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Abstract—Cellular network capacity and coverage can be
improved by deployment of low power base stations referred to as
picocells. Due to the associated deployment cost, a large number
of picocells challenges the traditional approach to backhaul,
where each cell has a dedicated backhaul link. This paper
considers a more efficient approach, in which the backhaul
is provided over a wireless channel shared among picocells.
The considered backhaul network consists of multiple connector
nodes (CNs) each providing backhaul to a group of picocells.
A key problem in this setting is how to efficiently exploit and
allocate this limited bandwidth resource among picocells. We
consider joint scheduling and power allocation of backhaul trans-
missions based on limited bandwidth availability. We propose
a backhaul scheduling approach based on traffic demands on
picocells (i.e., the load of their mobile users), that maximizes the
picocell utility. The approach applies to any underlying physical
layer transmission scheme. We then investigate the proposed
solution for an OFDM system. We first determine optimal power
allocation under power and interference constraints for OFDM
transmissions from multiple CNs. We then present an algorithm
that performs joint scheduling and power allocation for OFDM
transmissions in the backhaul channel.

I. INTRODUCTION AND MOTIVATION

A promising approach to improve wireless network capacity
and cellular coverage is to deploy a large number of low
power base stations in the existing cellular infrastructure.
These base stations will create cells of smaller radius referred
to as picocells, resulting in high capacity and better coverage in
these areas. The increased density of picocells when compared
to a macrocell network raises a number of design issues. In
particular, the large number of picocells requires that their
operation, configuration and optimization of their transmit pa-
rameters be automated. These requirements lead to the concept
of self organizing networks (SONs). Picocells, forming a self-
organized network after being added to an existing wireless
network, should automatically recognize the neighboring base
stations, determine frequency bands to operate in, allow new
mobile users to connect and send data, and adapt to the
wireless channel conditions.
The presence of a large number of picocells challenges also

the existing solutions to backhaul communications between a
pico base station and the core network. Conventionally, the
backhaul communications for each base station is performed
over a dedicated connection, such as fiber or a microwave.
However, providing a dedicated backhaul to a large number

of picocells would lead to a large deployment cost. In picocell
networks, an attractive alternate solution is to deploy wireless
backhaul for multiple picocells simultaneously. The backhaul
communication is then performed over a wireless channel
which is shared among picocells, thus avoiding the need for
dedicated backhaul.
This approach enables a more efficient backhaul to pico-

cells than existing solutions. However, it introduces several
challenges:
1) Capacity is smaller than the capacity provided over fiber
or microwave backhaul links. Consequently, the wireless
backhaul capacity can be constrained compared to the
rates in the wireless access network providing service to
mobile users.

2) Due to fading in the wireless channel, the backhaul
capacity is time-varying.

3) There is interference between picocells. Forwarding data
to/from one picocell interferes with communications of
other picocells.

These differences reveal that successful wireless backhaul
solutions demand: 1) transmission schemes that achieve high
spectral efficiency in the backhaul wireless channel, and 2)
optimal allocation of the limited backhaul among picocells.
The wireless channel from multiple connector nodes (CNs)

each providing backhaul to a group of picocells, is an ex-
tension of the Gaussian MIMO interference channel and is
equivalent to the multi-cell downlink of the MIMO cellular
system. The capacity region of this channel is in general
unknown, but efficient transmission schemes have been ex-
tensively developed. Full degrees of freedom in the Gaussian
MIMO interference channel are achieved with interference
alignment [1], [2], also effective in reducing inter-cell inter-
ference in the downlink cellular system [3]. For 4G cellular
systems, OFDM transmission has been adopted, motivating
extensive research on resource allocation for these systems
(see [4] and the references therein). These techniques are also
of interest for the wireless backhaul systems studied in this
paper. There are several important differences in the backhaul
wireless system compared to the cellular downlink:
1) Users in the system (i.e., picocells) are stationary.
2) The number of picocells served by one CN is typically
much smaller than in a macro cellular network (2− 10



picocells).
3) Nodes at both ends (CNs and picocells) are equipped
with multiple antenna elements (8-16).

4) The capacity per user is higher than in the cellular
network.

5) The resource allocation needs to satisfy dynamic traffic
demands of picocells.

The differences 1)-4) eliminate some of the challenges faced
by the cellular downlink, and may allow for simpler or more
efficient solutions for the wireless backhaul. For example:
1) no handoff will be needed to handle mobility; 2) due to
stationarity and the smaller number of picocells, the CNs will
need less extensive channel state information (CSI), and will
also be able to perform simpler scheduling.
We will specifically consider the problem of power alloca-

tion and scheduling of backhaul transmissions from multiple
CNs to picocells (see Fig. 1). For a considered physical
layer transmission scheme, the power allocation maximizes the
weighted sum rates for arbitrary weights, so that the network
operates on the boundary of the rate region. The scheduling
is performed to allocate the limited backhaul resource among
the picocells depending on traffic demands of the picocells
(i.e., the number of mobile users served by a picocell and
their quality-of-service). The obtained service rates allow
the network to operate at the point of the rate region that
is closest to the traffic demands of users. We define the
scheduling problem as maximization of the network utility
such that the rates are in the ergodic rate region of the
backhaul wireless channel. The considered scheduling problem
is then a special case of the network utility maximization
problem [5], [6] (see also [7], [8]). The approach of [6] has
been applied to the single-cell downlink MIMO scheduling
problem in [9] and to the multicell system in [10]. Joint
scheduling and ARQ optimization for the multicell downlink
was considered in [11]. Results in [5] show the asymptotic
optimality of the gradient scheduling algorithm. In [12], the
gradient scheduling algorithm was adopted for the single-cell
uplink OFDM system scheduling. Based on its optimality,
we apply the gradient scheduling algorithm to our setting.
We then discuss an alternative (but not necessarily optimal)
scheduling algorithm. As a viable transmission scheme for the
wireless backhaul channel, we consider an OFDMA scheme.
We formulate and solve a problem that determines optimal
power allocation at multiple CNs to picocells under power and
interference constraints. Finally, we present an algorithm that
performs joint scheduling and power allocation for OFDMA
transmissions in the backhaul channel to maximize picocell
utility.
The remainder of the paper is organized as follows. The

system model is presented in Section II. In Section III, the
backhaul allocation problem is defined. In Section IV, we for-
mulate the power allocation problem for the OFDMA backhaul
channel and develop the optimal power allocation algorithm.
Joint scheduling and power allocation for the OFDM backhaul
system is presented in Section V. Section VI concludes the
paper.

Fig. 1. Picocell network with CNs providing backhaul to the core network.

Notation. The inner product of two vectors x,y is denoted
xTy. For a vector x, ‖x‖ denotes the Euclidian norm of x.

II. SYSTEM MODEL

Consider a wireless network consisting of B connector
nodes (CNs) providing backhaul to picocells over a wireless
channel as illustrated in Fig. 1. Each connector node serves
K picocells. Attached to each picocell is a wireless MIMO
transceiver for backhaul communication. Each connector node
is equipped with MT antennas, and each picocell with MR

antennas. The received signal at picocell i is given by

yi =
B
∑

b=1

Hibxb + zi (1)

where yi ∈ CMR×1, the transmitted signal at the CN is xb ∈
CMT×1, and the random channel gain matrix from the CN b
to picocell i is Hib ∈ CMR×MT . Receiver noise zi ∈ CMR×1

has i.i.d. components with zero mean and unit variance. A
block fading channel is considered where channel gains are
constant over the length of one code-block. This is a suitable
channel model for the considered network where all the nodes
are stationary. We assume that the channel gain matrices are
known at the CN, which has an average power constraint P .

III. BACKHAUL OPTIMIZATION

The purpose of the backhaul is to supply the data intended
for users in the cellular network, to/from pico base stations.
To optimize the performance of the network, the scheduling
of backhaul transmissions will depend on traffic demands
of the served picocells. These traffic demands will change
over time. Typically, these changes will occur on a longer
time scale compared to the channel dynamics. Our goal is
to satisfy long-term traffic demands over blocks of N fading
slots. We next consider the scheduling problem over one such
block. In the case of the wireless backhaul, the long-term
demands will typically be out of the ergodic rate region of
the backhaul wireless channel. This motivates us to define a
backhaul scheduling problem to determine and operate at the
rate point in the backhaul ergodic rate region that is closest,
in some sense, to the traffic demands in the access network.



Let D̄ ∈ RBK denote the long-term traffic demands during
one block made by all picocells in the network. Similarly,
R̄ ∈ RBK denotes assigned average rates over one block for
all picocells. We define the optimization problem as follows:

min ‖D̄− R̄‖2 (2)
s. t. R̄ ∈ C (2a)

where C is the ergodic rate region of the backhaul wireless
channel. Problem (2) can be solved by considering a more
general problem:

max g(R̄) (3)
s. t. R̄ ∈ C (3a)

where g : RBK → R is a strictly concave network utility
function. In addition to traffic demands, g(·) can also incorpo-
rate network performance objectives such as total throughput,
fairness, priorities, and system revenue.
To determine the rates at each scheduling instant n, we use

the gradient scheduling algorithm that performs the following.
Let C(n) denote the achievable rate region in slot n. At each
time n choose rates R(n+ 1) such that

R(n+ 1) = arg max
R∈C(n+1)

%g(X(n))TR (4)

and update

X(n+ 1) = (1− β)X(n) + βR(n) (5)

where X(n + 1) ∈ RBK , X(0) is an arbitrary chosen initial
value, and β > 0 is a small chosen parameter.
As β → 0 and the averaging interval becomes large, the

average rates chosen by the algorithm converge to the optimal
solution of (3) [5]. Choosing g(R̄) = −‖D̄− R̄‖2 then gives
the asymptotically optimal solution to (2).
We next propose an alternative algorithm to determine a

solution to (3), as follows. At each step n we maximize the
utility function g(·), i.e., choose R(n+ 1) that satisfies

max g

(

1

n+ 1

n+1
∑

i=1

R(i)

)

(6)

s. t. R(n+ 1) ∈ C(n+ 1) (6a)

By using Taylor expansion up to the second order implies
that (6) results in R(n+ 1) given as:

max
(

%g(R̄(n))TR(n+ 1)

+
1

2(n+ 1)
R(n+ 1)T %2 g(R̄(n))R(n+ 1)

)

(7)

s. t. R(n+ 1) ∈ C(n+ 1) (7a)

where we denote

R̄(n) =
1

n

n
∑

i=1

R(i). (8)

Alternatively, the higher order terms in the Taylor expansion
in (7) can also be kept.

For the problem (2) the algorithm (6) then does the fol-
lowing. At each time n choose R(n + 1) that minimizes the
function ||D(n)−R(n+ 1)||2, i.e.,

min ||D(n)−R(n+ 1)||2 (9)
s. t. R(n+ 1) ∈ C(n+ 1) (9a)

and update

D(n+ 1) = D(n) + (D̄−R(n+ 1)) (10)

where D(0) = D̄.
By neglecting the second-order terms in (7), the algorithm

(6) reduces to the gradient scheduling algorithm (4) where
instead of X(n) we use R̄(n). Convergence of this algorithm
to the optimal solution of (3) cannot be shown using the
approach of [5]. However, this algorithm is interesting for
practical applications for three reasons:
1) In a practical system, N may not be large enough
for the gradient algorithm to experience the asymptotic
behavior.

2) Algorithm (9) uses a simple running average of trans-
mission rates.

3) For a smaller number of steps, n, (9) may outperform
the gradient algorithm by taking the higher-order terms
of the Taylor expansion into account. As n increases,
the impact of the higher-order terms will diminish.

Omitting the indices in the optimization problem (9) yields:

P2 : min ||D−R||2 (11)
R ∈ C (11a)

We define optimization problem P3 as:

P3 : maxwTR (12)
R ∈ C (12a)
w = D−R (12b)

Lemma 1: P2 and P3 have the same optimal solution.
Lemma 1 implies that we can obtain solution to the original

problem P2 by solving the weighted sum optimization problem
and choosing the weights as given by (12b).
The transmit rates in (9) are a function of the transmit

powers. Solving (9) in terms of the transmit powers is of-
ten difficult. We thus use the observation of Lemma 1 and
consider, in each step,

maxwT (n+ 1)R(n+ 1) (13)
R(n+ 1) ∈ C(n+ 1) (13a)
w(n+ 1) = D(n)−R(n+ 1) (13b)

Again, by neglecting the last term, R(n + 1), in (13b),
(13) reduces to the gradient scheduling algorithm with the
role of X(n) taken by R̄(n). Alternatively, w(n+ 1) can be
determined in each step according to (13b). To achieve this,
in each step n we can use the procedure shown in the table
below. Index n is omitted. We choose a parameter δ ∈ [0, 1],
and the desired maximum number of steps, I , and perform the
following:



Initialize w(0) = 1.
For k=1:I
Solve (13)-(13a) to obtain R(k).
If (D−R(k)) = αw(k), for some α ∈ R
stop.
Otherwise:
choose w(k+1) = (1 − δ)w(k) + δ(D−R(k)).
Repeat.

IV. POWER ALLOCATION
So far, we have considered the scheduling problem which

is applicable to any underlying physical layer transmission
scheme. We next focus on a specific scheme of interest for
the wireless backhaul - OFDMA. For simplicity, we consider
the single-antenna case, i.e., MR = MT = 1.
The channel is partitioned into f subchannels. Let fj denote

the number of subchannels assigned to picocell j. The received
signal (1) at picocell j communicating with CN b, j ∈ b at
frequency i is:

yj(i) = hjb(i)xb(i) +
B
∑

v=1,v #=b

hjv(i)xv(i) + zj . (14)

The second term in (14) is inter-cell interference created to
picocell j by other CNs’ transmissions on frequency i. Due
to orthogonalization, there is no intra-cell interference. We let

γjb(i) = |hjb(i)|
2. (15)

The achievable rate for picocell j ∈ b at frequency i is given
by:

Rj(i) = log

(

1 +
γjb(i)Pb(i)

1 +
∑B

v=1,v #=b γjv(i)Pv(i)

)

(16)

where Pb(i) is power allocated by CN b to frequency i. The
total backhaul rate delivered to picocell j ∈ b is

Rj =
∑

i∈Fj

Rj(i) (17)

where Fj denotes the set of frequencies allocated to user j.
To operate on the boundary on the achievable rate region,

we wish to maximize the weighted sum of rates under the
power constraints. To control inter-cell interference we add
a constraint limiting the allowed interference level at each
picocell. The optimization problem can be formulated as:

max
BK
∑

j=1

wj

fj

∑

i∈Fj

log

(

1 +
γjb(i)Pb(i)

1 +∆b

)

(18)

s.t. 1
f

f
∑

i=1

Pb(i) ≤ P, b = 1, . . . , B (18a)

Pb(i) ≥ 0, b = 1, . . . , B, i = 1, . . . , f (18b)
B
∑

v=1,v #=b

γjv(i)Pv(i) ≤ ∆b, j = 1, . . . , BK, i ∈ Fj (18c)

where b denotes a CN such that j ∈ b, and j receives
on frequency i. Constraints (18a) are the power constraints.
Constraints (18c) limit received interference power for each
picocell, at every frequency. Because the OFDMA is consid-
ered, for each CN and frequency pair, (b, i), there is only
one picocell j such that j ∈ b and j is assigned frequency i.
Therefore, problem (18) can be rewritten as

max
B
∑

b=1

f
∑

i=1

βbi log

(

1 +
γjb(i)Pb(i)

1 +∆b

)

(19)

s.t. 1
f

f
∑

i=1

Pb(i) ≤ P, b = 1, . . . , B (19a)

Pb(i) ≥ 0, b = 1, . . . , B, i = 1, . . . , f (19b)
B
∑

v=1,v #=b

γjv(i)Pv(i) ≤ ∆b, b = 1, . . . , B, i = 1, . . . , f (19c)

where j denotes a picocell in b, receiving on frequency i.
Accordingly, we introduced notation βbi = wj/fj . (19) is a
convex problem with a concave objective function and linear
constraints. For every (b, i), we let t = i+f(b−1), and denote
pt = Pb(i), βt = βbi and ct = γjb(i)/(1 +∆b). Problem (19)
can then be written in the form

max
Bf
∑

t=1

βt log (1 + ctpt) (20)

s.t. Ap ≤ b (20a)
p ≥ 0 (20b)

where p ∈ RBf is the vector of powers to be determined.
A ∈ R(B+1)f×Bf , b ∈ R(B+1)f are obtained from (19a) and
(19c) and are non negative matrices.
To solve (20) we consider the dual problem

max− bT
λ +

Bf
∑

j=1

(

βj log(a
T
j λ)−

aTj λ

cj

)

(21)

s.t. λ ≥ 0 (21a)

where λ ∈ R(B+1)f is the vector of Lagrange multipliers and
aj is the j-th column of matrix A. For i ≤ B, λi is associated
with the ith constraint in (19a). For i > B, λi is associated
with the i−Bth constraint in (19b). We denote the objective
function in (21) as f(λ).
We solve (21) by the gradient projection algorithm [13] that

we apply to our problem as follows. We choose as a starting
point λ(0) = 1. Alternatively, we could choose the value of λ
obtained when only power constraints (19a) are active. Then,
for i > B, λi = 0 and for i ≤ B, λi can be computed from
(19a) and (37). We choose the step size in the algorithm to be
a constant. Specifically, in every step k, the step size equals
t(k) = 1/M where M is chosen such that

%2f(λ) ( MI (22)

or equivalently, that the maximum eigenvalue of the Hessian
satisfies

‖ %2 f(λ)‖2 ≤ M. (23)



For objective function (21), the maximum eigenvalue of the
Hessian can be bounded as

‖ %2 f(λ)‖2 ≤
Bf
∑

j=1

1

(aTj λ)
2
‖aj‖

2

≤(a) 1

ε2

Bf
∑

j=1

‖aj‖
2 (24)

where ε > 0. (a) holds under the condition that

aTj λ ≥ ε (25)

is satisfied for all j and λ. Condition (25) needs to be satisfied
in each step of the algorithm.
We next determine ε and M . We choose λ

(0) = 1. From
constraints (19a) and (19b) and definition of A and b, it
follows that there exist elements of b and aj for every j that
are strictly positive. We can thus write,

f(λ(0)) = δ (26)

for some δ > −∞. The algorithm satisfies that

f(λ(k)) ≥ f(λ(0)) (27)

and hence
f(λ(k)) ≥ δ. (28)

We denote
gj(λ) = βj log(a

T
j λ)−

aTj λ

cj
. (29)

From (27) and (29), we obtain
Bf
∑

j=1

gj(λ) ≥ δ. (30)

The maximum value of gj(λ) is (gj(λ))max = βj log(βjcj)−
βj = Cj . Hence, gj(λ) ≤ C where C = maxj{Cj}. Using
this observation, we can write (30) as

gj(λ) ≥ δ − (Bf − 1)C = δ′ (31)

implying that for all j

aTj λ ≥ eδ
′/β = ε (32)

and β = maxj{βj}.
From (24) and (32), we obtain M to be

M = e−2δ′/β
Bf
∑

j=1

‖aj‖
2. (33)

The gradient projection method in each step calculates the
projection on the set given by (21a), i.e., Cλ = {λ ∈ Rn :
λ ≥ 0}. It follows that PC(x) = x+. The algorithm is shown
in the table below.

ALG 1: Solving dual (21)

Choose a staring point: λ
(0) = 1

Repeat:
1) Choose step size t(k) = 1/M

2) λ
(k+1) =

(

λ
(k) + t(k) % f(λ(k))

)

+

until |% f(λ)| ≤ η.

In the algorithm η is chosen to satisfy the desired accuracy.
The output of the algorithm will be the optimum solution to
(21), denoted λ

∗.
The convergence of the algorithm to the optimum value

follows from [14]. Furthermore, given the value of M (33),
we use [14, Thm.3.1.] to obtain the rate of convergence as:

f(λ(k))− f(λ∗) ≤
M‖λ(k) − λ

∗‖2

2k
. (34)

By forming the Lagrangian for (19) and determining the
KKT conditions, we obtain the optimum powers for each CN
b transmitting at frequency i to picocell j ∈ b as

P ∗
b (i) =

[

wj/fj
hb(λ

∗)
−

1 +∆b

γjb(i)

]

+

(35)

where

hb(λ) =
λb

f
+

B
∑

v=1,v #=b

λB+(b−1)f+iγkb(i) (36)

and k ∈ v is the picocell k receiving from v on frequency
i. Given the solution to the dual problem (21), λ∗, we now
obtain the optimal power allocation from (35).
We next consider the special case in which only power

constraints (19a) are active. We have λb = 0 for b > B.
The optimum powers (35) for b = 1, . . . , B become

P ∗
b (i) =

[

wj/fj
λ∗
b

−
1 +∆b

γjb(i)

]

+

. (37)

where λb is obtained from binding constraints (19a). The
optimum solution is waterfilling over frequencies, as expected.

V. JOINT POWER ALLOCATION AND SCHEDULING
A solution to the optimization problem (19) performs

optimal power allocation for all picocells and over all
frequencies. It determines the point on the achievable rate
region for a given set of weights w. Values of the weights
are updated based on the long-term average demands, via
the scheduling algorithm (4) or (13). The joint scheduling
and power allocation algorithm is given in the table below.

Initialize w(0) = 1

Repeat:
1) Determine λ

∗(k) from ALG 1
2) Determine P∗(k) from (35)
3) Determine R∗(k) from (19)
4) Update w(k) via scheduling algorithm.



VI. CONCLUSION AND FUTURE WORK

We considered scheduling and power allocation of wireless
backhaul. For scheduling transmissions, we applied the gra-
dient scheduling algorithm to our setting, and then proposed
an alternative, simpler, scheduling algorithm. Our approach
assigns rates based on traffic demands in order to max-
imize picocell utility. This metric can further incorporate
network performance objectives as desired by the network
operator, such as total throughput, fairness, priorities, and
system revenue. As the load in the access network changes,
the backhaul scheduling adapts to the time-varying load. For
OFDM transmissions, we further determined an optimal power
allocation under power and interference constraints. In the
special case of interference-free regimes, the optimum power
allocation over frequencies reduces to water-filling. Finally,
we presented an algorithm that performs joint scheduling and
power allocation for OFDMA transmissions in the backhaul
channel to maximize picocell utility. To apply it, a server
in the backhaul network needs knowledge of the following:
1) channel state information at the picocells, and 2) allowed
interference levels in the backhaul network.
In the paper, the downlink backhaul channel, i.e., transmis-

sions from CNs to pico base stations, was analyzed. In our
future work, the considered approach will be applied to uplink
transmissions. This approach will also be generalized to a sys-
tem with multiple antennas at both ends. We will also extend
this result to arbitrary signal constellations by following the
approach in [4]. The considered scheduling problem can also
be generalized to consider backhaul allocation that assigns the
backhaul capacity jointly to a group of neighboring picocells.
This avoids scenarios in which neighboring cells cannot meet
their traffic demands and cannot handoff to their neighbors,
and thus have to drop calls.
The wireless backhaul problem has similarities with the

wireless cellular network setting, allowing many existing solu-
tions to be readily deployed for the backhaul application. The
differences, such as stationary users, a smaller number of users
per cell and different channel dynamics, can alleviate some of
the challenges facing cellular networks (e.g., extensive CSI,
extensive coordination between base stations, etc.) and can
result in simpler solutions (e.g., no need for handoff, simpler
scheduling, etc.). Another difference is the hierarchal structure
of the backhaul allocation problem, as the optimization of
the backhaul wireless network depends on the optimization
of rates and performance of the access network dictating the
backhaul demand.
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