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Abstract: A framework for the online optimization of
protein induction using green fluorescent protein (GFP)-
monitoring technology was developed for high-cell-
density cultivation of Escherichia coli. A simple and
unstructured mathematical model was developed that
described well the dynamics of cloned chloramphenicol
acetyltransferase (CAT) production in E. coli JM105 was
developed. A sequential quadratic programming (SQP)
optimization algorithm was used to estimate model pa-
rameter values and to solve optimal open-loop control
problems for piecewise control of inducer feed rates that
maximize productivity. The optimal inducer feeding pro-
file for an arabinose induction system was different from
that of an isopropyl-b-D-thiogalactopyranoside (IPTG) in-
duction system. Also, model-based online parameter es-
timation and online optimization algorithms were devel-
oped to determine optimal inducer feeding rates for
eventual use of a feedback signal from a GFP fluores-
cence probe (direct product monitoring with 95-minute
time delay). Because the numerical algorithms required
minimal processing time, the potential for product-based
and model-based online optimal control methodology
can be realized. © 2000 John Wiley & Sons, Inc. Biotechnol
Bioeng 69: 275–285, 2000.
Keywords: green fluorescent protein; chloramphenicol
acetyltransferase; high-cell-density cultivation; Esch-
erichia coli; mathematical model; online optimization

INTRODUCTION

Metabolic engineering has enabled the exploitation of cel-
lular and energetic pathways of various microorganisms,

such as bacteria, yeast, insect, and mammalian cells, in or-
der to produce recombinant proteins. Typically, recombi-
nant cells are grown in reactors employing control algo-
rithms designed to maximize cell productivity. In cases
where online measurement sensors for glucose and acetate
are available, advanced strategies using feedback from the
measurements have been implemented (Kleman et al., 1991;
Shimizu et al., 1988; Turner et al., 1994). These strategies
control recombinant product formation in an indirect man-
ner, usually via the maximization of biomass or minimiza-
tion of metabolic byproducts. The productivity of recombi-
nant foreign protein is generally unknown until offline
analysis of fermentation samples has been performed. Al-
though many of the critical process parameters cannot cur-
rently be measured online, intensive research efforts have
been made to develop new sensors and sampling devices/
techniques (Schugerl et al., 1996). For example, online
monitoring of green fluorescence protein (GFP) fluores-
cence to determine recombinant product concentration
(Randers-Eichhorn et al., 1997), and online monitoring of
firefly luciferase to track intracellular ATP concentration
(Lasko and Wang, 1996) have been reported. In the case of
GFP, green fluorescence could be monitored online and/or
in vivo during fermentation to indicate product level (Al-
bano et al., 1996, 1998; Cha et al., 1997, 1999a; DeLisa et
al., 1999c; Randers-Eichhorn et al., 1997). Because GFP
fluorescence was used to monitor production of a model
recombinant protein (CAT) during both low- and high-cell-
density cultivations ofE. coli (DeLisa et al., 1999c), it was
suggested that GFP fluorescence could serve as a sensor for
taking a process control action.

Importantly, the highly nonlinear nature of biological
processes coupled with the extremely slow and inconsistent
process dynamics, make process control, particularly
model-based control (Lee, 1993), a difficult task. Models
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for E. coli, which are unstructured (fixed cell composition)
and nonsegregated (homogeneous population), are compu-
tationally simple but often fail during transient conditions or
during large and/or rapid perturbations. Dividing a single
cell into compartments has allowed generation of models
that incorporate details about metabolic mechanisms and
pathways (Bentley and Kompala, 1989; Domach and
Shuler, 1984); however, these models are computationally
complex and many of the state variables are difficult to
measure. The inability to measure these states online or at
least rapidly offline has excluded these complex models
from process control algorithms.

To fully utilize GFP monitoring for optimal control ofE.
coli fermentations, several advances are required: (1) devel-
opment of online parameter estimator and optimization al-
gorithm that will enable optimization while accommodating
the 95-minute time lag associated with GFP chromophore
cyclization (Albano et al., 1996); (2) development of a
model-based control algorithm that relies on the online es-
timation and optimization; and (3) coupling of the above
mathematical tools with the GFP-based optical measure-
ment probe (Randers-Eichhorn et al., 1997) and the inducer
and glucose feed pumps controlling the fermentor.

In this article, we target the first of these requirements.
Specifically, we have developed a simple and reliable math-
ematical model for describing expression of a cloned gene
product, CAT, inE. coli. Offline and online parameter es-
timation tools based on a sequential quadratic programming
(SQP) otimization algorithm have been developed and are
reported. The optimal control problem was solved to obtain
an optimal inducer feeding policy to maximize productivity.
Then, in situ and in real time, model-based, online param-
eter estimation and online optimization algorithms were de-
veloped, so that the eventual output from a GFP probe could
be incorporated. The feasibility of applying online estima-
tion and optimization using GFP is demonstrated via simu-
lation.

MATERIALS AND METHODS

Microorganisms and Media

E. coli strain JM105 (F8 Dlac-pro thi strA endA sbcB15
hspR4 tra36 pro AB+ lacIq-ZDM15) harboring the plasmid
pBAD-GFP::CAT (Albano et al., 1998) was used for all
batch and fed-batch high-cell-density fermentations. The
GFP and CAT genes each possessed a ribosome-binding
site (operon fusion) and both were under the control of the
PBAD promoter of thearaBAD (arabinose) operon.E. coli
strain JM105 bearing the plasmid pTH-GFPuv/CAT (trans-
lational fusion) (Cha et al., 1999b) was also used. In this
strain, GFP and CAT proteins were expressed as a fusion
under the Ptrc promoter, which is induced by isopropyl-b-
D-thiogalactopyranoside (IPTG). A defined medium for
high-cell-density experiments using JM105 [pBAD-
GFP::CAT] was described by Riesenberg (1991). For the

cultivation of JM105 [pTH-GFPuv/CAT], M9 medium with
thiamine-HCl (0.166mg mL−1; Sigma, St. Louis, MO) was
used according to Rodriguez and Tait (1983).

Batch and Fed-Batch
High-Cell-Density Fermentations

Luria–Bertani (LB) media (100 mL) with ampicillin (100
mg mL−1, Sigma) was used for precultures ofE. coli in
250-mL Erlenmeyer shake flasks. The cells were grown for
4 h at 30°C in a shaker (New Brunswick Scientific Co.,
Edison, NJ) at 250 rpm. A portion (5% v/v) of the primary
preculture was transferred to defined media (100 mL) with
ampicillin (100mg mL−1) and grown for 12 h at 30°C at 250
rpm.

Batch and fed-batch experiments withE. coli JM105
[pBAD-GFP::CAT] and [pTH-GFPuv/CAT] were carried
out in a fermentor (Applikon, Foster City, CA) at 30°C, 1
vvm air flow, and 450 rpm stirrer speed, with an initial
working volume of 2 L (5% [v/v] inoculum). An Applikon
ADI 1030 controller was used to maintain the temperature
at 30°C and to control the pH at 6.7 by addition of aqueous
NH4PH (28% v/v). The dissolved oxygen (DO) value was
maintained above 30% of air saturation by increasing the
agitation rate. To meet the oxygen demand of the cells at the
later stages of the high-cell-density cultures, pure oxygen
was mixed with the inlet air stream. In addition, sterile
filtered antifoam (Sigma) was added when necessary.

E. coli JM105 [pBAD-GFP::CAT] was induced with ster-
ile filtered L-arabinose (0.2%) (Sigma). In the case of
JM105 [pTH-GFPuv/CAT], sterile-filtered IPTG was fed
exponentially to a final concentration of 1 mM along with
additional glucose and salts (DeLisa et al., 1999a).

All fed-batch experiments were performed initially with
unlimited batch growth lasting until the initial glucose (∼18
g L−1) was consumed below 1 g L−1. The substrate feeding
strategy was predetermined in all experiments according to
the method outlined in Paalme et al. (1990) with a feed
solution containing 400 g L−1 glucose. A stepwise increase
in the glucose feed rate was executed for simplicity, which
closely approximated the exponential feed rate.

Analytical Methods

To determine dry cell weight (DCW), a UV/Vis spectro-
photometer (Model DU 640, Beckman, Fullerton, CA) was
used to measure the optical density (OD) at 600 nm.
Samples were diluted with deionized water to obtain OD
readings in the linear range (0 to 0.25 OD units). One-
milliliter aliquots of culture medium were centrifuged
(8000g at 4°C) and resuspended with 1 mL distilled water
and dried in preweighed polystyrene microweighing dishes
(VWR Scientific, Inc.) at 65°C for 24 h, and weighed. Glu-
cose concentration was measured by a glucose analyzer
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(YSI Model 2700, Yellow Springs, OH) with cell free su-
pernatant. On-line GFP fluorescence was measured using a
GFP sensor (Randers-Eichhorn et al., 1997) capable of in
situ monitoring (DeLisa et al., 1999c). Western blot analysis
and enzyme activity assay were performed to obtain the
correlation of CAT protein concentration and CAT activity,
and their procedures have been described in detail else-
where (DeLisa et al., 1999c). The specific activity of CAT,
96,900 U mg−1, was used in all simulations.

MODEL DEVELOPMENT

Fed-batch recombinantE. coli fermentations are typically
carried out in three distinct phases. The first phase is un-
limited batch growth in which the cells consume glucose
and other nutrients initially present in the fermentation me-
dium. Upon consumption of the initial glucose, the second
phase of the process is initiated where additional substrate
and/or nutrients are added in a manner that allows high cell
concentrations to be obtained. Finally, cloned gene expres-
sion is induced by addition of inducer (e.g., promoters such
as lac, trc, trp, etc.) or by raising the culture temperature
(e.g.,l-based promoters).

A simple model was developed to encompass all three
phases for direct implementation of online estimation and
optimization algorithms. The model is comprised of mass
balance equations for five cultivation components: biomass
(X), glucose (S), foreign protein (Pf), inducer (I), and vol-
ume (V). For fed-batch fermentation of recombinantE. coli,
the model was formulated using the following set of equa-
tions:

dX

dt
= mX −

X

V
~FS + FI! (1)

dS

dt
=

FS

V
~SF − S! −

mX

YX/S
−

S

V
~FI! (2)

dPf

dt
= pX − k3Pf −

Pf

V
~FS + FI! (3)

dI

dt
=

FI

V
~IF − I! −

FS

V
~I! − qIX (4)

dV

dt
= FS + FI (5)

wherem is the specific growth rate,YX/Sis the biomass yield
coefficient,FS and FI are the feed rate of glucose and in-
ducer,p is the specific foreign protein production rate,k3 is
the protein degradation rate, andSF and IF are the concen-
trations of glucose and inducer in the feed streams, respec-
tively.

During the batch portion, the specific growth rate can be
modeled according to the Monod equation with substrate
inhibition (Andrews, 1968). Unfortunately, this equation is
inappropriate when foreign protein is expressed. The meta-

bolic burden placed on the cell during recombinant protein
production has been well documented (Bentley et al., 1990;
Glick, 1995) and is observed macroscopically as a reduction
in growth rate (Bentley et al., 1991; Zabriskie et al., 1986).
To model the mitigating effect that foreign protein expres-
sion has on the specific growth rate, the Monod expression
is multiplied by a product inhibition term as follows:

m = F mmaxS

KS + S+ S2/KSI
Gexp~−aPf! (6)

wheremmax is the maximum specific growth rate,KS is the
substrate saturation constant,KSI is the substrate inhibition
constant, anda is a single parameter for growth rate attenu-
ation due to protein expression.

Expression of recombinant protein inE. coli is typically
performed by amplification of specific messenger RNA via
insertion of an inducible promoter located upstream of the
foreign gene. One inducible system utilized here is derived
from the arabinose operon (ara promoter) and is controlled
by introduction of arabinose, which, in turn, is also readily
metabolized by the cells. Alternatively, the inducible sys-
tems derived from thelac promoter are regulated by addi-
tion of allolactose analogs such as IPTG, a gratuitous, non-
metabolized inducer. Both systems were utilized, although
the ara promoter system was hypothesized to be more ap-
propriate for process control as the inducer concentration
could be both raised (by addition) and decreased (by con-
sumption) with minimal change in biomass concentration
(dilution).

A variety of mathematical models have been proposed to
describe the cellular kinetics of primary metabolites such as
acetate and ethanol. However, there have been few reports
of foreign production models that consider induction effects
(Bentley et al., 1991; Betenbaugh and Dhurjati, 1990; Lee
and Ramirez, 1992; Miao and Kompala, 1992). Lee and
Ramirez (1992) proposed a mathematical model that in-
cluded inducer effects on cell growth and foreign protein
production. It successfully described the shock and recovery
dynamics of IPTG-induced protein expression on cell
growth. For optimization and control studies, simple and
more generalized models are required (e.g., Lee and
Ramirez, 1992). In some recombinant systems, protein in-
duction is tightly controlled by the presence of strong re-
pressor (lacIq) or by absence of specific polymerase (e.g.,
T7 systems); however in many systems, the foreign protein
is synthesized prior to the addition of inducer via read-
through transcription and translation. It is desirable to for-
mulate a model to accommodate both cases, regardless of
inducer type (nonmetabolized or metabolized). Two model
equations, each with four parameters describing foreign
protein expression inE. coli, were tested in the present
study:

Model I: p = k1mS I

KI + ID + k2 (7)
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Model II: p = k1mSKi0 + I

Ki1 + ID (8)

wherek1 is the induced foreign protein biosynthesis rate,k2

is the constitutive foreign protein biosynthesis rate,KI is the
induction constant in model I,Ki0 andKi1 are the induction
constants in model II. Model I is similar to the model of
Leudeking–Piret (Leudeking and Piret, 1959), in which a
term for foreign protein induction was included. Model II
has been adopted from Bentley et al. (1991) and Lee and
Ramirez (1992). To maintain model simplicity, a constant
first-order degradation term [k3 in Eq. (3)] was used in all
simulations, as it was a better predictor over a wide range of
operating conditions.

Last, for the system using a metabolized inducer (e.g.,
arabinose), an inducer consumption rate (qI) was included
based on the arabinose uptake mechanisms (Lin, 1996):

qI = qImaxF I

KIC + IG (9)

whereqI is the specific inducer consumption rate,qImax is
the maximum specific consumption rate, andKIC is the
saturation constant.

Parameter Estimation

To determine the parameter values, nonlinear regression
analysis was performed with an author-written computer
program, BIOPARA, based on a constrained optimization
technique implemented in a MATLAB optimization toolbox
(The Math Works, Inc., Natick, MA). BIOPARA uses the
algorithm of sequential quadratic programming (SQP)
(Powell, 1983; Schittowski, 1985), in which a quadratic
programming (QP) subproblem is solved at each iteration
using a line-search method. In the parameter estimation
problem, the objective function to minimize is the sum of
squared residuals (SSR), which can be defined as follows:

Obj = SSR= (
j=1

m

(
i=1

n

@~ŷi,j − yi,j! × Wj#
2 (10)

wheren is the number of observations,m is the number of
dependent variables (X, S,and P), yi,j is the ith observed
value of thejth dependent variables (j 4 1, . . . ,m andi 4
1, . . . ,n), ŷi,j is the corresponding estimated value from the
model equation, andWj is the weighting factor of thejth
variable (Wj 4 1/yj, whereyj is the arithmetic average value
of yj).

The uncertainty of the parameter estimation was calcu-
lated from the mean square fitting error (MSFE) at each
estimation (Rosso et al., 1995):

MSFE 4 SSR/(n − p) (11)

wheren is the number of observations andp is the number
of parameters being determined.

The parameter values of the proposed model were esti-
mated for each experimental data set. Then, parameter val-

ues used in simulation studies were obtained as weight-
averaged values of the previously estimated parameters
from the different sets of experiments:

uweight-averaged= (
k=1

N

~ukvk! /(k=1

N

~uk! (12)

where uweight-averagedis the weight-averaged value of the
parameter,uk is the estimated parameter values using thekth
experimental set,vk is the weight factor of the parameter
estimation for thekth experimental (the weighting factors
were selected as 1/MSFE), andN is the total number of
experimental sets. Correspondingly, the parameters are
listed in Table I, with the approximated 95% confidence
interval, calculated as follows:

u = uweight-averaged± 1.96
s

=N
(13)

wheres is the standard deviation from the calculation of the
average parameter value. The predicted values,ŷi,j, were
determined by solving the Eqs. (1)–(5) using a third-order
Runge–Kutta method with given initial conditions. The SSR
value (objective function) was computed at each iteration
and the minimum SSR values were obtained for each ex-
perimental data set. Note that additional constraints were
introduced to assure the optimal parameters occurred in a
feasible region. For example, forYX/S, the optimized value
must be greater than zero and fall within the range: 0.45 <
YX/S < 0.55.

RESULTS AND DISCUSSION

Experiments usingE. coli JM105 [pBAD-GFP::CAT] were
performed for estimation of model parameter values and for
validating the utility of online GFP monitoring to indicate
offline product activity. As noted previously, thisE. coli
strain was employed such that metabolized inducer, arabi-
nose, could be exploited for use in process control.

The growth-related parameters (mmax, KS, KSI, andYX/S)
were first estimated using the experimenal data (X and S)
obtained from four batch cultures (Table I). Among these
parameters,KS was found to have the highest coefficient of
variance (CV). Fortunately, this parameter is the least sen-
sitive parameter in the growth model. As noted previously,
the parameter values used in simulation and optimization
studies were determined by calculating weight-averaged
values from each estimated value. The model profiles using
the weight-averaged parameters are shown in Figure 1. The
predictions were found to fit all sets of batch experimental
data reasonably well.

Next, the same algorithm was applied to the production-
related parameters (k1, k2, k3, KI in model I;k1, Ki0, Ki1, k3

in model II). The expression of the fusion proteins was
initiated by arabinose induction at optical densities of 75
(fed-batches I and II in Fig. 2) and 125 (fed-batch III in Fig.
2). When all the production-related parameters were esti-
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mated simultaneously, several suboptimal sets were found
to minimize the SSR, particularly for model I. Subse-
quently, the values forKI andqImax were assumed equal to
0.55 g L−1 and 0.005 h−1, respectively, according to DeLisa
et al. (1999a), and the value forKIC (0.015 g L−1) was
adopted from the literature (Lin, 1996). The remaining pro-
duction-related parameters (k1, k2, k3, Ki0, and Ki1) were
estimated sequentially based in part on experimental obser-
vations. For example,k2 in model I andk3 in models I and
II, were estimated separately from preinduction, fed-batch
phase data, when there was no inducer (I 4 0) and only
constitutive background GFP/CAT production occurred.
Other parameters were subsequently estimated using postin-
duction, fed-batch experimental data. All parameters are
summarized in Table II. In Figure 2, the model profiles
obtained with estimated parameters and experimental data
are compared and both production models (models I and II)
fit the data well. Interestingly, in the case of model I, the
coefficient of variance (CV) for each parameter was higher
than that of model II, so that model II was selected as the
foreign protein production model for further analysis.

Once it was discerned that the model could be extended
outside the original experimental operating ranges such as
induction time and initial glucose concentration, simula-
tions were performed to obtain high protein expression. Re-
sults showed that higher levels of recombinant protein were
obtained when induction occurred late in exponential
growth, although only pulsed additions of inducer were
modeled. Consequently, using the simplified foreign protein
expression (containing four kinetic parameters that account
for the effect of induction), and the standard mass balance
equations for a fed-batch reactor, reasonable predictions of
cell mass concentration, glucose concentration, and activity
of a recombinant product (CAT) were made for a wide
range of operating conditions.

Figure 1. Comparison of model profiles using estimated parameters and
experimental data for the growth kinetics ofE. coli JM105 [pBAD-
GFP::CAT]. Time courses of cell density and glucose concentration of all
growth phase data are shown. Lines represent model profiles and different
symbols represent each experimental set.

Figure 2. Comparison of model profiles and experimental data using
different production models and estimated parameter values. Time courses
of foreign protein concentration (CAT) using model I (a) and model II (b)
in induced culture ofE. coli JM105 [pBAD-GFP::CAT]. Lines represent
model profiles.

Table I. Estimated values of growth-related parameters in the model forE. coli [pBAD-GFP::CAT].

Batch no.
mmax

(h−1)
KS

(g L−1)
KSI

(g L−1)
Yx/s

(g/g) MSFE vk

1 0.55 0.12 119.10 0.51 0.003 0.400
2 0.53 0.88 76.09 0.54 0.020 0.059
3 0.55 0.15 100.04 0.51 0.003 0.408
4 0.52 0.50 81.12 0.53 0.009 0.133
Weight averagea 0.55 ± 0.01 0.23 ± 0.30 103.75 ± 16.64 0.52 ± 0.01
CV (%)b 2.12 132.42 16.04 2.06

aWeight average at 95% confidence:uweight-averaged± 1.96s / =N.
bCV (%): coefficient of variance (%)4 error/uweight-averaged× 100, where error4 1.96s / =N.
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Offline Optimization of Foreign Protein
Production in Fed-Batch Cultivation

For design and operation of fed-batch fermentation, it is
important to determine the optimal feed rate to maximize
productivity. Because there are physical contraints in the
operation of fed-batch reactors, the use of a method based
on Pontryagins’s maximum principle makes it difficult to
determine an optimal feeding policy (Wang and Shyu,
1996). In addition, while using the maximum principle, it is
necessary to solve highly unstable differential equations
during the singular control period (Diener and Goldschmidt,
1994). Moreover, for chemically induced foreign protein
production systems, there is the potential for an additional
feed rate; that is, inducer feed rate. The performance index
(objective function) to be maximized is the total amount of
foreign protein:

J = Max
FS~t!,FI~t!

@Pf~tf!V~tf!# = −Min
FS~t!,FI~t!

@Pf~tf!V~tf!# (14)

The optimal control problem is to find substrate/inducer
feed rate in the time interval: 0ø t ø tf . Because expression
of foreign proteins can be deleterious to cellular growth,
induction was initially off to permit growth to high cell
densities until the fed-batch phase. Once dense cultures are
reached, addition of inducing agent allows maximal levels
of cloned gene expression to be attained. For substrate feed-
ing, an exponential feed rate is commonly used in high cell
density (Lee, 1996). Experimentally, a high cell density was
accomplished successfully using a feeding policy (DeLisa et
al., 1999c), which, in turn, was implemented in our simu-
lated optimization studies. Consequently, the inducer feed
rate (FI) was selected here as a control variable.

The optimal feed profile,FI(t), and some state variables
were subject to the following constraints:

0 # FI # FMAX (15)

0 # V # VMAX (16)

0 # I # IMAX (17)

To solve this optimal control problem by SQP, the time
interval was divided intoP stages of equal length:

L =
tf
P

(18)

A piecewise control policy,FI(1), FI(2), . . . ,FI(P), was
sought to maximize the performance index given in Eq.
(14). If the P chosen is sufficiently large, a good approxi-
mation of the piecewise control to continuous control policy
will be obtained. The model parameters and other condi-
tions used in simulations are shown in Table III. In all
simulations, substrate feeding profiles were calculated using
a constant specific growth rate value (mset 4 0.15 h−1)
designed to prevent the accumulation of acetic acid (DeLisa
et al., 1999a; Han et al., 1992). This would be achieved
experimentally using the exponential feed according to
Paalme et al. (1990).

As shown in Figure 3, the optimized inducer feeding
profiles are similar and are in accordance with previous
research (Bentley et al., 1991) in that optimal induction in
the midphase of fermentation provided high levels of CAT
expression while achieving a high cell density to produce
maximal foreign protein. The optimized profile suggests
that the greatest amount of inducer (arabinose) should be
fed in the middle of the fed-batch phase and later followed
by a gradual exponential feed. A comparison of computa-

Table II. Estimated parameter values for foreign production model forE. coli [pBAD-GFP::CAT].

Exp. no.

Model I

k1

(−)
k2

(h−1)
k3

(h−1)
KI

(g L−1) MSFE vk

1 0.0073 0.00031 0.51 0.55 0.060 0.343
2 0.0045 0.00044 0.72 0.55 0.070 0.297
3 0.0065 0.00054 0.51 0.55 0.057 0.361

Weight averagea 0.0062 ± 0.0013 0.00043 ± 0.00011 0.60 ± 0.11 0.55 ± 0.00

CV (%)b 18.76 25.50 16.50 0.00

Model II

Exp. no.
k1

(−)
Ki0

(g L−1)
Ki1

(g L−1)
k3

(h−1) MSFE vk

1 8.31 0.61 2499.99 0.51 0.028 0.459
2 8.46 0.68 2514.98 0.72 0.030 0.428
3 9.21 0.73 2515.00 0.51 0.112 0.113

Weight averagea 8.48 ± 0.48 0.65 ± 0.05 2508.1 ± 8.0 0.60 ± 0.11 0.056

CV (%)b 5.67 7.21 0.28 16.50

aWeight average at 95% confidence:uweight-averaged± 1.96s / =N.
bCV (%): coefficient of variance (%)4 error/uweight-averaged× 100, where error4 1.96s / =N.
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tional step size (L 4 tf /P) was made, revealing that the
performance index was not significantly increased whenL
was 1.5 h as compared with a step size ofL 4 3.3 h;
however, the computation was threefold faster atL 4
3.3 h.

In the case of the IPTG induction system (JM105 [pTH-
GFPuv/CAT]), a similar optimization analysis was per-
formed with the kinetic parameters estimated analogously
(summarized in Table III). The cells grew slightly slower in
this case so that the batch phase lasted longer (DeLisa et al.,
1999a), and the final time (tf) was set to 35 h (Fig. 3b). A
performance index similar to that of JM105 [pBAD-
GFP::CAT] was achieved (PV4 1.088 g). In contrast to the
arabinose system, the optimized profile does not suggest

additional inducer feeding after the initial pulse, which is
likely due to the fact that IPTG is not metabolized.

Several optimization scenarios were run based on con-
straints commonly observed in laboratory experiments (see
Table IV). First, a maximum allowable inducer concentra-
tion [IMAX in Eq. (17)] was investigated (constraint type
denoted CONC), as per Lee and Ramirez (1992), who noted
a significant cost penalty due to added inducer. As the value
of IMAX was increased in our simulations, the performance
index monotonically increased without apparent limit. Con-
strainingIMAX to within a certain range (0.6 to 1.0 g L−1 in
the case of IPTG) is consistent with our previous experi-
ments showing that, for IPTG >3.2 mM (0.76 g L−1), del-
eterious metabolic effects were noticed in growth and pro-
ductivity (Bentley et al., 1991) and, at concentrations >5
mM, product expression was erratic and severely inhibited
(Harcum et al., 1992).

Second, we specified a constraint on total mass of inducer
added to the fermentor (MASS-constrained optimization in
Table IV) as follows:

IMASS = IF × tf × (
i=1

P

FI~i! # I8MAX (19)

This is similar to the concentration constraint, but much
more practical both in terms of implementation and in com-
putational efficiency (convergence to the optimum was
three to tenfold faster than the CONC-constrained optimi-
zation).

Finally, an alternative method for induction policy was
proposed (Ramirez and Bentley, 1995) wherein the inducer
was included in the glucose feeding solution. In this case,
the induction is more gradual and was shown to increase
yield. For implementation, the inducer concentration (IF) to
be selected, which is constant in the glucose feed stream, is
determined in the optimization. The performance index was
lower than previously obtained for inducer feed rate (FI)
control (0.830 g vs. 0.926 g), which was likely due to the
fact that this induction strategy did not determine the opti-

Figure 3. Optimized inducer and substrate feeding control usingE. coli
JM105 [pBAD-GFP::CAT] (a) andE. coli JM105 [pTH-GFPuv/CAT] (b).

Table III. Model parameters and other simulation conditions.

Parameter

Strain

Variable

Strain

JM105
[pBAD-GFP::CAT]

JM105
[pTH-GFPuv/CAT]

JM105
[pBAD-GFP::CAT]

JM105
[pTH-GFPuv/CAT]

mmax (h−1) 0.55 0.36 SF (g L−1) 400 400
KS (g L−1) 0.23 0.13 IF (g L−1) 50 50
KSI (g L−1) 103.8 99.0 X(0) (g L−1) 0.025 0.025
Yx/s (g/g) 0.52 0.45 S(0) (g L−1) 20 20
k1 (−) 8.48 10.62 P(0) (g L−1) 0 0
Ki0 (g L−1) 0.65 27.2 V(0) (g L−1) 2 2
Ki1 (g L−1) 2508 2515 SC (g L−1) 0.75 0.75
k3 (h−1) 0.60 0.02 mset(h

−1) 0.15 0.15
m (−) 0.15 0.15 tf (h) 30 35
qImax (h−1) 0.005 0 FMAX (L h−1) 0.5 0.5
KIC (g L−1) 0.015 NAa VMAX (L) 4 4

aNot applicable.
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mal induction time because the inducer was added to the
glucose feed and glucose was fed based on a preset policy
that maximizes cell mass. That is, this strategy is in part
constrained by the glucose feed, as opposed to the previous
case where the inducer concentration and addition time
were both determined by the optimization algorithm.

In Figure 4, the sensitivity of the performance index to
changes in each model parameter is shown, indicating that
k1 was the most important among the seven production-
related parameters. This information was used to define
parameter selection in on-line parameter estimation simula-
tions.

Online Parameter Estimation

Because GFP fusion constructs were utilized in all the fed-
batch experiments, GFP expression was monitored using an

on-line sensor for foreign protein concentration. From the
linear correlation between online fluorescence intensity and
CAT activity (DeLisa et al., 1999c), the foreign protein
levels were easily determined using the following linear
relationship:

Pf (g L−1)|t−1.5 4 0.1343 ×FI(V)|t − 0.0116 (20)

whereFI is the fluorescence intensity measured in volts by
the online GFP sensor. It is known that the GFP fluores-
cence intensity lags behind the cloned gene expression by
approximately 1.5 h due to GFP chromophore cyclization
(Albano et al., 1996). Therefore, fluorescence data must be
shifted to track the foreign protein level (Albano et al.,
1996; DeLisa et al., 1999b).

The optimized inducer feeding profile just obtained is an
open loop control, and therefore, it was an offline optimi-
zation. It assumed that the state variables proceeded along
paths predetermined by the model. A disadvantage of this
deterministic approach is that the performance will severely
deteriorate in the presence of process disturbances or mod-
eling errors (Vanishsriratana et al., 1997). Online estimation
of parameter values, however, can make feedback control
strategies possible. In the production model, the protein syn-
thesis parameter,k1, was the most sensitive parameter in the
calculation of the performance index, followed byk3, the
protein turnover rate (see Fig. 4). An online parameter es-
timator was developed and tested by simulation to ascertain
whether key process parameters could be evaluated in real
time. The same optimization algorithm (SQP) was used for
this online estimation. Becausek1 represents the product
protein synthesis rate and GFP fluorescence will be used as
a product-monitoring tool, an artificial process disturbance
was tracked by online estimation ofk1 (Fig. 5). That is, a
disturbance was artificially generated by three sequential
step changes in thek1 during the course of a simulated
fermentation in Figure 5a (see Table V). To consider a
possible error in GFP expression monitoring and to simulate
experimental data closely, errors in a range of ±10% of
original values were included in the data using a random

Table IV. Optimization results using various conditions.

Inducer tf

Control
variable

Constraint
type

IMAX

(g L−1)
or

I8MAX (g)

Objective
function,

PV at t = t f

(g)

Volumetric
productivity
(g L−1 h−1) # Iteration

Final
volume

(L)

Max. inducer
conc. (g L−1)

or total inducer
addition (g)

Optimized
IF (g L−1)

Arabinose 30 FI CONC 5.0 g L−1 0.926 0.0085 1303 3.62 25.36 g
8.0 g L−1 1.385 0.0120 657 3.86 38.16 g

MASS 25.0 g 1.065 0.0099 133 3.60 8.17 g L−1

30.0 g 1.257 0.0113 133 3.69 9.65 g L−1

IF CONC 5.0 g L−1 0.830 0.0089 9 3.11 28.85 g 20.91
MASS 25.0 g 0.690 0.0074 11 3.12 3.99 g L−1 18.02

IPTG 35 FI CONC 0.6 g L−1 1.068 0.0100 280 3.04 1.73 g
1.0 g L−1 1.539 0.0151 226 2.91 2.90 g

MASS 1.7 g 1.118 0.0111 101 2.89 0.79 g L−1

2.9 g 1.614 0.0159 17 2.90 1.25 g L−1

IF CONC 0.6 g L−1 0.947 0.0092 9 2.87 2.05 g 1.98
MASS 1.7 g 0.845 0.0084 9 2.87 1.73 g L−1 1.66

Figure 4. Sensitivity analysis for production-related parameters on per-
formance index (maximum productivity at 30 h) obtained by solving op-
timal control problem.
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number generator. The original parameter values used in the
numerical experiments and the tracked parameter values are
shown in Table V. The tracking performance was good and
total computation time was <1 min when only seven data
points per monitoring window (time interval4 4.5 h) were
sampled for the parameter estimation.

In the suboptimal system, it may be unreasonable to ex-
pect the disturbance to be solely related to product synthesis
(i.e.,k1). To simulate the experimental system more closely,
k3 was also spontaneously changed in a random manner,
after which the parameter estimator calculated thek1 value
only (Fig. 5b). In this case, a disturbance was added by step

changes in bothk1 andk3 values as shown in Table V. After
the online parameter estimation,k1 values were much dif-
ferent than the original values (Table V), but the model
profiles with these newly estimated parameters still gave a
good fit (Fig. 5b), showing good performance of the online
parameter estimation.

Online Optimization and Inducer Feed
Rate Control

One of our final goals was to use the GFP sensor for de-
velopment of a process control strategy based on online
product levels. One possibility for a model-based control
scheme is via generic model control (GMC) (DeLisa et al.,
1999b; Lee and Sullivan, 1988). Before applying a control
strategy to experimental fementations, the feasibility of a
control strategy based on online parameter estimation and
optimization using a feedback signal from the GFP probe is
demonstrated in Figure 6. First, an open loop optimization
was performed leading to an inducer feed profile, denoted
FI*. According to the offline optimization results, the best
inducer feed rate was initiated during the early stage of the
fed-batch fermentation (Fig. 6b). With a GFP signal, a 1.5-h
time lag has been observed (Albano et al., 1996); hence, the
online parameter estimator updated thek1 parameter from
the monitored foreign protein level with a time lag of 1.5 h.

Table V. On-line parameter estimation results upon arbitrary
disturbances.

(a) Change ink1 only k1, original k3, original k1, estimated

Undisturbed 8.48 NAa

Disturbance I 6.36 6.37
Disturbance II 7.96 8.14
Disturbance III 6.11 6.14

(b) Change ink1 andk3

Undisturbed 8.48 0.60 NA
Disturbance I 6.36 0.45 8.07
Disturbance II 9.68 0.54 10.49
Disturbance III 9.96 0.59 10.18

aNot applicable.

Figure 5. Online parameter estimation results responding to unknown
disturbances during the arabinose-induced fermentation. Disturbances were
imposed three times (disturbances I, II, and III) during fermentation so that
some parameters of the model were changed suddenly. Lines represent the
model tracking for sample data subject to the disturbances. Parameterk1

was changed in (a) and parametersk1 andk3 changed in (b) to generate the
sample data.

Figure 6. Online optimization of inducer feed rate using GFP signal
responding to unknown disturbance imposed at 18 h (arabinose promoter
system). The arrow indicates the time of disturbance. Each panel shows
online fluorescence intensity from GFP sensor (a), control policies of in-
ducer feed rate (b), and foreign protein concentration profiles (c), respec-
tively.

CHAE ET AL.: ONLINE OPTIMIZATION OF RECOMBINANT PROTEIN EXPRESSION USING GFP SENSOR 283



This updated value was used for the online optimization
every 3 h. Thus, at every control interval, the online opti-
mizer integrated the ODEs from the previous step up to the
current step using previously estimated parameters. Then,
the inducer feed rate for the next step was optimized to
maximize the performance index at the next step so that the
open loop control (optimized offline) policy was updated
with this new optimal solution. In this way, an online op-
timization and control of inducer feed rate based on feed-
back signal of GFP was shown.

In the example (Fig. 6), a perturbation was introduced at
16.5 h, which was simulated by a step change ink1. This is
not detectable at the time of the perturbation due to the GFP
lag, but results in lower protein expression at the later time
periods. After detection of the discrepancy from preopti-
mized profiles, the control action was evaluated twice, se-
quentially at 24 h and 27 h, where corrective action in the
inducer feed was taken. The computation time was 30 to 60
seconds for the online parameter estimation and 15 seconds
for the online optimization. As a result, the online optimizer
suggested that additional inducer be fed at each point of
control action. Using this feedback control method for
evaluating the inducer feed rate, the profile of foreign pro-
tein level was improved significantly. This can be seen by
noting the separation of the online-optimized trace from the
uncontrolled trace (Fig. 6c) and the eventual approach to the
open loop solution at the end of the fermentation.

In further simulations, several scenarios approximating
common problems found in practice were evaluated. For
example, it is well known that, in the absence of a selective
marker, plasmid instability can cause a monotonic and ac-
celerating loss of protein expression on a volume basis. This
is due to a shift from plasmid-bearing to plasmid-free (non-
producing) cells. We simulated this case by imposing a
linear and monotonic decrease ink1 starting at 18 h (k1 4
8.48) and ending at 30 h (k1 4 4.5). The open loop control
profile resulted in 0.3 g/L of protein, which was slightly
below the optimal case in Figure 6c. The uncontrolled sys-
tem, however, yielded 0.15 g/L of protein, whereas the
closed-loop online-optimized profile resulted in 0.2 g/L of
protein, again demonstrating a net gain by implementing
this online optimization framework.

While improvements predicted in these two scenarios
were 26% (Fig. 6a) and 33% (plasmid instability), respec-
tively, it is expected that the methodology described here
will greatly improve both yield and consistency in run-to-
run batches. In addition, the present perturbations, although
significant, did not result in catastrophic loss of productiv-
ity. Correspondingly, additional scenarios are currently be-
ing evaluated that provide a more stringent challenge to this
system to determine whether the control methodologies best
suited for this system might change.

CONCLUSIONS

A mathematical model describing the expression of recom-
binant protein inE. coli JM105 [pBAD-GFP::CAT] and

[pTH-GFPuv/CAT] was developed for the synthesis of op-
eron and translational fusion proteins in batch and fed-batch
cultures. A nonlinear regression analysis using an SQP-
based algorithm was used to estimate the model parameters.
The model was found to be highly accurate while maintain-
ing a simple mathematical structure. Piecewise inducer
feed-rate control policies were obtained by solving the op-
timal control problem using the SQP under different con-
strained conditions. Among the various optimization condi-
tions tested, MASS-constraint conditions, specifying the
maximum limit of inducer amount (mass) provided a rapid
convergence. Using the model-based, online parameter es-
timator, it was possible to update the model parameters to be
used in both optimization and process control. Finally, a
model based, on-line optimization that uses a simulated
feedback signal from a GFP optical sensor to calculate an
optimal inducer feed rate was developed.

NOMENCLATURE

CV coefficient of variance of parameter estimation (%)
FI feed rate of inducer (L h−1)
FMAX maximum allowable inducer feed rate (L h−1)
FS feed rate of substrate (glucose) (L h−1)
i index for observation in an experimental data set (−)
I inducer concentration (g L−1)
IF inducer feed concentration (g L−1)
IMAX maximum allowable inducer concentration (g L−1)
I8MAX maximum allowable inducer amount (mass) (g)
j index for state variable (−)
k index for experimental data set (−)
k1 induced biosynthesis rate constant of foreign protein

(CAT) (−)
k2 constitutive biosynthesis rate constant of foreign protein

in model I (h−1)
k3 biodegradation rate constant of foreign protein (h−1)
KI induction constant in foreign protein production model I

(g L−1)
KIC Monod constant in inducer consumption model (g L−1)
KS Monod constant in substrate consumption model (g L−1)
KSI substrate inhibition constant in substrate consumption

model (g L−1)
Ki0 induction constant in foreign protein production model

II (g L−1)
Ki1 induction constant in foreign protein production model

II (g L−1)
L time step size in optimal control problem (h)
m total number of dependent variables in parameter esti-

mation (−)
MSFE mean squared fitting error
n total number of observations (−)
N total number of experimental data set (−)
p total number of parameters to be determined (−)
P number of piecewise control steps (−)
Pf foreign protein (CAT) concentration (g L−1)
qI specific consumption rate of inducer (h−1)
qImax maximum specific consumption rate of inducer (h−1)
S substrate (glucose) concentration (g L−1)
SC critical substrate (glucose) concentration (g L−1)
SF substrate (glucose) feed concentration (g L−1)
SSR sum of squared residual
t reaction time (h)
tf final time of fermentation (h)
V culture volume (L)

284 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 69, NO. 3, AUGUST 5, 2000



VMAX maximum allowable culture volume (L)
Wj weighting factor of thejth variable
X cell density (g L−1)
yj arithmetic average value ofyj

ŷi,j corresponding estimated value from model equation
yi,j the ith observed value of thejth dependent variables
YX/S biomass yield coefficient (g/g)
a protein attenuation factor (−)
s standard deviation in estimation of average parameter

values
uk estimated parameter values using thekth experimental

set
uweight-averaged weight-averaged parameter value
vk weight factor of the parameter estimation for thekth

experimental data set
p specific foreign protein production rate (h−1)
m specific growth rate (h−1)
mmax maximum specific growth rate (h−1)
mset specific growth rate to be set in substrate feed rate cal-

culation (h−1)
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