keele (1968)
dot-pattern distortion paradigm. In the categorization task,
subjects were presented with a list of 40 high distortions
of a dot-pattern prototype. Following the presentation of
the list, subjects were presented with a test set consisting
of the prototype, 20 low distortions of the prototype, 20
new high distortions of the prototype, and 40 random
patterns. Subjects were asked to judge whether each pat-
tern belonged to the category defined by the study items.
In a recognition task, subjects were presented with a study
list of five random dot patterns presented eight times each.
They were then presented with a test list consisting of the
five study items and five new random dot patterns, and
were asked to judge whether each pattern was old or new.

As expected, the amnesics performed significantly
worse than did the normals on the old—new recognition
task. The interesting result, however, was that the am-
nesics performed virtually as well as the normals in the
categorization task (the differences in performance be-
tween the two groups were not statistically significant).

Knowlton and Squire (1993) interpreted this dissoci-
ation between categorization and recognition performance
as providing evidence of separate memory systems gov-
erning the two tasks. According to their interpretation,
an explicit memory system based on the storage of indi-
vidual exemplars underlies recognition, but an implicit
system, perhaps based on the formation of prototypes,
governs categorization. The explicit memory system of
the amnesics is damaged, accounting for their impaired
recognition, but the implicit memory system of the am-
nesics is intact, accounting for their normal categoriza-
tion performance.

Nosofsky and Zaki (1998), however, demonstrated that
a single-system exemplar model, which was essentially
the same as the one described in the present article, could
account in quantitative detail for the complete set of clas-
sification and recognition data reported by Knowlton
and Squire (1993). The key idea introduced in their mod-
eling analyses was that both categorization and recogni-
tion judgments were based on summing similarities of
the test items to exemplars stored in memory; however,
the exemplar-based memory of the amnesics was assumed
to be impaired. This impairment was modeled in terms
of a lower setting of the overall sensitivity parameter in
the exemplar model. Although the lowered sensitivity
causes severe impairment in the old—new recognition
task, Nosofsky and Zaki demonstrated that it is sufficient
to support near-normal performance in the categoriza-
tion task (at least in the paradigms tested by Knowlton
and Squire). This result can be described intuitively as
follows. To perform well in old—new recognition, it is
beneficial to discriminate as sharply as possible between
individual old versus new objects. However, to perform
well in the categorization task, it is important to take ad-
vantage of similarities between new transfer patterns and
the old exemplars on which subjects were trained. Mak-
ing discriminations that are too fine-grained can actually
be detrimental to categorization, where an important goal
is to generalize appropriately to new objects and to treat
distinct objects that belong to the same category as equiv-
alent. Thus, the lower level of memory sensitivity avail-
able to the amnesics still enabled them to generalize to the
new transfer patterns at near-normal performance levels.

GENERAL DISCUSSION

Summary

In summary, in this article we demonstrated that a single-
system, exemplar-similarity model accounts for a wide
variety of recently reported perceptual-classification phe-
nomena that investigators have interpreted in terms of
rule use or prototype formation. These phenomena have
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led to the proposal that multiple systems govern percep-
tual categorization and have stimulated the development
of a variety of multiple-system categorization models.
The present demonstrations are important because they
provide evidence that, at least in free-strategy situations
in which people learn categories via induction over train-
ing exemplars, the multiple-system models may not be
necessary: A single-system, exemplar-similarity approach
appears adequate to account for the major phenomena of
interest.

We summarize here some of the features of the exem-
plar model that allow it to account for these rule-described
and prototype-described phenomena. The first feature
involves the idea that similarity is not an invariant rela-
tion. Rather, it is highly context dependent due to the in-
fluence of selective attention to the component dimensions
that compose the category exemplars. The selective atten-
tion process is modeled in terms of a set of dimension
weights that stretch and shrink the psychological simi-
larity space in which the exemplars are embedded. An
important working hypothesis that has gained support in
numerous previous studies is that observers learn to dis-
tribute attention across the psychological dimensions in
a manner that tends to optimize performance (Nosofsky,
1984, 1986, 1987, 1991a, 1998a; see also Getty, Swets,
Swets, & Green, 1979, and Reed, 1972).

In the examples in the present article, the selective at-
tention process was the key to allowing the exemplar
model to account for the phenomenon of a “bias toward
verbal rules” observed by Ashby et al. (1998) in their
studies of probabilistic classification learning. Specifi-
cally, according to the model, observers would maximize
performance by giving greater attention to the more diag-
nostic dimension in Ashby et al.’s experimental design.
Such an attentional process, in turn, results in the best-
fitting linear decision boundary being “pulled away”
from the optimal population boundary in the direction of
the “verbal rule.” ldeas about selective attention were
also critical in allowing the model to account for the het-
erogeneous “distribution of generalizations” observed
by Nosofsky, Palmeri, and McKinley (1994) in their stud-
ies of rule-plus-exception learning. The exemplar-based
account of this phenomenon involved the plausible as-
sumption that individual observers may vary widely in
the dimensions to which they selectively attend early in
classification training, even though an adaptive learning
process may eventually drive many observers in the di-
rection of a nearly optimal attentional distribution later
in training. We also found support for the hypothesis that
observers may have attended to the numeric labels that
were available in Erickson and Kruschke’s (1998) exper-
iment, and that some of the evidence for the operation of
the rule module in this study may have been reflecting a
modified proximity structure instead.

A second important feature of the exemplar model is
the role of the overall sensitivity parameter that relates
judged similarity to distance in psychological space.
When sensitivity is low, there is a great deal of stimulus

395

generalization, in the sense that even objects that are dis-
tant in psychological space are judged as fairly similar.
Sensitivity is expected to be low at the start of training,
before processes of perceptual and memorial differenti-
ation begin to operate (Gibson & Gibson, 1955; Nosofsky,
1987). Under conditions of low sensitivity, the exemplar
model predicts large prototype enhancement effects, be-
cause prototypes are highly similar to virtually all of the
exemplars from their own category. Furthermore, under
such conditions, “exception items” will often be classi-
fied into the wrong category because they tend to have
greater overall similarity to the exemplars of the contrast
category than to their own target category. The idea that
observers may have low sensitivity, particularly at the
start of training, was one of the keys to allowing the ex-
emplar model to account for the poor performance on the
exception items observed in the “prototype abstraction”
study of J. D. Smith et al. (1997). The sensitivity param-
eter was also instrumental in allowing the exemplar
model to account for the classification—recognition dis-
sociations observed in the studies of Knowlton and Squire
(1993). The idea here was that the lowered memory sen-
sitivity of the amnesics was particularly detrimental to
their old—new recognition performance, yet sufficient to
allow them to make the gross-level discriminations that
were needed to achieve near-normal performance on the
categorization tasks. Finally, we speculated that strategic
adjustments in the sensitivity parameter may be a key idea
in allowing the exemplar model to account for patterns
of “rule-based” classification judgments observed in the
well-known variability studies introduced by Rips (1989).

A third aspect of the exemplar model that plays an
important role in its predictions is the operation of the
response-scaling parameter (y). This parameter governs
the extent to which observers use probabilistic versus de-
terministic response strategies in their classification judg-
ments. In the original version of the context model (Medin
& Schaffer, 1978; Nosofsky, 1986), the y parameter was
set at 1, in which case the exemplar model tends to pre-
dict “probability-matching” behavior (Estes, 1986; Nosof-
sky etal., 1992). However, there was never any strong mo-
tivation for the use of this parameter setting. Our view is
that the extent to which observers use probabilistic ver-
sus deterministic response strategies is an issue quite sep-
arate from the issue of the nature of the underlying cate-
gory representation. For example, suppose that a “rule
boundary” has been established, and an object falls a
certain distance from the boundary within Region A of
the space. An observer may choose to respond that the
object belongs in Category A with probability based on
its distance from the boundary, or may choose to respond
deterministically that the object belongs in Category A.
Analogously, suppose that an object has greater summed
similarity to the exemplars of Category A than to the ex-
emplars of Category B. An observer may choose to re-
spond by probability matching to the summed similarities,
or may choose to respond deterministically that the ob-
ject belongs in the category with the greater summed sim-



396 NOSOFSKY AND JOHANSEN

ilarity. On the basis of this reasoning, we argue that evi-
dence for rules versus exemplars should be decoupled
from the question of whether observers use determinis-
tic or probabilistic response strategies.

In the present investigations, the role of the y param-
eter was explored most directly in our exemplar-based
accounts of J. D. Smith et al.’s (1997) “prototype abstrac-
tion” studies. In particular, our interpretation is that the
subset of subjects who, near the start of training, classify
the prototype with high accuracy into the target category,
but who classify the exception item with high probabil-
ity into the wrong category, satisfy the following char-
acteristics. First, they tend to have a low value of overall
sensitivity; thus, the exception items tend to have greater
summed similarity to the members of the contrast cate-
gory than to their own target category. Second, these ob-
servers tend to use a deterministic response rule (values
of y greater than 1), responding with the category that
yields the larger summed similarity.

Issues of Model Flexibility

Although the exemplar model accounts well for the
numerous multiple-system phenomena that we have con-
sidered in this article, we should reemphasize that we are
not claiming that it necessarily provides a superior ac-
count of the phenomena than do the multiple-system
models. Because the exemplar model can be viewed as a
single-system model and generally has fewer free param-
eters than its multiple-system competitors, there is a
strong sense in which it provides a more parsimonious
account of the full range of data. However, in some of
the cases considered, we should admit that the exemplar
model did not predict a priori certain key patterns of re-
sults; we showed only that it could account for the results
with suitable choices of its parameter settings or with
certain extensions to the model. A potential danger is that,
with enough post hoc extensions, the exemplar model
can be made to fit anything and will not be falsifiable.
On the other hand, in fairness to the exemplar-based ap-
proach, we believe that the types of extensions that were
proposed herein were reasonable and sensible. At least at
present, we believe that the story told by the exemplar
model remains a conceptually simple one, and so the
model stands as a viable alternative to its multiple-system
competitors.

Obviously, a critical direction for future research is to
design new experiments that will distinguish our exemplar-
based accounts of the phenomena from the multiple-
system accounts. For example, suppose that our parameter-
difference explanation of Knowlton and Squire’s (1993)
categorization—recognition dissociation is correct. Then
it ought to be possible to design new, more diagnostic cate-
gorization problems in which the lowered memory sensi-
tivity of the amnesics will in fact lead to worse-than-normal
performance. By contrast, if Knowlton and Squire’s hy-
pothesis of separate memory systems governing catego-
rization and recognition is correct, then amnesics should

perform as well as normals regardless of the difficulty of
the categorization problem that is involved.

A potential concern is that the reason that the exem-
plar model accounts so well for the wide and varied phe-
nomena considered in this article is simply that, in a
mathematical sense, it is a highly flexible model. In other
words, with suitable adjustments of its free parameters,
perhaps it can account for virtually any pattern of data.
In one previous study designed to get a handle on this
issue, Nosofsky et al. (1989, Experiment 2) provided
subjects with explicit instructions to use particular rules
for classifying a set of objects. Under such conditions, the
exemplar model failed dramatically to account for the
patterns of data, whereas appropriately formalized rule-
based models performed impressively (see Nosofsky
et al., 1989, pp. 293-294). By contrast, in free-strategy
designs involving the same category structures, the reverse
pattern of results was observed. Thus, it was not the case
that the exemplar model could act as a “universal data
fitter”; rather, at least in those studies, it seemed to be
capturing the types of performances that subjects natu-
rally exhibited when learning categories by induction
over individual training exemplars.

Nevertheless, it is crucial to gauge the degree of flex-
ibility that a model has when evaluating its goodness of fit,
and this issue is currently burgeoning in the field of math-
ematical psychology (e.g., Grunwald, 2000; Myung, 2000;
Myung & Pitt, 1997). New model-evaluation techniques
that are currently under development and that consider
such flexibility may well hold the key to better assessing
the virtues of the single-system versus multiple-system
approaches to modeling categorization.

Finally, an important route to reducing the flexibility of
amodel is to develop theories of its parameters rather than
allowing them to vary freely. The attention-optimization
hypothesis, which we relied on at several points in this
article, provides one example along these lines. However,
in its present form, the attention-optimization hypothe-
sis provides only general guidelines and is far from a uni-
versal law of human performance. Numerous other fac-
tors besides performance optimization are posited to
influence the attention weights, including the intrinsic
salience of the psychological dimensions, prior learning
and beliefs, forms of hypothesis testing behavior, and so
forth.

Furthermore, various constraints may prevent an ob-
server from adjusting his/her attention in the theoreti-
cally optimal manner. For example, it is well known that
it is difficult to attend selectively to individual compo-
nent dimensions when they combine in an “integral” man-
ner (e.g., Garner, 1974; Shepard, 1964). Thus, whereas
Nosofsky, Gluck, et al. (1994) found strong support for
the attention-optimization hypothesis in a series of clas-
sification learning conditions involving highly separable
dimension stimuli, Nosofsky and Palmeri (1996) demon-
strated that this attention learning failed to occur in a di-
rectly analogous set of classification problems involving
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integral-dimension stimuli. Likewise, although in this ar-
ticle we posited an extension of the attention-optimization
ideas to forms of sensitivity optimization as well, there
are clearly limits on the degree to which an observer can
adjust his/her sensitivity. Without such limits, the exem-
plar model would make the absurd prediction that re-
gardless of how similar two exemplars are, they could al-
ways be perfectly discriminated in one’s memory. Thus,
the machinery of the mind must set important constraints
on the types of parameter adjustment that can take place.
A challenge for future research is to develop models in
which all of these multiple influences and constraints can
be coordinated within a unified theoretical framework.

Beyond Perceptual Classification?

We reemphasize that in this investigation, we focused
primarily on situations in which observers learned cate-
gories of perceptual objects by induction over presented
exemplars. A natural question is the extent to which the
exemplar-similarity principles may be applicable to more
general forms of categorization as well as to cognitive
tasks related to categorization such as inference and fea-
ture prediction. We cannot hope to even scratch the surface
of the huge gamut of results pertaining to ideas involv-
ing “theory-based” categorization, goal-driven catego-
rization, the role of prior knowledge in categorization,
and reasoning-based inference processes (e.g., Barsalou,
1985; Carey, 1985; Gelman & Markman, 1986; Keil,
1989; Murphy & Medin, 1985; Sloman, 1996). Neverthe-
less, it is worthwhile to examine a few selected results to
gain hints on how exemplar-similarity approaches might
eventually be extended to these more complex domains.8

Among the major phenomena that have been inter-
preted as providing evidence against similarity-based
models are inference studies such as those reported by
Gelman and Markman (1986). An example of this type of
study is the following. Children are shown a picture of a
flamingo and a picture of a bat, and are told that the
flamingo is a bird and that the bat is a mammal. They are
also told that the flamingo has one type of internal organ
and the bat a second type. Finally, the children are shown
a picture of a blackbird, which is perceptually quite simi-
lar to the bat and dissimilar to the flamingo, and are told
that it is a bird. The children are then asked whether the
blackbird is more likely to have the same internal organ as
the flamingo or the bat. The children tend to guess “fla-
mingo.” Thus, with regard to the driving force behind in-
ferences about internal structure, the knowledge that fla-
mingo and blackbird have common membership in the
bird category overrides the high perceptual similarity that
exists between bat and blackbird. By contrast, when asked
to which object the blackbird is more likely to be closer in
weight, the inferences begin to be based more on the per-
ceptually visible properties. Thus, the common category
label strongly supports certain inferences, but not others.

Such results are often taken as evidence against
“similarity-based” models of categorization and in favor
of “theory-based” ones (see, e.g., Sloman, 1996, pp. 8-
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10, for a review). In the above example, children are
using an already developed biological knowledge that
certain properties are predictable from membership in
natural-kind categories whereas others are not. Further-
more, perceptual similarity fails to guide inferences about
the internal structure of the objects. Thus, as summa-
rized by Sloman (p. 9), it is argued that “simple similar-
ity structures cannot explain concept use.”

We believe, however, that phenomena such as those
reported by Gelman and Markman (1986) have a natural
interpretation within the perspective of modern exemplar-
similarity models. The children in these studies have
learned that flamingo and blackbird are both members
of the bird category. Thus, these objects are “similar” by
virtue of the fact that they share the same category label.
Models such as the rational model of Anderson (1991)
explicitly include the category label that is learned as
one of the many features that an object possesses and
along which similarity computations can take place. Fur-
thermore, if one’s goal is to predict the internal structure
of an organism, people have learned that it is optimal to
give a great deal of attention weight to the category-label
feature. By contrast, if one’s goal is to predict body weight,
adaptive learning processes have taught people that vis-
ible perceptual features of objects such as overall size are
better predictors, so attention would be shifted to these
features in this alternative task. In a nutshell, as long as
provision is made for the long-held ideas that similarities
among objects are determined by selective attention to
dimensions, and that the selective attention process is in-
fluenced by considerations of adaptiveness and optimal-
ity in the pursuit of task goals, there may not be as much
difference between “theory-based” and “similarity-based”
approaches as is commonly suggested in the literature.

Ultimately, the extent to which exemplar-similarity
models may be fruitfully applied in complex conceptual
domains will rest on their being endowed with a suffi-
ciently rich theory of similarity. In the present applications
to simple perceptual domains, we used classic MDS ap-
proaches to modeling similarity, which may be suitable
in situations in which objects are composed of a set of
well-specified, continuously varying dimensions. Re-
searchers have documented, however, that more complex
processes often enter into similarity judgment as well,
including processes of analogy, alignment of parts, ap-
prehension of relations, and feature interpretation (e.g.,
Gentner, 1983; Goldstone, 1994b; Medin, Goldstone,
& Gentner, 1990, 1993). A fully specified exemplar-
similarity model of categorization will need to incorpo-
rate a theory of similarity that reflects such influences.
The challenge is whether the richly endowed theory of
similarity is still sufficiently constrained so as to yield
true predictions of categorization rather than merely cir-
cular, post hoc accounts (see Goldstone, 1994a, for ex-
tensive discussion bearing on these issues). Note, how-
ever, that the same basic challenge faces “theory-based”
or “rule-based” models, which also require a groundwork
of attributes and relations on which to operate. An advan-
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tage of testing between exemplar-similarity and rule-based
models in simple perceptual domains, such as the ones
considered in this article, is that there is often some con-
sensus regarding the underlying groundwork, so rigor-
ous comparisons between the models can be achieved.
By contrast, because the psychological similarity space
underlying most conceptual domains is highly multidi-
mensional, complex, and flexible, achieving incisive tests
between exemplar-similarity and rule-based models in
such domains may prove to be exceedingly difficult.
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NOTES

1. Ashby et al. (1998, p. 468, note 13) justified their claim that the
GCM fails to predict the bias toward the verbal rule as follows. The
“equivocality contour” in the GCM is defined as the locus of points for
which the model predicts that the probability of responding A equals the
probability of responding B. On the basis of some previous theorems
proved by Ashby and Maddox (1993), Ashby et al. (1998) noted that
the equivocality contour in the GCM will be identical to the optimal de-
cision boundary in Ashby and Townsend’s (1986) general recognition
theory (GRT) when the attention weights in the GCM are equal, w; =
W,. They then claimed that “predicted accuracy is maximized in the
GCM when the equivocality contour equals the optimal decision bound,”
so the a priori prediction of the model is that subjects will allocate equal
attention to each dimension (Ashby et al., 1998, p. 468). The flaw in
their argument, we believe, is that there is no justification for the final
claim, namely that performance in this paradigm is maximized in the
GCM when its equivocality contour equals the optimal decision bound
in GRT. Indeed, on the basis of investigations that we have summarized
in Table 1, it appears that the claim is incorrect.

2. Because the GCM uses a probabilistic response rule, the model
does predict some variability in individual subject performance even if
all subjects are assumed to be governed by the same parameter settings.
Nosofsky, Palmeri, and McKinley (1994) documented, however, that
the probabilistic response-rule mechanism in and of itself was insuffi-
cient to account for the degree of heterogeneity in performance ob-
served at the individual subject level.

3. Indeed, Erickson and Kruschke (1998, p. 111) found that in post-
experiment interviews, many subjects reported using a salient rule that
involved use of the numeric labels for responding to the exception stim-
uli. Because these stated rules were available in only some of the coun-
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terbalanced conditions, Erickson and Kruschke eliminated subjects
from these conditions in the main analyses reported in their article.
However, it seems plausible that the numeric labels may have entered
into other subjects’ categorization strategies as well, even in those con-
ditions in which the salient rule was unavailable.

4. We remark as well that a direct process interpretation for the emer-
gence of the y parameter was provided by Nosofsky and Palmeri (1997)
in the form of their exemplar-based random walk (EBRW) model of
speeded classification. In that model, y turns out to correspond to the
magnitude of the response criteria in a random walk process in which
exemplars are retrieved from memory; that is, it corresponds to the
amount of exemplar-based evidence that needs to be obtained before an
observer will initiate a response (see Nosofsky & Palmeri, 1997, p. 291).
Furthermore, Nosofsky and Palmeri (1997, pp. 270-271) noted that
with y = 1, the EBRW model made implausible predictions of classifi-
cation response time, providing still further independent grounds about
the importance of using values of y > 1 in accounting for perceptual
classification. Finally, we note that numerous other models in the field
include response-noise parameters that are analogous to y; including the
response-scaling constant @in Kruschke’s (1992) ALCOVE model (see
Kruschke, 1992, p. 24), the goal-value parameter G and response-noise
parameter t in Anderson and Lebiere’s (1998) ACT-R theory (see, e.g.,
Lovett, 1998, pp. 256-257, 276-277), and the criterial-noise parameter
o2 in Ashby and Maddox’s (1993) decision-bound theory (see Ashby &
Maddox, 1993, pp. 377-378).

5. The experiments did not involve situations in which observers
learned categories of perceptual objects via induction over training ex-
emplars, so the study goes beyond the domain of inquiry we established
for this article. Nevertheless, the study has had such a major impact on
the field that some discussion is merited.

6. Interestingly, Goldstone (1994a, p. 143) provided examples sug-
gesting that with various modifications in the exact wording of the sim-
ilarity-judgment question, it is likely that different patterns of results
may be obtained in these tasks.

7. As pointed out in numerous previous articles, the exemplar model
reduces to a pure “likelihood-based” model when there is zero similarity

between distinct exemplars—the summed similarity of an item to the
category exemplars is given by the frequency with which the item was
experienced in the category. When there is nonzero similarity, the model
is often referred to as a “similarity-likelihood” model, and it still tends
to yield predictions that follow the individual exemplar likelihoods—
see Estes (1986), Nosofsky (1998a), and McKinley and Nosofsky
(1995) for details.

8. For a much broader consideration of how similarity-based ideas
may be applicable in wide and varied situations involving both percep-
tual and conceptual categorization, the reader is referred to Goldstone
(1994a). For ideas regarding how effects of background knowledge in
categorization may be modeled in terms of the storage of prior exem-
plars, the reader is referred to Heit (1994, 1997).

APPENDIX A
Classification Transfer Data From
Erickson and Kruschke’s (1998) Experimental Paradigm

The classification transfer data obtained in our follow-up of
Erickson and Kruschke’s (1998) Experiment 1 are reported in
Table Al. The table reports the probability with which each
transfer stimulus was classified in Categories 1-4, respectively.
Recall that the categories are illustrated pictorially in Figure 6
(Category 1 = solid circles, Category 2 = solid squares, Cate-
gory 3 = open circle, Category 4 = open square). The transfer
stimuli consisted of all objects lying along the even-numbered
columns of the secondary dimension (D,) in the figure. The stim-
uli are numbered moving in an upward direction in each col-
umn, with Stimuli 1-10 lying in column 0, Stimuli 11-20 in
column 2, Stimuli 21-30 in column 4, Stimuli 31-40 in col-
umn 6, and Stimuli 41-50 in column 8. Thus, T corresponds
to Stimulus 1 and Ty corresponds to Stimulus 10. The “nearest-
exception” category for Tg is Category 3 and the “nearest-
exception” category for Ty is Category 4.
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Table A1
Quantitative Fit of the GCM to Our Follow-up of Erickson and Kruschke’s (1998) Experiment 1
Category Response Category Response

Stimulus 1 2 3 4 Stimulus 1 2 3 4
1 .52 .02 .46 .00 26 21 .76 .01 .02
1 .58 .07 .34 .00 26 13 .86 .01 .00
2 .52 .02 .46 .00 27 .06 .89 .00 .05
2 .58 .07 .34 .00 27 .07 .90 .00 .03
3 .33 .03 .64 .00 28 .02 .81 .00 17
3 47 .07 .46 .00 28 .04 .85 .00 .10
4 .61 12 .26 .00 29 .01 .90 .00 .09
4 .76 .07 17 .00 29 .01 .94 .00 .05
5 .65 .29 .07 .00 30 .01 .90 .00 .09
5 .81 .18 .01 .00 30 .03 91 .00 .06
6 19 .78 .02 .00 31 .92 .01 .06 .00
6 .15 .83 .02 .00 31 .92 .02 .06 .00
7 .08 .90 .01 .02 32 .92 .01 .06 .00
7 .05 .94 .01 .00 32 .94 .01 .05 .00
8 .03 .92 .00 .05 33 .87 .02 A1 .00
8 .03 .84 .01 A1 33 .84 .02 .10 .03
9 .02 .94 .00 .04 34 .90 .06 .04 .01
9 .01 .93 .01 .05 34 .90 .05 .01 .04
10 .02 .94 .00 .04 35 77 19 .01 .02
10 .01 .93 .02 .04 35 .83 A1 .01 .04
11 .48 .01 .50 .00 36 .28 .65 .00 .07
11 .49 .03 48 .00 36 .16 77 .00 .07
12 .48 .01 .50 .00 37 .09 .70 .00 21
12 .36 .02 .61 .00 37 .04 .64 .01 31
13 .28 .02 .70 .00 38 .02 A7 .00 .50
13 .16 .03 .81 .00 38 .02 46 .00 .52
14 .55 .10 .35 .00 39 .01 .70 .00 .29
14 .55 .04 41 .00 39 .02 .57 .00 41
15 .59 .29 A1 .00 40 .01 .70 .00 .29
15 .75 .10 .15 .00 40 .02 .60 .00 .38
16 A7 .78 .03 .01 41 .94 .02 .04 .00
16 13 .85 .01 .01 41 .94 .01 .05 .00
17 .06 91 .01 .02 42 .94 .02 .04 .00
17 .04 .93 .02 .01 42 .93 .01 .05 .01
18 .02 91 .00 .06 43 .92 .03 .05 .00
18 .02 .85 .03 .09 43 .93 .00 .06 .01
19 .01 .95 .00 .04 44 .90 .08 .02 .01
19 .00 .93 .01 .06 44 .90 .05 .03 .02
20 .01 .95 .00 .04 45 .78 .19 .00 .02
20 .01 .93 .01 .05 45 .84 13 .01 .02
21 .86 .01 13 .00 46 .29 .65 .00 .07
21 .89 .03 .08 .00 46 14 .78 .01 .07
22 .86 .01 13 .00 47 12 .61 .00 .26
22 .84 .01 15 .00 47 .07 .67 .00 .26
23 .69 .02 .29 .00 48 .03 .33 .00 .64
23 .76 .04 .20 .00 48 .02 .30 .00 .68
24 .82 .08 10 .00 49 .02 .52 .00 .46
24 91 .07 .02 .00 49 .03 43 .00 .54
25 .69 27 .04 .01 50 .02 .52 .00 .46
25 .81 .16 .01 .02 50 .02 .57 .00 41

Note—Top line in each pair of rows gives the predicted classification probabilities from the generalized context model (GCM); bottom line gives
the observed classification probabilities. Each probability is based on 96 observations.
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APPENDIX B
Description of Prototype and Exemplar Models

The prototype model we fitted to J. D. Smith et al.’s (1997)
Experiment 1 data is the one described in their article. Accord-
ing to the model, the probability that stimulus i is classified in
Category A is given by

P(Ali)=(l--g)§wm5m(i)+g/2, (B1)
where g (0 < g <1) is a guessing parameter, w,, (0 <w,, < 1) is
the weight given to dimension m, and 4,,(i) is an indicator vari-
able set equal to 1 if stimulus i matches Prototype A on dimen-
sion m, and set equal to 0 if it mismatches. The dimension weights
are constrained to sum to one. Thus, because the stimuli are
composed of six dimensions, the model uses six free parameters

(g and five freely varying weight parameters). Note that with-
out the guessing parameter g, the prototype model predicts that
the prototype stimuli, 111111 and 222222, will be classified into
their respective categories with perfect accuracy. Thus, this pa-
rameter plays a major role in allowing the prototype model to
fit the data (because the prototypes are often classified at lev-
els below perfect accuracy). The exemplar model that was fit-
ted to J. D. Smith et al.’s data was the one already described in
Equations 1-3. It uses seven free parameters (y; c, and five freely
varying dimension weights). The guessing parameter was not
used in fitting the exemplar model. The criterion of fit for both
models was to minimize the —In L statistic, given by Equa-
tion 6 in the text.

APPENDIX C
Optimal Sensitivity When Generalizing to New Instances From Low- and High-Variability Categories

To formalize the type of scenario illustrated in Figure 12, we
created two normally distributed categories, each consisting of
100 “training” exemplars and 100 “transfer stimuli.” Cate-
gory A had a mean of 0 and a standard deviation of .01, .02, or
.05 (the low-variability category). Category B had a mean of 1
and a standard deviation of 1 (the high-variability category).
We then conducted a computer search for the values of ¢ in the
exemplar model that maximized its predicted percentage of
correct classifications for the transfer stimuli. The upper limit
for c was set at 20, and separate ¢ parameters were allowed for
each category. The response-scaling parameter in these inves-
tigations was set at y = 3, which is a value that tends to give
good fits of the exemplar model to classification data in a vari-
ety of experiments. The results are shown in Table C1, which
reports, for each standard deviation value of the low-variability
category (.01, .02, and .05), the optimal values of ¢ and the pre-
dicted percentage of correct generalizations. The results can be
summarized as follows. First, for the low-variability category,
it is optimal to set c at its upper limit. However, for the high-
variability category, it is optimal to set ¢ at values substantially
below its upper limit. This mechanism allows the exemplar
model to correctly classify objects lying in the tails of the high-

Table C1
Optimal Values of the Sensitivity Parameter
From the GCM for Generalizing to New Instances From
Normal-Category Distributions With Differing Variabilities

g CL Cy % Cor.
.01 20.00 2.70 97.6
.02 20.00 5.02 97.2
.05 20.00 7.43 95.8
.10 20.00 20.00 91.3

Note—o, standard deviation of low-variability distribution; c, , opti-
mal sensitivity parameter for the low-variability distribution; ¢, opti-
mal sensitivity parameter for the high-variability distribution; %Cor.,
predicted percentage of correct generalizations to new transfer stimuli.

variability category. Such objects are closer in distance to the
mean of the low-variability category than to the mean of the high-
variability category, even though they were actually generated
by the high-variability distribution. Finally, as the standard de-
viation of the low-variability category increases, the optimal
value of ¢ for the high-variability category increases as well,
until it is finally optimal to set ¢ at its upper limit.
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