
Language Support for 
Regions

David Gay and Alex Aiken (CMU)

read by Shinya Kawanaka

citation count: 32



概要

RC という C の方言で、

region based memory management library をもち

静的解析でそれの overhead を減らした

ものを作った



Region based memory management

malloc/free の用にグローバルなメモリから取ってくる
のではなく、region という単位で取ってからそれを
分け与えるようなメモリ管理機構

同じ region からメモリを取ってくれば、物理的に近
くなるのでキャッシュヒットしやすくなったり、メ
モリ割り当てコストが下がったりする



Sample Code

struct rlist { struct rlist* next; struct finfo* data; } *r1, *last = NULL;

region r = newregion();

while (...) {

  r1 = ralloc(r, struct rlist);

  r1->data = ralloc(r, struct finfo); // and fill data.

  r1->next = last; last = r1;

}

deleteregion(r);



既存の Region based memory 

management の問題点

traditional なものは unsafe

region を破棄したときに、その region 内を指して
いるポインタが dangling pointer に

check するものも static checking なものばかり(当時)



RC: C with region library は C の方言で、region 

の関数(マクロ)と annotation を入れたもの

region APIs

region newregion(void);

region newsubregion(region r);

void deleteregion(region r);

type* ralloc(region r, type);

type* rarrayalloc(region r, size_t 
n, type);

region regionof(void* x);

region annotation

sameregion (同じ region を指
す)

traditional (region 管理されない
メモリを指す)

parentptr (subregion の親を指
す)



region annotation の例をひとつ

次のコードでは、next は 自分の region と同じ region 

のメモリを指す、と宣言できる

struct rlist {

  struct rlist *sameregion next;

  struct finfo *sameregion data;

};



実装

RC から C へのトランスレータとして実装

region は、reference counts で管理

region annotation の違反は dynamic に検出

例： sameregion のチェック (*p = newval; の時)

if (newval && regionof(newval) != regionof(p)) abort(); というコードを埋め込
む

これだと重いので、型システムで静的検査も行い、動的チェックがいらないと
分かったところは動的チェックを取り除く



region の型システム

u@σ (types)

region σ にある u

∃ρ/δ.τ

何かリージョン ρ があって、
property δ を満たすようなもの
が存在する τ

T (region expr.)

null が指す region

= p @ a l 3 p / 6 . T  ( types)  
= region I T [ a l , . . . , c ~ ]  (base types)  
= p I R I T (region expressions) 
= ~r < c~1-~615 V 61(5 ) (region propert ies)  

s t r u c t  T[p~ . . . . .  p,~]{fieldl : ~'l . . . . .  field,~ : ~-,~} 
( s t ruc ture  declarat ions)  

T: t ype  names,  p: abs t rac t  regions, R: region constants  

F i g u r e  4: R e g i o n  t y p e  l a n g u a g e  

the objects  were allocated.  The  pages of the  p o i n t e r f r e e  
al locator need not be scanned as they  do not  contain  point-  
ers to other  regions. We have found tha t  the  cost of this 
scan opera t ion  remmns reasonable  (2% or less on all bench- 
marks).  However, we plan to invest igate ways of reducing 
this cost further.  

4. A REGION TYPE SYSTEM 
The type  mnnotations of Sect ion 3.2 are a s imple way for 

the user to specify types  from a more general  region type  
language (Section 4.1) which par t ia l ly  specifies the  regions of 
pointers. This  type  language is used in a s imple region-based 
language rlang (Section 4.2). By t rans la t ing  RC programs 
into rlang, our compiler  for RC can check the  correctness of 
some annota t ions  and reduce the  reference count  overheads 
in some programs (Section 4.3). 

4.1 Region Types 
We first define a s imple mode l  for the  heap  of a region- 

based language. The  heap H is divided into regions, each 
con t~n ing  a number  of objects .  Objec ts  are  named struc- 
tures with named fields conta ining pointers.  Pointers  can 
be n u l l ,  point  to objects ,  or to regions. We write A H  = 
{ T , r l , . . .  , r~}  for the  set of regions of H.  We define a pax- 
t ial  order on A n  : r'  < r if r'  is a subregion of r .  The  region 
of an object  poin ter  is the region of the  t a rge ted  object .  The  
region of a poin ter  v is T iff v = n u l l .  We define r _< T for 
all regions r .  

Figure 4 gives types  for po in te rs  reflecting this  heap struc-  
ture: there are pointers  to regions ( r e g i o n ) ,  and  pointers  
to named records with named  fields. Each type  is anno- 
ta ted  with a region expression a which specifies the  region 
to which values of t ha t  t ype  point  ( . . .  @o'). Funct ion and 
non-pointer  types  could be added  easily to  bo th  the  heap 
model  and t ype  language. 

Region expressions are e i ther  abstract regions p or ele- 
ments of the  set C a  = R t2 {T} of region constants. Region 
constmnts denote  regions t h a t  always exist and  cannot  be 
deleted, such as the " t rad i t iona l  region". Abs t r ac t  regions 
denote any region in A s .  A b s t r a c t  regions are  in t roduced 
existential ly with the  3p/5.~ construct ,  which means  tha t  
p is a region in A n  tha t  respects  the  p rope r ty  specified 
by boolean expression 5. For  instance,  the  type  3 p / T  < 
T.T[. . .]@p represents  an ob jec t  of t ype  T in any region (as 
the boolean expression is always t rue) .  To simplify nota-  
tion, we wri te  t rue  as sho r thand  for T < T and Hp as a 
shor thand for 3p/ t rue .  S t ruc tu re  definit ions are parame-  
terised over a set p l , . . . , p m  of abs t rac t  regions; s t ruc ture  
uses ins tant ia te  s t ruc ture  dec la ra t ions  with a set of region 
expressions. Funct ion declara t ions  also in t roduce  abs t rac t  
regions (see Section 4.2). 

p rogram : : :  fn* 

fn : := f [ p l , . . . , P m ] / 5 ( x l  : T X , . . . , X ~ : ~ ' , ~ ) : % 5 '  
i s  [p~,...,pp]Xl' ' :'rl,: .. ,Xq' : %; s , x  

8 : : =  81;82 
[ i f  x 81 82 
[ while x s 
I X 0  = X l  
[ xo  = f [ a l , . . . ,  O'~,n](Xl,... ,fEn) 
] XO = x l . f i e l d  
] x l . f i e l d  = x2 
I xo : null 
[ xo = new T[crl . . . .  ,a , ,~](xl , . . .  ,x,~)@x' 
I chk 5 

Some predefined functions: 
newregion[]/true 0 : 3p.region@p, true 
newsubregion[p]/true 0 : 3p'/p' _< p.region@p', t rue  
deleteregion[p]/true(r : region~p) : region~T, true 
regionof_T[p, Pl,...]/true(x : r[pl, . • .]~p) : region~p, true 

F i g u r e  5: f lung ,  a s i m p l e  i m p e r a t i v e  l a n g u a g e  w i t h  
r e g i o n s  

If two values poin t  to the  same abs t rac t  region p then 
the  values must  specify ob jec t s  in the  same region. As a 
consequence, if one of the  values is null then  p = T so the 
other  value is null too. Exis tent ia l ly  qumntified regions must  
be used if two values can be null  i ndependen t ly  of each other, 
bu t  point  to  the  same region if non-null .  For  instance, in 

s t r u c t  L[p] { 
v : 3 p ' . r e g i o n ~ p  I, 
nex t  : 3p" /p"  = T V p" = p.L[p"]@p" 

} 
x :L[p]Qp 

x is a list s tored  in region p of a rb i t r a ry  regions. Wi th ou t  
the  exis tent ia l ly  quantif ied t ype  the  nex t  field could not  be 
null as it  would be in the  same region as i ts  parent  (which 
is obviously not  null if n e x t  exists) .  

4.2 Region Type Checking in rlang 
We chose to  define rlang (Figure  5) as an impera t ive  lan- 

guage bo th  because this is closer to C and because the  prop- 
erties of abs t r ac t  regions axe flow-sensitive: they change as 
a resul t  of function calls, field accesses and runt ime checks 
and so may  be different a t  every p rog ram point .  

Funct ions  f have a rguments  x z , . . . , X n ,  local variables 
I x ~ , . . .  ,xq, b o d y  s and  are  pa ramete r i sed  over abs t rac t  re- 

gions pl . . . . .  pro. The  resul t  of f is found in var iable  x after 
s has executed.  The  set of abs t r ac t  regions valid in the  ar- 
gument  and  result  types  of f is { p l , . . . , p m } .  The  set of 
abs t rac t  regions valid in the  types  of local variables of f is 
{ p l , . . . ,  pro, p~ . . . . .  p~}. T h e  local variables x~ . . . . .  x~ must  
be dead  before s. Funct ions  have an  inpu t  p roper ty  6 tha t  
expresses requi rements  t ha t  must  hold  between the  abs t rac t  
region pa ramete r s  a t  all calls to f .  T h e  ou tpu t  p roper ty  
6' expresses proper t ies  t ha t  are known to hold between the 
abs t rac t  region pa rame te r s  when f re turns.  

The  chk 6 s t a t emen t  is a run t ime check tha t  the  prop- 
e r ty  specified by  6 holds. I f  the  check fails, the  program 
is abor ted .  Ins tan t ia t ion  and general isa t ion of existent ial  
types  is impl ic i t  in the  rules for ass ignment  (Figure  6) ra ther  
than  being done by explici t  ins tan t i a te  and  generalise op- 

74 



型の例

struct L は、リージョン ρ に格納される

v は、region ρ’ に格納され、region を指す。ρ’ の条件は特にない

next は、リージョン ρ’’ に格納され、L[ρ’’] を指す。ρ’’ は、T (null が格納される 

region) もしくは、ρ と同じ

x は、リージョン ρ に格納され、L[ρ] 型である

= p @ a l 3 p / 6 . T  ( types)  
= region I T [ a l , . . . , c ~ ]  (base types)  
= p I R I T (region expressions) 
= ~r < c~1-~615 V 61(5 ) (region propert ies)  

s t r u c t  T[p~ . . . . .  p,~]{fieldl : ~'l . . . . .  field,~ : ~-,~} 
( s t ruc ture  declarat ions)  

T: t ype  names,  p: abs t rac t  regions, R: region constants  

F i g u r e  4: R e g i o n  t y p e  l a n g u a g e  

the objects  were allocated.  The  pages of the  p o i n t e r f r e e  
al locator need not be scanned as they  do not  contain  point-  
ers to other  regions. We have found tha t  the  cost of this 
scan opera t ion  remmns reasonable  (2% or less on all bench- 
marks).  However, we plan to invest igate ways of reducing 
this cost further.  

4. A REGION TYPE SYSTEM 
The type  mnnotations of Sect ion 3.2 are a s imple way for 

the user to specify types  from a more general  region type  
language (Section 4.1) which par t ia l ly  specifies the  regions of 
pointers. This  type  language is used in a s imple region-based 
language rlang (Section 4.2). By t rans la t ing  RC programs 
into rlang, our compiler  for RC can check the  correctness of 
some annota t ions  and reduce the  reference count  overheads 
in some programs (Section 4.3). 

4.1 Region Types 
We first define a s imple mode l  for the  heap  of a region- 

based language. The  heap H is divided into regions, each 
con t~n ing  a number  of objects .  Objec ts  are  named struc- 
tures with named fields conta ining pointers.  Pointers  can 
be n u l l ,  point  to objects ,  or to regions. We write A H  = 
{ T , r l , . . .  , r~}  for the  set of regions of H.  We define a pax- 
t ial  order on A n  : r'  < r if r'  is a subregion of r .  The  region 
of an object  poin ter  is the region of the  t a rge ted  object .  The  
region of a poin ter  v is T iff v = n u l l .  We define r _< T for 
all regions r .  

Figure 4 gives types  for po in te rs  reflecting this  heap struc-  
ture: there are pointers  to regions ( r e g i o n ) ,  and  pointers  
to named records with named  fields. Each type  is anno- 
ta ted  with a region expression a which specifies the  region 
to which values of t ha t  t ype  point  ( . . .  @o'). Funct ion and 
non-pointer  types  could be added  easily to  bo th  the  heap 
model  and t ype  language. 

Region expressions are e i ther  abstract regions p or ele- 
ments of the  set C a  = R t2 {T} of region constants. Region 
constmnts denote  regions t h a t  always exist and  cannot  be 
deleted, such as the " t rad i t iona l  region". Abs t r ac t  regions 
denote any region in A s .  A b s t r a c t  regions are  in t roduced 
existential ly with the  3p/5.~ construct ,  which means  tha t  
p is a region in A n  tha t  respects  the  p rope r ty  specified 
by boolean expression 5. For  instance,  the  type  3 p / T  < 
T.T[. . .]@p represents  an ob jec t  of t ype  T in any region (as 
the boolean expression is always t rue) .  To simplify nota-  
tion, we wri te  t rue  as sho r thand  for T < T and Hp as a 
shor thand for 3p/ t rue .  S t ruc tu re  definit ions are parame-  
terised over a set p l , . . . , p m  of abs t rac t  regions; s t ruc ture  
uses ins tant ia te  s t ruc ture  dec la ra t ions  with a set of region 
expressions. Funct ion declara t ions  also in t roduce  abs t rac t  
regions (see Section 4.2). 

p rogram : : :  fn* 

fn : := f [ p l , . . . , P m ] / 5 ( x l  : T X , . . . , X ~ : ~ ' , ~ ) : % 5 '  
i s  [p~,...,pp]Xl' ' :'rl,: .. ,Xq' : %; s , x  

8 : : =  81;82 
[ i f  x 81 82 
[ while x s 
I X 0  = X l  
[ xo  = f [ a l , . . . ,  O'~,n](Xl,... ,fEn) 
] XO = x l . f i e l d  
] x l . f i e l d  = x2 
I xo : null 
[ xo = new T[crl . . . .  ,a , ,~](xl , . . .  ,x,~)@x' 
I chk 5 

Some predefined functions: 
newregion[]/true 0 : 3p.region@p, true 
newsubregion[p]/true 0 : 3p'/p' _< p.region@p', t rue  
deleteregion[p]/true(r : region~p) : region~T, true 
regionof_T[p, Pl,...]/true(x : r[pl, . • .]~p) : region~p, true 

F i g u r e  5: f lung ,  a s i m p l e  i m p e r a t i v e  l a n g u a g e  w i t h  
r e g i o n s  

If two values poin t  to the  same abs t rac t  region p then 
the  values must  specify ob jec t s  in the  same region. As a 
consequence, if one of the  values is null then  p = T so the 
other  value is null too. Exis tent ia l ly  qumntified regions must  
be used if two values can be null  i ndependen t ly  of each other, 
bu t  point  to  the  same region if non-null .  For  instance, in 

s t r u c t  L[p] { 
v : 3 p ' . r e g i o n ~ p  I, 
nex t  : 3p" /p"  = T V p" = p.L[p"]@p" 

} 
x :L[p]Qp 

x is a list s tored  in region p of a rb i t r a ry  regions. Wi thou t  
the  exis tent ia l ly  quantif ied t ype  the  nex t  field could not  be 
null as it  would be in the  same region as i ts  parent  (which 
is obviously not  null if n e x t  exists) .  

4.2 Region Type Checking in rlang 
We chose to  define rlang (Figure  5) as an impera t ive  lan- 

guage bo th  because this is closer to C and because the  prop- 
erties of abs t r ac t  regions axe flow-sensitive: they change as 
a resul t  of function calls, field accesses and runt ime checks 
and so may  be different a t  every p rog ram point .  

Funct ions  f have a rguments  x z , . . . , X n ,  local variables 
I x ~ , . . .  ,xq, b o d y  s and  are  pa ramete r i sed  over abs t rac t  re- 

gions pl . . . . .  pro. The  resul t  of f is found in var iable  x after 
s has executed.  The  set of abs t r ac t  regions valid in the  ar- 
gument  and  result  types  of f is { p l , . . . , p m } .  The  set of 
abs t rac t  regions valid in the  types  of local variables of f is 
{ p l , . . . ,  pro, p~ . . . . .  p~}. T h e  local variables x~ . . . . .  x~ must  
be dead  before s. Funct ions  have an  inpu t  p roper ty  6 tha t  
expresses requi rements  t ha t  must  hold  between the  abs t rac t  
region pa ramete r s  a t  all calls to f .  T h e  ou tpu t  p roper ty  
6' expresses proper t ies  t ha t  are known to hold between the 
abs t rac t  region pa rame te r s  when f re turns.  

The  chk 6 s t a t emen t  is a run t ime check tha t  the  prop- 
e r ty  specified by  6 holds. I f  the  check fails, the  program 
is abor ted .  Ins tan t ia t ion  and general isa t ion of existent ial  
types  is impl ic i t  in the  rules for ass ignment  (Figure  6) ra ther  
than  being done by explici t  ins tan t i a te  and  generalise op- 

74 



rlang (ここで使うプログラム)

straightforward な命令
型言語

new はリージョン指定
が入る

chk δ で、region 

property の動的検査

= p @ a l 3 p / 6 . T  ( types)  
= region I T [ a l , . . . , c ~ ]  (base types)  
= p I R I T (region expressions) 
= ~r < c~1-~615 V 61(5 ) (region propert ies)  

s t r u c t  T[p~ . . . . .  p,~]{fieldl : ~'l . . . . .  field,~ : ~-,~} 
( s t ruc ture  declarat ions)  

T: t ype  names,  p: abs t rac t  regions, R: region constants  

F i g u r e  4: R e g i o n  t y p e  l a n g u a g e  

the objects  were allocated.  The  pages of the  p o i n t e r f r e e  
al locator need not be scanned as they  do not  contain  point-  
ers to other  regions. We have found tha t  the  cost of this 
scan opera t ion  remmns reasonable  (2% or less on all bench- 
marks).  However, we plan to invest igate ways of reducing 
this cost further.  

4. A REGION TYPE SYSTEM 
The type  mnnotations of Sect ion 3.2 are a s imple way for 

the user to specify types  from a more general  region type  
language (Section 4.1) which par t ia l ly  specifies the  regions of 
pointers. This  type  language is used in a s imple region-based 
language rlang (Section 4.2). By t rans la t ing  RC programs 
into rlang, our compiler  for RC can check the  correctness of 
some annota t ions  and reduce the  reference count  overheads 
in some programs (Section 4.3). 

4.1 Region Types 
We first define a s imple mode l  for the  heap  of a region- 

based language. The  heap H is divided into regions, each 
con t~n ing  a number  of objects .  Objec ts  are  named struc- 
tures with named fields conta ining pointers.  Pointers  can 
be n u l l ,  point  to objects ,  or to regions. We write A H  = 
{ T , r l , . . .  , r~}  for the  set of regions of H.  We define a pax- 
t ial  order on A n  : r'  < r if r'  is a subregion of r .  The  region 
of an object  poin ter  is the region of the  t a rge ted  object .  The  
region of a poin ter  v is T iff v = n u l l .  We define r _< T for 
all regions r .  

Figure 4 gives types  for po in te rs  reflecting this  heap struc-  
ture: there are pointers  to regions ( r e g i o n ) ,  and  pointers  
to named records with named  fields. Each type  is anno- 
ta ted  with a region expression a which specifies the  region 
to which values of t ha t  t ype  point  ( . . .  @o'). Funct ion and 
non-pointer  types  could be added  easily to  bo th  the  heap 
model  and t ype  language. 

Region expressions are e i ther  abstract regions p or ele- 
ments of the  set C a  = R t2 {T} of region constants. Region 
constmnts denote  regions t h a t  always exist and  cannot  be 
deleted, such as the " t rad i t iona l  region". Abs t r ac t  regions 
denote any region in A s .  A b s t r a c t  regions are  in t roduced 
existential ly with the  3p/5.~ construct ,  which means  tha t  
p is a region in A n  tha t  respects  the  p rope r ty  specified 
by boolean expression 5. For  instance,  the  type  3 p / T  < 
T.T[. . .]@p represents  an ob jec t  of t ype  T in any region (as 
the boolean expression is always t rue) .  To simplify nota-  
tion, we wri te  t rue  as sho r thand  for T < T and Hp as a 
shor thand for 3p/ t rue .  S t ruc tu re  definit ions are parame-  
terised over a set p l , . . . , p m  of abs t rac t  regions; s t ruc ture  
uses ins tant ia te  s t ruc ture  dec la ra t ions  with a set of region 
expressions. Funct ion declara t ions  also in t roduce  abs t rac t  
regions (see Section 4.2). 

p rogram : : :  fn* 

fn : := f [ p l , . . . , P m ] / 5 ( x l  : T X , . . . , X ~ : ~ ' , ~ ) : % 5 '  
i s  [p~,...,pp]Xl' ' :'rl,: .. ,Xq' : %; s , x  

8 : : =  81;82 
[ i f  x 81 82 
[ while x s 
I X 0  = X l  
[ xo  = f [ a l , . . . ,  O'~,n](Xl,... ,fEn) 
] XO = x l . f i e l d  
] x l . f i e l d  = x2 
I xo : null 
[ xo = new T[crl . . . .  ,a , ,~](xl , . . .  ,x,~)@x' 
I chk 5 

Some predefined functions: 
newregion[]/true 0 : 3p.region@p, true 
newsubregion[p]/true 0 : 3p'/p' _< p.region@p', t rue  
deleteregion[p]/true(r : region~p) : region~T, true 
regionof_T[p, Pl,...]/true(x : r[pl, . • .]~p) : region~p, true 

F i g u r e  5: f lung ,  a s i m p l e  i m p e r a t i v e  l a n g u a g e  w i t h  
r e g i o n s  

If two values poin t  to the  same abs t rac t  region p then 
the  values must  specify ob jec t s  in the  same region. As a 
consequence, if one of the  values is null then  p = T so the 
other  value is null too. Exis tent ia l ly  qumntified regions must  
be used if two values can be null  i ndependen t ly  of each other, 
bu t  point  to  the  same region if non-null .  For  instance, in 

s t r u c t  L[p] { 
v : 3 p ' . r e g i o n ~ p  I, 
nex t  : 3p" /p"  = T V p" = p.L[p"]@p" 

} 
x :L[p]Qp 

x is a list s tored  in region p of a rb i t r a ry  regions. W i thou t  
the  exis tent ia l ly  quantif ied t ype  the  nex t  field could not  be 
null as it  would be in the  same region as i ts  parent  (which 
is obviously not  null if n e x t  exists) .  

4.2 Region Type Checking in rlang 
We chose to  define rlang (Figure  5) as an impera t ive  lan- 

guage bo th  because this is closer to C and because the  prop- 
erties of abs t r ac t  regions axe flow-sensitive: they change as 
a resul t  of function calls, field accesses and runt ime checks 
and so may  be different a t  every p rog ram point .  

Funct ions  f have a rguments  x z , . . . , X n ,  local variables 
I x ~ , . . .  ,xq, b o d y  s and  are  pa ramete r i sed  over abs t rac t  re- 

gions pl . . . . .  pro. The  resul t  of f is found in var iable  x after 
s has executed.  The  set of abs t r ac t  regions valid in the  ar- 
gument  and  result  types  of f is { p l , . . . , p m } .  The  set of 
abs t rac t  regions valid in the  types  of local variables of f is 
{ p l , . . . ,  pro, p~ . . . . .  p~}. T h e  local variables x~ . . . . .  x~ must  
be dead  before s. Funct ions  have an  inpu t  p roper ty  6 tha t  
expresses requi rements  t ha t  must  hold  between the  abs t rac t  
region pa ramete r s  a t  all calls to f .  T h e  ou tpu t  p roper ty  
6' expresses proper t ies  t ha t  are known to hold between the 
abs t rac t  region pa rame te r s  when f re turns.  

The  chk 6 s t a t emen t  is a run t ime check tha t  the  prop- 
e r ty  specified by  6 holds. I f  the  check fails, the  program 
is abor ted .  Ins tan t ia t ion  and general isa t ion of existent ial  
types  is impl ic i t  in the  rules for ass ignment  (Figure  6) ra ther  
than  being done by explici t  ins tan t i a te  and  generalise op- 

74 



型検査

judgement:         δ, L ├ s, δ’

property δ は、s を実行後に δ’ になる

L は、live abstract region set 



後は、型チェック

易しいものをひとつだけ

6, L~ H s ,  6' x : 7" 6' ~ 6" f v (  6) U f v (  6") C {p~ , . . . , Pro} x~ , . . . , x~  are dead  before s (fndef) 
! 

k- f [p~ ,  pm] /6 (x~  : ~'1 . . . .  x,~ : T,) : ~',6" i s  [p[, ' ' : . ' : T q , s , x  . . . .  . . . . .  p~]x~ r~ . . . .  x~ 

xo : re Xl : r~ 5, L k- re ~ T~, 6', L' 
6, L ~- x0 = x l ,  5' (assign) 

xo : TO X~ : l~@a~ x~ . f ie ld  : rr~ 6 A ~'T1 # T, L k" ~o ~- ~'~, 5' ,  L '  ~ ,  

5, L t- xo = x~.field,  5' 
"r2,6 , L  x~ : t ~ @ a ~  x l . f i e l d  : T{ X2 : r2 6 A a~ # T, L k- 7"{ ~ ' ' 

5, L t- x~. f ie ld  = x : ,  5' 
s t ruct  T [ p ~ , . . . ,  pm]{field~ : 7"{ , . . . ,  fieldr, : ~-~} 

x~ : ~ 6~,L~ F 7"~[o'l/pz . . . . .  Crm/pm] ~ 7"i,Si+l,Li+l 
• . . ,  a m i g o  , 5 ,  X0 : TO X' : region@a' 5n+l,Ln+1 ~- To ~-- T[a~, ' ' L' 

(read) 

(write) 

new) 
61, L1 k- xo = new T[c r l , . . . ,  Crm](Xl,.. . ,  x n ) ~ x ' ,  6' 

x0 : #0@(ro 6, L k-/he@a0 ~--/.to@T, 5', L'  fv(6') C L 
6, L k- xo = n u l l ,  6' (null) 6, L k- chk 6 ' ,6  A 6 ' "  (check) 

6, L H si,6' 6',L82 ~" s2,6" 6, L~ I ~" sI,6' 6, L~ ~- s2,6" 6V6",L~ ~- s,6" 
5, L ~ s~; s~, 6" 6, L ~ if x 81 S2, 5' V 6" 5, L ~ while x 8, 5 V 6" 

• . ,Pro]~ (Yl:~-~, . . Y n : < ) :  f[p~ , . 5' • 7"', 5" 
x~: ~'~ 6~,L~ ~- T~[6rl//pl,... ,Ctm/pra] ~ ' - T i , S i + l , L i & l  5n+1 ~ 5 ' [ f f l /p l  . . . . .  ¢rm/Pm] 

6n+~ A 6 " [ a l / p ~ , . . . ,  am~pro], L , + i  k- vo ~ ~ ' [o '~ /p~ , . .  . ,  a ~ / p , , ] ,  6 '" ,  L '  (fncall) 
61,L1 k" xo = f [ a l , . . .  , a ,~] (x l  . . . . .  x~) ,6 ' "  

cd 6 L U C a  fv (6 ' [cd lp])  C L 
6 ~ 5 ' [ a ' l P ]  6, L t - ~ - [ a ' / p ]  ~ - - ~ - ' , 5 " ,L '  

6, L t- 2p/6' .1" ~-- ~", 6",  L'  

6, L t- ~ ~-- c r ' , 6 ' , L '  
5, L H region~a ~-- reglon~cr , 5 , L 

Assignment 
Ptg L 5 ~ 6" fv(5") C L 

6" A 6'[p/p'], L U {p} ~- ~ ~- ~"[P/P'], 6'", L' (3inst.) (3gen.) 5, L i- r ~-- 3p'/5'.7"', 5'", L' 

5, L k - c r ~ - - a ' , 5 1 , L 1  5 ~ , L i k - a ~ ÷ - - a ~ , 5 ~ + l , L i + 1  ...... 

aE LUCR 5~a=a' 
5, L k" a ~-" a ' , 5 ,  L 

a ,~]@a , 6~+1 Lm+1 6, L t- T [ a l , . . . , a m ] @ a  ~-- T [ a ~ , . . . ,  ' ' , 

p ¢ L 5 ~ 5' fv(5') C L 
5, L F p ~- o-', 5' A p = a', L O {p} 

F i g u r e  6: R e g i o n  T y p e  C h e c k i n g  

erations. The  rest  of the language is straightforward: i f  
and whi le  s ta tements  assume n u l l  is false and everything 
else is true; new s ta tements  specify values for the  s t ructure 's  
fields; the program is executed by calling a function called 
main with no arguments.  Figure 5 also gives signatures 
for the predefined newregion,  newsubregion,  d e l e t e r e g i o n  
and r eg iono f_T  (one for each s t ructure  type  T) functions. 

We write X[6rl/Pl,..., •m/Prn] for subst i tut ion of region 
expressions for (free) abs t rac t  regions in region expressions, 
boolean expressions and types: The  notat ion x : ~- and 
x . f i e l d  : ~- asserts  t ha t  x, or a field of x, has type  7". The set 
of free abs t rac t  regions of a boolean expression 6 is fv(6). 

Type  checking for rlang (Figure 6) relies extensively on 
boolean expressions specifying proper t ies  of abst ract  regions. 
Sta tements  of a function f are checked by the judgment  
6, Ls k- s, 6'. The input  p roper ty  6 describes the propert ies  of 
f ' s  abs t rac t  regions before executing s, the ou tput  p roper ty  
6' the propert ies  of these abs t rac t  regions after executing s. 
Instead of an explicit  b inding construct  for abst ract  regions, 
assignments may b ind  any abs t rac t  region of the  assignment 
target which is not  in the l ive abs t rac t  region set LB. This 
set Ls contains f ' s  abs t rac t  region parameters  and the ab- 
stract  regions used in any live variable 's  type. The  output  

proper ty  5" of f describes proper t ies  of f ' s  abs t rac t  region 
parameters  tha t  hold when the function returns.  If  these 
parameters  could be rebound,  then  5" would describe prop- 
erties of some a rb i t r a ry  regions used inside f r a the r  than  
of f ' s  abs t rac t  region parameters .  We assume t h a t  Ls is 
precomputed for each s ta tement  s using a s t anda rd  liveness 
analysis. 

The  judgments  6, L ~- 7-1 ~-- T2,6', L' of Figure  6 check 
t ha t  a value of t ype  r2 is assignable to a locat ion of type  ~'1. 
These judgments  take  an input  p roper ty  6 and live abs t rac t  
region set L and produce an  upda t e d  (as a result  of binding 
abs t rac t  regions) ou tpu t  p roper ty  6' and live abs t rac t  region 
set Lq The  (3gen.) rule allows ass ignment  as long as ~'2 can 
be  existential ly quantif ied to ma tch  r l .  The  (3inst.)  rule 
allows ins tant :a t :on  of an exis tent ia l ly  quantified region into 
a dead abs t rac t  region p, and  upda te s  6 and L to reflect p's 
new properties.  I t  is possible t ha t  6 descr ibed proper t ies  
of the old value of p, these proper t ies  are removed by us- 
ing a new proper ty  6", implied by 6, t ha t  does not  have p 
amongst  its free variables. Base types  are assignable if their  
region expressions match.  Two region expressions match if 
6 implies they are equal or if the  abs t rac t  region p of the 
assignment  ta rge t  is dead. In this  last case 6 is upda t ed  to 

75 



型チェック全体

詳しくは論文を見てださい
6, L~ H s ,  6' x : 7" 6' ~ 6" f v (  6) U f v (  6") C {p~ , . . . , Pro} x~ , . . . , x~  are dead  before s (fndef) 

! 
k- f [p~ ,  pm] /6 (x~  : ~'1 . . . .  x,~ : T,) : ~',6" i s  [p[, ' ' : . ' : T q , s , x  . . . .  . . . . .  p~]x~ r~ . . . .  x~ 

xo : re Xl : r~ 5, L k- re ~ T~, 6', L' 
6, L ~- x0 = x l ,  5' (assign) 

xo : TO X~ : l~@a~ x~ . f ie ld  : rr~ 6 A ~'T1 # T, L k" ~o ~- ~'~, 5' ,  L '  ~ ,  

5, L t- xo = x~.field,  5' 
"r2,6 , L  x~ : t ~ @ a ~  x l . f i e l d  : T{ X2 : r2 6 A a~ # T, L k- 7"{ ~ ' ' 

5, L t- x~. f ie ld  = x : ,  5' 
s t ruct  T [ p ~ , . . . ,  pm]{field~ : 7"{ , . . . ,  fieldr, : ~-~} 

x~ : ~ 6~,L~ F 7"~[o'l/pz . . . . .  Crm/pm] ~ 7"i,Si+l,Li+l 
• . . ,  a m i g o  , 5 ,  X0 : TO X' : region@a' 5n+l,Ln+1 ~- To ~-- T[a~, ' ' L' 

(read) 

(write) 

new) 
61, L1 k- xo = new T[c r l , . . . ,  Crm](Xl,.. . ,  x n ) ~ x ' ,  6' 

x0 : #0@(ro 6, L k-/he@a0 ~--/.to@T, 5', L'  fv(6') C L 
6, L k- xo = n u l l ,  6' (null) 6, L k- chk 6 ' ,6  A 6 ' "  (check) 

6, L H si,6' 6',L82 ~" s2,6" 6, L~ I ~" sI,6' 6, L~ ~- s2,6" 6V6",L~ ~- s,6" 
5, L ~ s~; s~, 6" 6, L ~ if x 81 S2, 5' V 6" 5, L ~ while x 8, 5 V 6" 

• . ,Pro]~ (Yl:~-~, . . Y n : < ) :  f[p~ , . 5' • 7"', 5" 
x~: ~'~ 6~,L~ ~- T~[6rl//pl,... ,Ctm/pra] ~ ' - T i , S i + l , L i & l  5n+1 ~ 5 ' [ f f l /p l  . . . . .  ¢rm/Pm] 

6n+~ A 6 " [ a l / p ~ , . . . ,  am~pro], L , + i  k- vo ~ ~ ' [o '~ /p~ , . .  . ,  a ~ / p , , ] ,  6 '" ,  L '  (fncall) 
61,L1 k" xo = f [ a l , . . .  , a ,~] (x l  . . . . .  x~) ,6 ' "  

cd 6 L U C a  fv (6 ' [cd lp])  C L 
6 ~ 5 ' [ a ' l P ]  6, L t - ~ - [ a ' / p ]  ~ - -~ - ' , 5 " ,L '  

6, L t- 2p/6' .1" ~-- ~", 6",  L'  

6, L t- ~ ~-- c r ' , 6 ' , L '  
5, L H region~a ~-- reglon~cr , 5 , L 

Assignment 
Ptg L 5 ~ 6" fv(5") C L 

6" A 6'[p/p'], L U {p} ~- ~ ~- ~"[P/P'], 6'", L' (3inst.) (3gen.) 5, L i- r ~-- 3p'/5'.7"', 5'", L' 

5, L k - c r ~ - - a ' , 5 1 , L 1  5 ~ , L i k - a ~ ÷ - - a ~ , 5 ~ + l , L i + 1  ...... 

aE LUCR 5~a=a' 
5, L k" a ~-" a ' , 5 ,  L 

a ,~]@a , 6~+1 Lm+1 6, L t- T [ a l , . . . , a m ] @ a  ~-- T [ a ~ , . . . ,  ' ' , 

p ¢ L 5 ~ 5' fv(5') C L 
5, L F p ~- o-', 5' A p = a', L O {p} 

F i g u r e  6: R e g i o n  T y p e  C h e c k i n g  

erations. The  rest  of the language is straightforward: i f  
and whi le  s ta tements  assume n u l l  is false and everything 
else is true; new s ta tements  specify values for the  s t ructure 's  
fields; the program is executed by calling a function called 
main with no arguments.  Figure 5 also gives signatures 
for the predefined newregion,  newsubregion,  d e l e t e r e g i o n  
and r eg iono f_T  (one for each s t ructure  type  T) functions. 

We write X[6rl/Pl,..., •m/Prn] for subst i tut ion of region 
expressions for (free) abs t rac t  regions in region expressions, 
boolean expressions and types: The  notat ion x : ~- and 
x . f i e l d  : ~- asserts  t ha t  x, or a field of x, has type  7". The set 
of free abs t rac t  regions of a boolean expression 6 is fv(6). 

Type  checking for rlang (Figure 6) relies extensively on 
boolean expressions specifying proper t ies  of abst ract  regions. 
Sta tements  of a function f are checked by the judgment  
6, Ls k- s, 6'. The input  p roper ty  6 describes the propert ies  of 
f ' s  abs t rac t  regions before executing s, the ou tput  p roper ty  
6' the propert ies  of these abs t rac t  regions after executing s. 
Instead of an explicit  b inding construct  for abst ract  regions, 
assignments may b ind  any abs t rac t  region of the  assignment 
target which is not  in the l ive abs t rac t  region set LB. This 
set Ls contains f ' s  abs t rac t  region parameters  and the ab- 
stract  regions used in any live variable 's  type. The  output  

proper ty  5" of f describes proper t ies  of f ' s  abs t rac t  region 
parameters  tha t  hold when the function returns.  If  these 
parameters  could be rebound,  then  5" would describe prop- 
erties of some a rb i t r a ry  regions used inside f r a the r  than  
of f ' s  abs t rac t  region parameters .  We assume t h a t  Ls is 
precomputed for each s ta tement  s using a s t anda rd  liveness 
analysis. 

The  judgments  6, L ~- 7-1 ~-- T2,6', L' of Figure  6 check 
t ha t  a value of t ype  r2 is assignable to a locat ion of type  ~'1. 
These judgments  take  an input  p roper ty  6 and live abs t rac t  
region set L and produce an  u p d a t e d  (as a result  of binding 
abs t rac t  regions) ou tpu t  p roper ty  6' and live abs t rac t  region 
set Lq The  (3gen.) rule allows ass ignment  as long as ~'2 can 
be  existential ly quantif ied to ma tch  r l .  The  (3inst.)  rule 
allows ins tant :a t :on  of an exis tent ia l ly  quantified region into 
a dead abs t rac t  region p, and  upda te s  6 and L to reflect p's 
new properties.  I t  is possible t ha t  6 descr ibed proper t ies  
of the old value of p, these proper t ies  are removed by us- 
ing a new proper ty  6", implied by 6, t ha t  does not  have p 
amongst  its free variables. Base types  are assignable if their  
region expressions match.  Two region expressions match if 
6 implies they are equal or if the  abs t rac t  region p of the 
assignment  ta rge t  is dead. In this  last case 6 is upda t ed  to 

75 



Benchmark 結果
RC は速い：malloc/free の -7% ~ 53%

５つ棒は左から、C@ (著者らの前システム), lea (Doug 

Lea の malloc/free 再実装), GC (Boehm-GC), norc (RC 

で reference counting を disable したもの), RC

norc は RC の refcount がない版なので当然速い
cfrac 

illi 
C@ kea GCnofoFtC 

grobner 

10 

0 
C@ Ioa GC~RC 

mudlle 

C~ ~ Gcnorel:lC 

[CC 

C@ I ~  GCnorcRC 

mOSS tile 
6 

' 11111 
4 

3 

2 

: e  I~a GC~mRC 

rc 

  !ill II!1 
C@ k~a GCnomRC 

apache 

Ill[ 
C@ lea GCnomRC 

F i g u r e  7: E x e c u t i o n  t i m e  

Name 

cfrac 
grSbner 
mudlle 
lcc 
moss 

tile 

rc 

apache 

Lines 

4203 
3219 
5078 

12430 
2675 

926 
22823 
62289 

Number  
allocs (kB) 

3812425 56076 
5971710 312992 
1594372 22354 
1002210 55637 

553986 6312 
10459 309 
81093 4714 

164296 30806 

M e m a l l o c  Max use 
(kB) 

102 
474 
210 

4121 
2185 

153 
4214 

78 

T a b l e  1: B e n c h m a r k  c h a r a c t e r i s t i c s .  

t r u e ,  i.e., all constraint  sets  empty) .  Therefore it is 
possible to find the  best  collection of constraint  sets 
using a greatest-f ixed-point-seeking dataflow analysis 
of the  whole program. This  greatest-f ixed-point  for 
constraint  sets is also the most  precise typing possible 
(using these constraint  sets).  

® RC restr icts  this dataflow analysis to a single source 
file by assuming t ha t  any non-stat ic  C function and 
any function called v ia  a function pointer  has empty  
input,  ou tpu t  and result  const ra int  sets. The  complex- 
ity of this analysis is O(kSn4), where k is the  number  
of functions in a file, S the  number  of s ta tements ,  and  
n the  largest number  of local variables in a single func- 
tion. We keep the analysis t rac tab le  by ignoring local 
variables t ha t  are effectively temporaries  (al l  uses have 
a single reaching definition).  The largest analysis t ime 
on any file in our benchmarks  is 30s, with all other 
t imes being less than  10s. The analysis completes in 
less than  l s  for 96% of files. 

Once the inference is complete,  we can safely el iminate 
any chk s ta tement  tha t  asserts a proper ty  tha t  is implied 
by its input  constraint  set. Resul ts  of this analysis are pre- 
sented in Section 5.2. 

5. RES ULTS 
We use a set of eight small  to large C benchmarks to 

analyse the  performance of RC: c~rac  and g r~bner  per- 
form numeric computa t ions  using large integers, mudl le ,  
1co and r c  are compilers, t i l e  and  moss process text  and 
apache is a web server, Half of these programs (mudlle,  
l cc ,  rc ,  apache) were a l ready region-based (using simple 
region libraries with no safety guarantees);  the  other  half  
were converted to use regions (detai ls  can be found in [6]). 
The c f r a c  benchmark  was wr i t ten  with explicit  reference- 
counting; this hand-wr i t t en  reference counting is disabled 

Name 

cfrac 
grSbner 
mudlle 
]cc 
moss 
tile 
rc 
apache 

C@ 
(s) (%) 

RC 
(s) (%) 

0.02 0.4% 
0.07 0.7% I 
0.23 6 % '  
0.56 11% 

-0.02 <0% 
0.00 0% 
0.12 4% 
0.43 8% 

0.48 6% 
0.88 7% 
0.56 13% 
1.14 17% 
0.11 2% 
0.02 0.4% 

Region 
unscan (s) 

.01 

.02 

.01 

.07 
<.01 
<.01 
<.01 

.10 

T a b l e  2: R e f e r e n c e  c o u n t i n g  o v e r h e a d  i n  R C  a n d  
C ~  

when running c f r a c  with RC and  conservative garbage col- 
lection. Table 1 reports  the  benchmarks '  sizes (in lines of 
code) and summarises  their  memory  al locat ion behaviour:  
"number allocs" is the number  of objects  al located,  "mem 
alloc" is the to ta l  amount  of memory  al located during exe- 
cution of the program,  "max use" is the  max imum amount  
of memory in use at  any time. 

5.1 Performance  
We compared  the  performance of RC with  our old system, 

C ~ ,  wi th  conventional mal loc / f ree-based memory manage- 
ment  and with conservative garbage collection. Measure- 
ments  were made  on a Sun Ul t ra  10 with a 333Mhz Ultra- 
Spare II  processor, a 2MB L2 cache and 256MB of memory. 

Figure 7 repor ts  elapsed t ime (from the best of five runs) 
for each benchmark  for five compi ler /a l loca tor  combinat ions:  
"C@" is our previous region compiler (we did not  convert 
r c  or apache to run under  C@ as this would have required 
subs tant ia l  effort); "lea" is gcc 2.95.2 wi th  Doug Lea's  mal- 
loc/free replacement  l ibrary  v2.6.64 (which has much bet- 
ter  performance than  Sun 's  defaul t  m a l l o c  l ibrary);  "GC" 
is gcc 2.95.2 wi th  the Boehm-Weiser  conservative garbage 
collector v5.3; "norc" is gcc 2.95.2 wi th  our RC compiler 
and reference counting disabled;  "RC" is gcc 2.95.2 with 
our RC compiler and reference counting enabled.  For the 
benchmarks  which were originally not  region-based ( c f r ac ,  
g r6bner ,  t i l e ,  moss), the  "lea" column is the  execution t ime 
obta ined when running the  original code. For those bench- 
marks  which were region-based,  the  "lea" column uses a sim- 
ple region-emulat ion l ibrary  t h a t  uses raa l loc  and f r e e  to 
al locate and free each indiv idual  object .  The  "GC" column 
uses the same code as "lea", except  t ha t  calls to ma l loc  are 
replaced by calls to garbage collected allocation and calls to 
:free are removed. RC with reference counting always per- 

4Obtainable  a t  f t p : / / g .o swego .edu /pub /misc /ma l loc . c  



静的検査で減った dynamic check 割合

灰色が safe 

assignment (dynamic 
check なし)

黒が dynamic check

5.5 - -  

5 75 

5.7 

5.66 

5.6 
5 5 5  

5.5 

5.45 

5.4 
5.a5 

cfrac 

nq qs mf no 

F i g u r e  8: E x e c u t i o n  

grobner mudlle Icc 
, . . . . . . . . . . . . . .  l , . ~  i 5.5 

nq qs Inf nc nq qs mf ~ nq qs ml 

t i m e  w i t h  sameregion~ parentptr a n d  

moss 
SSl .  

S.4 ~ 
i s.3 

j 4.9 , 
45 
4.7 
4,6 

nq q$ inf no 

tile 
4,05 

4 

5.55 

3.9 ~ 
5,s5 

3.8 

3.75 

nq qa m, n¢ 

FC 
3.2 

3 ~5 

3A 

: 3,05 

3 

2.95 

nq q¢ ~nf nc 

t r a d i t i o n a l  ( n o n - z e r o  t i m e  

apache 
5,77 

5.6 

S.S 

5,4 
S,3 
s,2 

n-4 q~ ~n¢ nc 
o r i g i n )  

forms be t te r  t han  C@ and is faster t han  mal loc/ f ree  or the  
Boehm-Weiser  garbage collector on c f r a c ,  g rSbner ,  mudl le ,  
moss, and t i l e  (up to 58%). At  worst,  RC is 7% slower (on 
re). 

Table 2 shows the reference count ing cost for C@ and RC. 
This cost is presented as absolute  t ime in seconds, and as 
a percentage of execution t ime.  For RC, we also show t ime 
spent  removing references from deleted regions ("Region un- 
scan").  The  largest reference count ing overhead is for l c c  
at 11% of execution time. The  region unscan accounts for 
2% or less of execution t ime on all o ther  benchmarks .  This 
table also shows tha t  the  be t t e r  performance of RC over C@ 
is due not  only to a be t t e r  base  compiler  (gcc vs lcc) bu t  also 
to a reduct ion in the reference count ing overhead (which is 
not affected by the C compiler  used). We discuss the  per- 
formance anomalies  (negative t ime for reference counting) 
below. 

5.2 Region Type System Results 
We added sameregion ,  p a r e n t p t r  and t r a d i t i o n a l  an- 

notat ions to all our benchmarks .  Table 3 repor t s  the  number  
of annota t ions  we added,  the  number  of lines of  code we had  
to change to allow annota t ions  (excluding the  lines wi th  the  
annotat ions  themselves) and  the  percentage of ass ignment  
s ta tements  of anno ta ted  types  whose safety we were able to  
check statically.  

On most benchmarks  the  only changes were the addi t ion  
of the sameregion ,  p a r e n t p t r  and t r a d i t i o n a l  keywords.  
In grSbner ,  which represents  large integers as a s t ruc ture  
with a pointer  to a~ array, we a l located some of these struc- 
tures in a region ra ther  than  on the s tack and  expl ic i t ly  al- 
located the ar ray  in the  same region as the  s t ructure .  This  
allowed us to  declare the  po in te r  to the  array as saraeregion.  
We perform a similar change in l c c .  In moss and l c c  we 
improve the results  of cons t ra in t  inference by  replacing some 
uses of global variables (whose region is not  t racked in our 
region type  system) by  parameters ,  local variables and calls 
to r e g i o n o f  (whose region is t racked).  

tO0 :  

"~ 20  

cfrac grobner mud l l e  l cc  moss  tile tc apache 

F i g u r e  9: D e t a i l s  o f  r e f e r e n c e  c o u n t  o p e r a t i o n s  

Name  

cfrac 
grSbner 
mudlle 
Icc 
moss 

tile 
rc 
apache 

Keywords  Lines 
a d d e d  changed 

8 0 
4 217 

75 0 
81 62 
20 22 
21 0 

331 0 
64 0 

~o safe 
assigns 

5O 
80 
88 
31 
89 
84 
11 
31 

Table 3: sameregion, parentptr and traditional: 
s t a t i c  s t a t i s t i c s  

The  effects on execut ion t ime of samereg ion ,  p a r e n t p t r  
and  t r a d i t i o n a l  anno ta t ions  and  of our cons t ra in t  infer- 
ence sys tem are shown in Figure  8. In the  "nq" column, 
the  anno ta t ions  are  ignored; in "qs" the  annota t ions  are 
used and checked a t  runt ime;  in "in," the  cons t ra in t  infer- 
ence sys tem has removed provably  safe run t ime  checks; in 
"nc" all run t ime  checks are (unsafely) removed ("nc" thus 
bounds  the  max imum improvement  our inference sys tem can 
provide).  Some of these resul ts  are anomalous,  showing in- 
creases in execut ion t ime as  less work is performed.  This 
is par t icu la r ly  obvious in apache  (" in ,"  and  "nc" columns),  
bu t  is also visible in moss and  r c  ("nc" column).  Our  conclu- 
sion is t ha t  our per formance  measurements  are affected by 
noise (due to minor  changes in Code and the  process 's  envi- 
ronment)  whose ampl i tude  is hard  to quantify,  bu t  t ha t  this 
noise does not  affect overall  conclusions when examining  a 
sufficiently large set of benchmarks .  The  negat ive  reference 
count  t ime above is another  ins tance  of th is  phenomenon.  

Figure 9 presents  the run t ime  frequencies of several  cate- 
gories of po in te r  ass ignments  (excluding ass ignments  to lo- 
cal variables)  in our benchmarks .  The  "safe" ca tegory is the 
percentage of po in te r  ass ignments  to samereg ion ,  p a r e n t p t r  
or t r a d i t i o n a l  pointers  t h a t  were shown to be  s ta t ica l ly  
safe by our  cons t ra in t  inference. These  require no runt ime 
work. The  next  category,  "checked", is the  percentage  of as- 
s ignments  to samereg ion ,  p a r e n t p t r  or t r a d i t i o n a l  point- 
ers tha t  required a run t ime  check. The  final category is 
the  difference between the  top  of the  bar  and  100% is the 
percentage of ass ignments  t h a t  required reference counting 
work. The  goal of our anno ta t ions  is to reduce this percent-  
age; the goal  of our cons t ra in t  inference sys tem is to reduce 
the  number  of "checked" po in te r  ass ignments .  

D¥om figures 8 and  9 we conclude t ha t  our type  annota-  
t ions are i m p o r t a n t  to the  per formance  of g r5bne r ,  mudl le ,  
l c c ,  moss and to a lesser ex ten t  r c .  The  cons t ra in t  infer- 
ence sys tem provides useful reduct ions  in reference count 

78 



まとめ

region library があり、region annotation がある C 言語
の方言 RC を作った

malloc/free system に比べて 7% 遅い～58% 速い

静的検査を行い、dynamic check を 21% - 99.99% 

減らした



A Framework for Reducing 
the Cost of Instrumented 
Code

Matthew Arnold and Barbara G. Ryder (IBM)

read by Shinya Kawanaka

Citation Count: 81



profile をなるべく軽く取りたい

Instrumented Code (profile を取るようなコードが埋め
込まれたコード) は、オーバーヘッドがあるので遅い

なるべくそのようなコードを通らずに、そのコード
を通ったときと同じような profile の結果を得たい



original と instrumented の両方を使う

元のコードから 何回
かに一度 Instrumented 

Code へジャンプ

I.C. からは必ず元の
コードに戻る

部分的なコピーでも可

Checking Duplicated Legend 

I Method Entry ] 

( \ 
\ 

Original 
Basic Block 

Duplicated 
Basic Block 

B~nchifsample 
condffionis~ue 

> Edges already 
existing between 
basic blocks 

w..~,. Edgesadded 
between original 
and duplicated 
code 

Figure 2: Illustration of the flow of control between the 
checking code and duplicated code. All method entries and 
backedges in the checking code contain a conditional branch 
that jumps to the duplicated code when a sample condition 
is true. All backedges in the duplicated code are modified 
to return to the checking code. 

P r o p e r t y  1 The number of checks executed in the checking 
code is less than or equal to the number of backedges and 
methods entries executed, independent of the instrumenta- 
tion being performed. 

Applicability to various types of instrumentation Many of 
the common profiling techniques can be used without mod- 
ification in our framework. For example, any instrumenta- 
tion designed to perform event counting (such as intrapro- 
cedural edge or path profiling, field access profiling, value 
profiling, etc.) will work effectively when inserted as-is into 
the duplicated code. Instrumentation that counts events as- 
sociated with backedges is not a problem because the instru- 
mentation can be attached to the edge transferring control 
from the duplicated code to the checking code (this edge was 
previously a backedge in the duplicated code). 

There are some profiling techniques that require special 
treatment to be sampled correctly in our framework. For 
example, some profiling techniques rely on observing events 
in succession, such as [3], which updates a context-sensitive 
data structure on all method entries and exits. Profiling 
techniques such as these will need to be modified to produce 
accurate results in a samphng context; work such as [8, 39] 
are examples of how this can be achieved. Another example 
would be monitoring the behavior of multiple (N) consecu- 
tive loop iterations. This could be achieved in our framework 
by adding a counted backedge within the duplicated code. 
After N iterations ave profiled, control would return to the 
checking code. 

There are also some profiles that are impossible to col- 
lect via sampling. For example, exhaustive instrumentation 
can be used to establish that a particular event never oc- 
cured during the profiled interval; this is not possible with 
a sampled profile. However, it is not clear that this func- 
tionality is particularly useful for the purpose of an adaptive 
JVM, because even with perfect knowledge of the past, no 

guarantees can be made about future behavior. The goal of 
profile-directed optimization is to predict the likelihood of 
future behavior, which can be achieved with both sampled 
and exhaustive profiles. 

2.1 Trigger mechanisms 
Our instrumentation sampling framework relies on a trig- 
ger to determine when execution should transfer into the 
instrumented code. To keep overhead low, samples must 
be taken infrequently enough to ensure that the majority 
of execution remains in the checking code. However, to en- 
sure accuracy, samples must be taken frequently enough to 
allow a reasonable sample set to be collected. Even more 
importantly, samples must be triggered in a manner that 
is statistically meaningful; that is, the basic blocks in the 
instrumented code must be executed proportionally to their 
execution frequency in the non-instrumented code. 

One approach for triggering samples is to use some type 
of hardware or operating system timer interrupt. In our 
framework, timer interrupts could be used to set a "trigger 
bit" that is monitored by the checks in the checking code. 
The approach of checking a timer-set bit has been used pre- 
viously (Self-91 [18], Jalapefio [2]) to determine when system 
services should be performed 

One drawback of relying on a timer interrupt is that 
the sample rate is limited by the frequency of the inter- 
rupt, which may be a problem when sampling on the level 
of basic blocks or instructions. A more serious drawback is 
that when used in our framework, this technique would not 
produce a proper distribution of execution in instrumented 
code. Our framework does not take a sample immediately 
upon receiving the timer interrupt, but instead jumps to in- 
strumented code only after the next check in the checking 
code is reached. Any sequence of instructions that executes 
for a long time (due to an I /O operation, etc.) has a high 
probability of having a timer interrupt issued during its ex- 
ecution, which, in turn, causes the next sequence of instruc- 
tions to be sampled. Section 4.6 confirms that this improper 
attribution of samples, as well as the low sample frequency, 
substantially reduces the accuracy of our framework. 

DCPI [4] describes a sampling system that uses inter- 
rupts generated by the performance counters on the AL- 
PHA processor, allowing a very high sample rate (5200 sam- 
ples/sec on a 333-MHz processor). This technique could 
be incorporated into our framework by using the high fre- 
quency interrupt to set the trigger bit that is monitored by 
the checking code. However, similar to the timer-interrupt, 
this technique would improperly attribute samples in our 
framework. In addition, this technique requires hardware 
performance counters that signal interrupts upon overflow, 
a feature not available on all architectures. 

To obtain an accurate distribution of samples in our 
framework, the number of times each check (in the checking 
code) triggers a sample should be proportional to the num- 
ber of times that particular check is executed. Since we do 
not know of any hardware performance counter that counts 
backedges and method entries, our framework performs the 
counting in software, as described in the next section. 

2.2 Compiler-inserted counter-based sampling 
Counting a particular event and sampling when the counter 
reaches a threshold (which we refer to as counter-based sam- 
pling) is an effective way of triggering samples proportion- 
ally to the frequency of that event. This is the fundamental 

170 

work. Two such variations, Partial-Duplication and 
No-Duplication, axe presented below. 

3.1 Variation 1: Partial-Duplication 
The goal of the Partial-Duplication algorithm is to re- 
move as many non-instrumented basic blocks from the du- 
plicated code as possible without violating Property 1. Two 
types of nodes in the duplicated code axe defined: top-nodes 
and bottom-nodes, both of which can be removed from the 
duplicated code without invalidating Property 1. Both types 
of nodes axe defined on the duplicated code DAG, which is 
the duplicated code with all backedges removed. 

A b o t t o m - n o d e  is defined to be any non-instrumented 
node, n, in the duplicated code DAG such that no instru- 
mented nodes are reachable from n. 

All bottom-nodes can be removed from the duplicated 
code without violating Property 1 because once a bottom- 
node is executed, no further instrumentation will be per- 
formed without returning to the checking code first. Any 
edge in the duplicated code that previously connected an 
instrumented node to a bottom-node needs to be adjusted 
to branch to the corresponding node in the checking code. 

A top -node  is defined to be any non-instrumented node, 
n, in the duplicated code DAG such that no path from 
entry to n contains an instrumented node. All top-nodes 
can be removed from the duplicated code without violating 
Property 1; however, the following two adjustments must be 
made: 

1. In the checking code, all checks that branch to a top- 
node should be removed. 

2. In the duplicated code, for every edge that previously 
connected a top-node to an instrumented node, the 
corresponding edge in the checking code should have 
a check added. 

Figure 5 revisits the code from Figure 2, but with 
Paxtial-Duplication updates applied, assuming that only 
the two shaded nodes contain instrumentation. The check 
after method entry is removed because it would have 
branched to a top-node. A check is added to the edge ex- 
iting the basic block labeled "1" because the corresponding 
edge in the duplicated code connected a top-node to an in- 
strumented node. In this particular example, the two checks 
can be combined into one. The edges labeled "2" and "3" 
now lead back to checking code because they previously con- 
nected an instrumented node and a bottom-node. 

This technique eliminates duplicated nodes without vi- 
olating Property 1. Although the static number of checks 
may increase or decrease, the dynamic number of checks ex- 
ecuted is less than or equal to the number executed with 
Full-Duplication.  Instrumentation is performed identi- 
cally to Full-Duplication. 

3.2 Variation 2: No-Duplication 
If Property 1 can be weakened, allowing more than one check 
to be executed per loop iteration or method call, there are 
several other alternatives for reducing code duplication; any 
non-instrumented node can be removed from the duplicated 
code as long as the appropriate checks are added in the 
checking code. In fact, by guarding all instrumentationop- 
erations with checks, there is no need to duplicate any code. 
Such an approach will be referred to as No-Duplication 
and is shown in Figure 6, which illustrates one basic block 
with two instrumented instructions. Although none of the 

Checking 
I Method Entry I 

Duplicated 

Top Node 

~ Bo11om 
Nodes 

Figure 5: Example of Pa r t i a l -Dupl i ca t ion  after top-nodes 
and bottom-nodes are removed. The check after method en- 
try is removed because it branched to a top-node. A check 
is added to the edge exiting the basic block labeled "1" be- 
cause the corresponding edge in duplicated code connected 
a top-node to an instrumented node. The edges labeled "2" 
and "3" now lead back to checking code because they previ- 
ously connected an instrumented node and a bottom-node. 

\/ 
r 

V-'--I 

m 

0 

Non-instrumented instruction 

Instrumented instruction 

Instrumentation 

Branch if sample condition 
is true 

Figure 6: Example of No-Duplication, showing one basic 
block containing two instrumented instructions. No code 
is duplicated, but checks axe placed on all instrumenta- 
tion operations. Property 1 is violated since there could 
be more than one check per loop iteration. However, the 
number of checks executed could also be less than with 
Full-Duplication if instrumentation is sparse. 

instructions themselves are duplicated, all instructions with 
associated instrumentation must check the sample condition 
before executing the instrumentation. 

No-Duplication will not perform instrumentation iden- 
tical to Full-Duplication. With Full-Duplication, a 
sample causes execution in that method to remain in du- 
plicated code until the next backedge is reached, whereas in 
No-Duplication, a sample triggers only one instrumenta- 
tion operation to be performed. Although they perform the 
instrumentation in a slightly different manner, they both ex- 
ecute the instrumented instructions proportionally to their 
execution frequency, resulting in accurate sampling results, 
as demonstrated empirically in Section 4.4. 

The only drawback of the No-Duplication approach is 
that it may execute more checks at runtime them the pre- 
vious variations. The overhead for executing the additional 

172 



1000 回に 1 回 Instrumented Code を通れ
ば、毎回通るのと同じような結果に

右は javac の図で、93 

- 98 % 程度一致

オーバーヘッドは1000 

回でわずか 6.3%

Ful l -Dupl ica t ion  l] 
Overhead (%) Accura~cy (%) 

Sample Num 
Interval Samples 

1 1.1xlO 7 
10 1.1xl06 

100 1.1xl05 
1',000 1.1x104 

10,000 1,137 
100,000 .... 109 

Sampled I Call- [ ~ield- 
In s t rum.  [. Total Edge I J ~ccess 

167.2 ..... 182.2! i00 100 
26.4 29.3 99 100 

4.2 10.3 98 99 
0.8 6.3 94 97 
0.1 5.1 82 94 
0.1 5.0 71 83 

No-Duplication 
Overhead (%) Accuracy (%) 

Num Sampled 
Samples Instrum, 
617x10 "r 118.2 
6.7x106 22.8 
6.7x10 ~ 3.6 
6,7X104 1,0 

6736 0.2 
662 0.2 

Call- Field- 
Total Edge Access 

269.1 fill :tOO 100 
79.,5 ii 98 100 
61.3 97 99 
57.2 93 98 
'55.7 ....... 81 96 
55.2 70 87 

Table 4: Time overhead and accuracy of the sampled instrumentation averaged over all benchmarks, for a variety of sample 
intervals. Both call-edge and field-access instrumentation were applied together during the same run, and sampled using either 
Ful l -Dupl ica t ion  or No-Duplication. Columns labeled "Sampled Instrum." do not include the framework overhead, and 
thus represent the additional overhead introduced by taking samples. The columns labeled "Total" include the framework 
overhead, and thus represent the total overhead above the original, non-instrumented code. 

@ 

gl. 
& 
gl. 

r~  

n Perfect profile 
• Sampled profile 

0 10 20 30 40 50 
Call edges 

Figure 7: A graphical representation of the javac call-edge 
profile, illustrating an accuracy of 93.8% using the overlap 
percentage metric. 

field-access profile was computed in the same way, but using 
sample-percentages for field-accesses rather thart call-edges. 

Table 4 reports the accuracy of the sampled profiles for 
both Full-Duplication and No-Duplication. As would be 
expected, increasing the sample interval reduces accuracy. 
At sample interval 1,000 the accuracy remained quite high, 
ranging from 93-98% for the both variations and both in- 
strumentations, while the overhead remained low (excluding 
framework overhead, columns labeled "Sampled Instrum') .  
Even at sample interval 10,000, the accuracy is reasonably 
high, even though only 1/10, 000 th of the execution is spent 
in the duplicated code. The accuracy finally degrades at 
sample interval 100,000 where there are simply not enough 
samples collected, given the short running time of the bench- 
marks. However, the sample intervals in this table are in- 

creasing exponentially, so there is actually a large range of 
sample intervals (from 100 to 10,000) that  offer high accu- 
racy with low overhead. 

These results confirm the low overhead and high accu- 
racy of our technique, suggesting its effectiveness for driving 
online optimizations. The high accuracy also suggests that 
our technique could be useful for collecting offline profiles as 
well. One possible concern is that is possible for program 
behavior to correlate with our deterministic sampling mech- 
anism, resulting in an inaccurate profile. For example, if a 
program performs some uncommon behavior every 1000th 
loop iteration, any sample interval that is a multiple of 1000 
could result in the uncommon behavior being observed on 
every sample. Our experimental results suggest that this 
did not occur for benchmarks used in this study, however it 
could be a concern if accuracy is critical. Adding a small 
random factor to the sample interval (as done in [4]) could 
be used to reduce the probability of this worst case behav- 
ior, and could possibly even increase the accuracy in the 
expected case as well. 

4.5 Jalapefio-specific optimization 
This section presents one example of a JVM-specific op- 
timization that can be applied to lower the overhead the 
Fu l l -Dup l i ca t ion  framework. This Jalapefio-Specif ic  
implementation reduces checking overhead by taking advan- 
tage of the fact that  Jalapefio implements thread scheduling 
using yieldpoints (and therefore also applies to other sys- 
tems that use yieldpoints, such as [18]). A yieldpoint is a 
sequence of instructions that  checks whether it is time for the 
current thread to stop executing and give control back to the 
thread scheduler. Jalapefio currently places yieldpoints on 
all method entries and backedges to guarantee that there is a 
finite amount of time between yieldpoints. Once the code is 
duplicated using Ful l -Dupl ica t ion ,  the yieldpoints can be 
moved to the duplicated code and removed from the check- 
ing code. As long as the sample-interval is Mways finite, the 
distance between yieldpoints is guaranteed to remain finite. 
This optimization does not affect the sampling accuracy, so 
the accuracy figures reported for Fu l l -Dup l i ca t ion  still ap- 
ply. 

The overhead of Ja lapef io-Specif ic  is reported in the 
two tables shown in Figure 8. Table (A) reports the frame- 
work overhead (full code duplication) while no samples are 
being taken. Because the sequence of instructions to imple- 

176 


