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On the elimination of latent variables in L2 behaviors

Mark Mutsaers and Siep Weiland

Abstract— This paper considers the problem to eliminate
latent variables from models in the class of linear shift-invariant
L2 systems. Models in this class are assumed to relate manifest
and latent variables by means of rational operators. The
question is addressed when the induced manifest behavior of
such a model again admits a representation as the L2 kernel
of a rational operator. Necessary and sufficient conditions for
eliminability in this class are given and are compared with
earlier obtained results for classical C

∞ behaviors. We also
provide an explicit state space algorithm for the construction
of the induced manifest behavior, which is a result from
the obtained relation between elimination of variables and
disturbance decoupling problems.

I. INTRODUCTION

This paper deals with the question to completely eliminate

latent variables from a model description in which manifest

and latent variables are related. For general models, manifest

variables are thought of as distinguished variables that are

relevant for the purpose of the model, whereas latent vari-

ables are auxiliary variables that serve to represent the model.

Models derived from first principles are usually represented

in terms of equations that relate both manifest and latent

variables.

The partial or complete elimination of latent variables

from a general model representation that relates manifest and

latent variables is of evident interest from a general modeling

point of view. It amounts to characterizing and removing the

redundancy in the latent variables of the model representa-

tion. We believe that the behavioral approach is, actually,

the most natural framework for studying this question. This

means that we view systems as sets of trajectories that evolve

over time.

Earlier work on the elimination problem in continuous

time and infinitely smooth linear systems has been studied

in [4], [9]. In this paper, we consider the model class of

linear shift-invariant L2 systems that allow a representation

as the kernel of a rational operator. More details of this

specific class, and a motivation for using it, can be found

in [2], [3]. We address the question whether it is possible to

eliminate latent variables of a system in this class such that its

induced L2 behavior again admits a representation as the L2

kernel of a rational operator. This paper provides necessary

and sufficient conditions for the complete elimination of

latent variables in this model class. Moreover, we discuss

the relation between elimination of latent variables in L2 sys-

tems and disturbance decoupling problems. Also an explicit
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algorithm is provided to construct a rational representation

of the induced system.

The outline of the paper is as follows. In Section II the

problem of elimination is formulated. Section III contains

notational remarks. The main results for the elimination

problem and an explicit algorithm are shown in Sections IV

and V. In Section VI an example is given and the paper is

concluded in Section VII.

II. PROBLEM FORMULATION

As in [9], dynamical systems are triples Σ = (T,W,B)
where T ⊆ R or T ⊆ C is the time or frequency axis, W

denotes the signal space which, for the purpose of this paper,

is a w dimensional vector space, and B ⊆ WT is the behavior

of the system.

A latent variable system is a dynamical system Σℓ =
(T,W × L,Bℓ) in which the signal space is a Cartesian

product W× L of an w and ℓ dimensional vector space W

and L, respectively. The behavior Bℓ ⊆ (W×L)T of a latent

variable system therefore consists of pairs of trajectories

(w, ℓ) defined on T. The manifest variables, denoted w, are

thought of as the variables that are of interest to the user,

while the latent variables ℓ are auxiliary variables that serve

to represent functional relations among model variables.

A latent variable system Σℓ induces a manifest system

Σind = (T,W,Bind) with behavior

Bind = {w | ∃ℓ such that (w, ℓ) ∈ Bℓ}.

Hence, the trajectories of the induced system Σind simply

consist of the collection of projections of (w, ℓ) ∈ Bℓ on its

manifest variables. We write Σℓ ⇒ Σind to denote that Σℓ

induces Σind.

Suppose that Mw (or M if the signal dimension is clear

from the context) denotes a model class of dynamical sys-

tems. In this paper, we address the problem to find necessary

and sufficient conditions on the model class M and the latent

variable system Σℓ ∈ Mw+ℓ so that the induced system Σind

belongs to Mw. That is, we address the question when

Σℓ ∈ M
w+ℓ =⇒ Σind ∈ M

w. (1)

Whenever this is possible we will say that the latent variable

ℓ is eliminable from Σℓ in the model class M.

Σℓ

w ℓ

Σind

w

Eliminate ℓ

Fig. 1. P.F.: Induce Σind ∈ Mw from latent variable system Σℓ ∈ Mw+ℓ.
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We are not the first to consider this question. If M is the

model class of linear time-invariant complete systems with

discrete time sets T = Z or T = Z+ then (1) holds [9]. With

M the class of linear time-invariant systems whose behavior

can be represented as the infinitely smooth solution set of

a finite number of ordinary differential equations with real

coefficients, then the implication (1) has been proven in [5].

Similarly, [4] considered the model class of continuous time

systems whose behavior is defined as the locally integrable

solution set (i.e., elements w ∈ Lloc
1 ) of a system of ordinary

fixed coefficient differential equations.

In this paper, we address the elimination problem for the

model class M of systems whose behavior is a linear, shift-

invariant and closed subspace of L2. This class of systems

has been studied in [3] and we will refer to them as L2

systems. A precise definition of the model class is given

below. We provide necessary and sufficient conditions under

which the implication (1) holds for this model class. The

results will be compared with the ones obtained for C∞

smooth systems. We further propose an explicit algorithm to

eliminate latent variables from an L2 latent variable system,

whenever this is possible.

III. NOTATION

The space of infinitely differentiable functions f : R →
Rn is denoted by C∞(R,Rn). Let R[ξ] denote the set of

polynomials with real coefficients in the indeterminate ξ.

Rn1×n2 [ξ] denotes the set of real polynomial matrices with

n1 rows and n2 columns. A polynomial matrix U ∈ Rn×n[ξ]
is called unimodular if det(U(ξ)) is a non-zero constant.

The Hardy spaces H+
2 and H−

2 and the Hilbert space L2

are defined using the function space

H2(Γ) = {f : Γ → C
n | f is quadratic integrable on Γ},

which has inner product 〈f, g〉 =
∫∞

−∞
f(jω)†g(jω)dω.

Define:

H+
2 := H2(C+), H−

2 := H2(C−) and L2 := H2(C).

Since L2 = H+
2 ⊕ H−

2 , any f ∈ L2 can be uniquely

decomposed as f = f+ + f−, where f+ := Π+f ∈ H+
2

and f− := Π−f ∈ H−
2 , with Π+ and Π− the canonical

projections from L2 onto H+
2 and H−

2 , respectively.

The Hardy spaces H+
∞ and H−

∞ contain all functions that

are analytic on C+ and C−, resp., with norm:

H−
∞={f : C−→C

n | ‖f‖H−

∞

= lim
σ↑0

sup
ω

∞∫

−∞

|f(σ+jω)|<∞},

where | · | denotes the Euclidean norm. With the prefixes R
and U we denote rational functions and units in H+

∞ and

H−
∞. For the latter, this implies that RH−

∞ := {f ∈ H−
∞ | f

is rational} and UH−
∞ := {f ∈ RH−

∞ | f−1 ∈ RH−
∞}. Note

that units are necessarily square rational matrices.

Elements in RH+
∞ and RH−

∞ define Laurent operators,

e.g. when P− ∈ RH−
∞ and P+ ∈ RH+

∞, we have for w ∈
L2, H+

2 or H−
2 that (P±w)(s) := P±(s)w(s), implying:

P+ : L2 → L2, P+ : H+
2 → H+

2 , P+ : H−
2 → L2,

P− : L2 → L2, P− : H+
2 → L2, P− : H−

2 → H−
2 .

IV. ELIMINATION IN C∞ AND L2 BEHAVIORS

As mentioned in Section II, the problem of elimination

has been solved for infinitely smooth systems. From [5], [9]

we know to describe these systems as Σ = (T,W, B̃), where

T = R+ is the time axis, the signal space equals W = Rw

and the behavior is given by:

B̃ = {w ∈ C∞(R+,R
w) | R( d

dt )w = 0} = kerR( d
dt), (2)

with R ∈ Rp×w[ξ]. We call these systems infinitely

smooth since the trajectories in the behavior are elements

of C∞(R+,R
w). The class of all infinitely smooth systems

M1 is given by

M1 := {Σ = (R+,R
n, B̃) | ∃R ∈ R

p×w[ξ] s.t. B̃ = kerR}.

A latent variable system in M1 is a system Σℓ = (R+,R
w×

Rℓ, B̃ℓ) ∈ M1, where

B̃ℓ = {(w, ℓ) ∈ C∞(R+,R
w× R

ℓ) | R( d
dt )w = M( d

dt )ℓ}

= ker[R( d
dt ) −M( d

dt )], (3)

with R ∈ R
p×w[ξ] and M ∈ R

p×ℓ[ξ], the manifest variables

w and the to-be-eliminated latent variables ℓ. This yields

the problem of elimination for infinitely smooth systems:

Problem 4.1: Given Σℓ = (T,W×L, B̃ℓ) ∈ M1 with B̃ℓ as

in (3). Provide conditions under which the latent variables ℓ

can be eliminated from Σℓ in the sense that the behavior

of the induced system Σind = (T,W, B̃ind) ∈ M1 is

represented as a kernel of a polynomial matrix and only

contains trajectories w. �

This problem is solved in [4], [5] and its solution is

shown in this paper to make a comparison with results

obtained for the class of L2 systems.

Theorem 4.1 (Elimination in C
∞ behaviors): Given is

the latent variable system Σℓ = (T,W× L, B̃ℓ) ∈ M1 with

B̃ℓ as in (3). Then, Σind = (T,W, B̃ind) ∈ M1. Moreover,

there exists a unimodular matrix U ∈ Rp×p[ξ] such that

UM =

[
0

M ′′

]
and UR =

[
R′

R′′

]
,

where M ′′ has full rank. The induced behavior B̃ind is given

by

B̃ind = {w ∈ C∞(R+,R
w) | R′( d

dt )w = 0},

so B̃ind = kerR′( d
dt ) and Σind ∈ M1. �

The proof of this theorem can be found in [4], [5].

An important fact used to prove this theorem is that the

trajectories can be differentiated an infinite number of times.

Another system class, where we will focus on in the

remainder of this paper, are L2 systems. We define them

as triples Σ = (T,W,B), where T ⊆ C is the frequency

axis instead of the time axis. These systems are called
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L2 systems since their behaviors are closed subspaces of

either L2, H+
2 or H−

2 . Since the Laplace transform defines

an isometry between square integrable time and frequency

domain signals, these systems correspond to behaviors of

square integrable trajectories, on time sets R, R+ and R−

respectively. Depending on the choice of function space, we

define

B = {w ∈ L2 | P (s)w(s) = 0} = kerP,

B+ = {w ∈ H+
2 | P (s)w(s) ∈ H−

2 } = kerΠ+P, (4)

B− = {w ∈ H−
2 | P (s)w(s) = 0} = kerP,

where P ∈ RH−
∞ is a rational operator. In this paper we

focus on systems whose behavior consists of H+
2 trajectories,

and therefore define the class of L2 systems as:

M2 := {Σ=(C+,C
n,B) | ∃P ∈ RH−

∞ s.t. B = kerΠ+P}.

For simplicity of notation, we omit the subscript +. The

results in the remainder of this paper can also be obtained

for behaviors containing L2 or H−
2 trajectories. It is also

possible to represent the behaviors of L2 systems as null

spaces of operators in RH+
∞ [2], [3].

The number of independent restrictions that are imposed

on the system are reflected by the output cardinality. For

dynamical systems Σ ∈ M2, the output cardinality of their

behavior B is defined as the number p(B) = rowrank(P ).
It is easily shown that p(B) is, in fact, independent of the

representation P and that p(B) can be interpreted as the

dimension of the output variable in one (or any) input-output

representation of Σ. Similarly, the input cardinality of B is

the number m(B) = w−p(B), which represents the degree

of under-determination of the restrictions that the system

imposes on its w variables.

Latent variable systems in the class of L2 systems M2 are

represented as Σℓ = (C+,C
w×Cℓ,Bℓ) ∈ M2 with behavior:

Bℓ = {(w, ℓ) ∈ H+
2 | P (s)

[
w(s)
ℓ(s)

]
∈ H−

2 }

= {(w, ℓ) ∈ H+
2 | P1(s)w(s) + P2(s)ℓ(s) ∈ H−

2 }

= kerΠ+[P1 P2], (5)

where P = [P1 P2] ∈ RH−
∞ is partitioned accordingly

with the variables w and ℓ. The problem to eliminate the

latent variable ℓ in L2 systems is formalized as follows:

Problem 4.2: Given the latent variable system Σℓ =
(T,W×L,Bℓ) ∈ M2 with Bℓ represented using P ∈ RH−

∞

as in (5). Provide conditions under which the latent variable

ℓ can be eliminated from Σℓ in the sense that the behavior

of the induced system Σind = (T,W,Bind) ∈ M2 is

represented as the kernel of a rational P̃ ∈ RH−
∞ and only

contains trajectories w. �

In the following result, we provide necessary and sufficient

conditions for this problem.

Theorem 4.2 (Elimination in L2 behaviors): Given is

Σℓ = (T,W× L,Bℓ) ∈ M2 with Bℓ as the kernel of

P = [P1 P2] ∈ RH−
∞ as in (5). Consider the equation:

Q = [P1 P2]

[
I

X

]
. (6)

Then Σℓ ∈ M2 implies Σind = (T,W,Bind) ∈ M2 if

and only if ∃X ∈ RH+
∞ such that Q ∈ RH−

∞ and

rowrank(Q) = p(Bℓ)− rowrank(P2).
Moreover, the corresponding behavior Bind is represented

by:

Bind = {w ∈ H+
2 | Q(s)w(s) ∈ H−

2 } = kerΠ+Q,

where Q ∈ RH−
∞. �

The proof of this theorem can be found in the appendix

of this paper.

From this result, we can make some notifiable remarks:

1. The rational operator X ∈ RH+
∞ defines a mapping

from w 7→ ℓ according to the multiplication ℓ = Xw.

Hence, the behavior of the latent variable system can

be described by:

Bℓ = {(w, ℓ) ∈ H+
2 | Π+(P1 + P2X)w = 0,

and ℓ = Xw},
(7)

which is equal to Bℓ in (5).

2. We can extend these results to all types of L2 systems,

where the behaviors consist of L2 or H−
2 trajectories,

i.e. B and B− as in (4). Similar results can be ob-

tained when describing these behaviors using rational

elements in RH+
∞.

3. Contrary to the results shown in Theorem 4.1, we do

get conditions for eliminability of latent variables in

the context of L2 systems. In particular, Theorem 4.2

shows that elimination of latent variables in L2 systems

is not always possible.

4. In the next section we derive an algorithm that con-

structs, if it exists, an explicit kernel representation for

the behavior of the induced system Σind.

V. ALGORITHM FOR L2 ELIMINATION

In this section we derive an algorithm that results in

an explicit representation of the induced L2 behavior

for a given latent variable system Σℓ = (T,W × L,Bℓ)
with the behavior as in (5). We will use the following lemma:

Lemma 5.1: Suppose P ′, P ′′ ∈ RH−
∞ have full rank and

represent H+
2 behaviors B′ and B′′ as in (4), respectively.

Then, B′ = B′′ if and only if there exists U ∈ UH−
∞ such

that P ′ = UP ′′. �

For the proof of this lemma, we refer to [2]. In particular,

Lemma 5.1 shows that there exists U ∈ UH−
∞ such that UP

assumes the form:

UP = U [P1 P2] =

[
P11 P12

P21 0

]
, (8)
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which means that the latent behavior (5) equals:

Bℓ = {(w, ℓ) ∈ H+
2 | P11w + P12ℓ ∈ H−

2 andP21w ∈ H−
2 }.

For the construction of X ∈ RH+
∞ in Theorem 4.2, we will

focus on the first restriction:

z := P11w + P12ℓ ∈ H−
2 . (9)

Since P ∈ RH−
∞ is rational, also P11 and P12 are rational,

which means that there exist matrices A,B1, B2, C,D1 and

D2 such that (9) admits the representation:
{
˙̂x = Ax̂+B1ŵ +B2ℓ̂,

ẑ = Cx̂+D1ŵ +D2ℓ̂,
(10)

where P11(s) = C(sI − A)−1B1 + D1, P12(s) = C(sI −
A)−1B2 +D2 and λ(A) ⊂ C+. Here (ŵ, ℓ̂) in (10) are the

inverse Laplace transforms of (w, ℓ) in (9), and x̂(t) ∈ Rn

is the state variable.

We will identify the condition Q ∈ RH−
∞ in (6), for

X ∈ RH+
∞, with the solvability condition of a disturbance

decoupling problem for the system (10) in which the latent

variable ℓ̂ is interpreted as a “control” variable and the

manifest variable ŵ is viewed as disturbance. Specifically:

Problem 5.1: The disturbance decoupling problem with sta-

bility (DDPS) is said to be solvable for (10) if there exists

a feedback F : Rn → Rℓ such that A + B2F is stable and

the transfer function of the controlled system:
{
˙̂x = (A+B2F )x̂+B1ŵ,

ẑ = (C +D2F )x̂+D1ŵ,
(11)

is zero. �

This problem has been well studied in geometric control

theory [13] and its solution relies on controlled invariant

subspaces. Specifically, V ⊂ R
n is a controlled invariant

subspace of (10) if

AV ⊂ V + imB2.

It is well known that V is controlled invariant if and only if

there exists a F such that (A+B2F )V ⊂ V . Call Vstab ⊂ R
n

a stabilizability subspace if there exists a F such that:

(A+B2F )Vstab ⊂ Vstab and λ(A +B2F ) ⊂ C−.

We denote by V∗
stab the largest stabilizability subspace for

which there exist F such that:

i. (A+B2F )V∗
stab ⊂ V∗

stab ⊂ ker(C +D2F ),
ii. λ(A+B2F ) ⊂ C−.

The relation between DDPS and eliminability of latent

variables is the main result of this section and is stated as

follows:

Theorem 5.1: Given is the latent variable system Σℓ =
(T,W×L,Bℓ) ∈ M2, with Bℓ represented using P ∈ RH−

∞

as in (5), and a unit U ∈ UH−
∞ such that P is decomposed

as in (8). Let the state space representation (10) represent

P11 and P12. Then the following statements are equivalent:

i. Σℓ ∈ M2 implies Σind ∈ M2 (see Theorem 4.2),

ii. The DDPS is solvable for the system given in (10),

iii. There holds that:

imB1 ⊂ V∗
stab,

iv. There exists a feedback F : Rn → Rℓ such that (11)

is stable and has transfer function ŵ 7→ ẑ to be 0,

v. There exists a rational operator X ∈ RH+
∞ such that

P11 + P12X = 0, as depicted in Fig. 2. �

The proof of this theorem will be given at the end of this

section. With these results, we propose an algorithm that

constructs an explicit representation of the induced behavior

Bind of Σind = (T,W,Bind) ∈ M2:

Algorithm 1: Given is the behavior of Σℓ ∈ M2, repre-

sented as the kernel of the rational operator P ∈ RH−
∞.

Aim: Induce Σind ∈ M2 with behavior Bind represented

using P̃ ∈ RH−
∞ as in (4).

Step 1: Partition P = [P1 P2] according to the variables w

and ℓ. Pre-multiply P with U ∈ UH−
∞ such that the form in

(8) is obtained with P12 full rowrank.

Step 2: Realize P11 and P12 in state space form as shown

in (10).

Step 3: Find the matrix F ∈ Rn×ℓ such that DDPS (as

introduced in Problem 5.1) is solvable. If no matrix F can

be found, we can not eliminate the latent variable ℓ and the

algorithm stops here.

Step 4: Construct the rational operator X as:

X(s) = F (sI −A−B2F )−1B1 ∈ RH+
∞.

Result: The induced system Σind ∈ M2 has behavior Bind

with:

P̃ (s) = P1(s) + P2(s)F (sI −A−B2F )−1B1,

which is an element of RH−
∞. �

We conclude this section with the proof of Theorem 5.1:

Proof of Theorem 5.1

(i ⇒ v): Given ∃X ∈ RH+
∞ such that Q ∈ RH−

∞ as in (6).

Hence, for units U ∈ UH−
∞ as in (8), we have that:

UQ = U [P1 P2]

[
I

X

]
=

[
P11 P12

P21 0

][
I

X

]
=

[
P11 + P12X

P21

]
,

with UQ ∈ RH−
∞. Hence, rowrank(Q) = rowrank(P ) −

rowrank(P12), we know that P21 has full row rank and

therefore row rank of Q is equal to row rank P21. Since

P11

X P12

w z = 0

ℓ

Fig. 2. Elimination as disturbance decoupling problem w 7→ z.
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Q ∈ RH−
∞ represents the induced behavior, we can pre-

multiply with a unit U ′ ∈ UH−
∞ without changing its

behavior, so:

Bind = kerΠ+U
′Q = kerΠ+

[
0
P21

]
,

which results in the fact that P11 + P12X = 0.

(ii ⇒ iii): This is shown in [1].

(iii ⇒ iv): The geometric interpretation of the DDP is

discussed in Chapter 4 of [13].

(iv ⇒ v): If there exists a matrix F such that the transfer

ŵ 7→ ẑ equals 0 and when A + B2F is stable, the Laplace

transform can be applied to obtain a rational operator X ∈
RH+

∞:

X(s) = F (sI −A−B2F )−1B1.

From (10) and the feedback F , we have:

z(s) = P11(s)w(s) + P12(s)ℓ(s) and ℓ(s) = Fx(s).

Using (11), we obtain x(s) = (sI − A − B2F )−1B1w(s),
hence

z(s) = (P11(s) + P12(s)F (sI −A−B2F )−1B1)w(s)

= (P11(s) + P12(s)X(s))w(s) = 0.

(v ⇒ i): If ∃X ∈ RH+
∞ such that P11 + P12X = 0, then

obviously Q = P21 that fulfills the condition in Theorem 4.2.

(v ⇒ ii): This implication is proved in [8]. �

VI. EXAMPLE

In this section, we will show that not all latent variable

L2 systems are eliminable. This is in contrast with infinitely

smooth systems as considered in e.g. [4], [5]. Consider the

latent variable system Σℓ ∈ M2 with behavior:

Bℓ = {(w, ℓ) ∈ H+
2 |

[
(s−3)(s−10)
(s−7)(s−9)

s−α
s−7

1
s−9 0

]

︸ ︷︷ ︸
P (s)

[
w

ℓ

]
∈ H−

2 },

where the parameter α is a non-zero constant. The aim will

be to eliminate the latent variable ℓ. This means that we need

to find a rational X ∈ RH+
∞ such that:

(s− 3)(s− 10)

(s− 7)(s− 9)
+

s− α

s− 7
X(s) ∈ RH−

∞.

This is only possible when α < 0, because only in that case

the rational element X has poles in C−. Therefore, when

Σℓ ∈ M2, elimination of ℓ is possible if and only if α < 0.

In e.g. [6], [11], it is shown that one can also associate

a system in the class M1, having a C∞ behavior, with the

rational operator P . Indeed, if P = N−1D is a left-coprime

factorization over the ring of polynomials then P defines the

C∞ behavior:

B = kerD( d
dt ) = {w ∈ C∞ | D( d

dt )w = 0}.

Therefore, we can still use the elimination result of The-

orem 4.1 for the elimination of ℓ. In our example, a left-

coprime factorization is given by

P (ξ) = N−1(ξ)D(ξ) =

[
ξ − 7 ξ − 3
0 ξ − 9

]−1 [
ξ − 3 ξ − α

ξ − 4 0

]
,

so that B is defined by:

( d
dt − 4)ŵ = 0 and ( d

dt − 3)ŵ + ( d
dt − α)ℓ̂ = 0,

with ŵ, ℓ̂ ∈ C∞(R+,R
•), By Theorem 4.1, the second

equation is redundant for all α 6= 0. When viewing the

mapping from ŵ to ℓ̂ as a “rational”, we infer:

ℓ̂ =
d
dt − 3
d
dt − α

ŵ =⇒ ℓ =
s− 3

s− α
w,

which in the frequency domain would result in an unstable

mapping from w to ℓ when α > 0. This is not taken

into account when eliminating latent variables in infinitely

smooth systems, while this is done for L2 systems.

VII. CONCLUSIONS

In this paper, we discussed the problem of elimination

of latent variables in Σℓ = (T,W×L,Bℓ) such that we

induce a manifest system Σind = (T,W,Bind), where both

systems are in the same model class. We focused on the

class of L2 systems, where the behaviors of these systems

are represented as kernels of rational operators.

In Section IV, we have shown necessary and sufficient

conditions for solving this problem when using L2 systems.

Remarkable is the fact that these conditions do not occur

when applying elimination to infinitely smooth systems as

discussed in e.g. [5]. This has been shown by an example,

where it is not always possible to apply elimination in L2

systems, while it is the case for the infinitely smooth systems.

There is also shown that there exists a relation between

the problem of elimination for the class of L2 systems

and disturbance decoupling problems, which has resulted

in an explicit algorithm that constructs the desired induced

system’s behavior as a kernel of a rational operator.

A. PROOF OF THEOREM 4.2

In the proof, we need to make a decomposition of the

latent system’s behavior given by P ∈ RH−
∞ using a pre-

multiplication with a unit U ∈ UH−
∞, which does not change

the behavior, as:

U [P1 P2] =

[
P11 P12

P21 0

]

such that

Bℓ = {(w, ℓ) ∈ H+
2 | P11w + P12ℓ ∈ H−

2 ,

and P21w ∈ H−
2 }.

(12)

(⇒):

Suppose the system is ℓ-eliminable, so we have Σind ∈ M2.

Then for all w ∈ Bind, there exists a ℓ ∈ H+
2 such that

(w, ℓ) ∈ Bℓ. This implies that there exists a (possibly non-

unique) mapping X : Bind → H+
2 such that ∀w ∈ Bind, ℓ =

Xw is compatible with w in the sense that (w,Xw) ∈ Bℓ.

We will first show that this mapping is linear.
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To verify linearity, take w1, w2 ∈ Bind and take ℓ1 =
Xw1, ℓ2 = Xw2. Then (w1, ℓ1) ∈ Bℓ and (w2, ℓ2) ∈ Bℓ.

Take w̃ := αw1 + βw2 ∈ Bind for α, β ∈ R. In case of

linearity, there exists a ℓ̃ such that (w̃, ℓ̃) ∈ Bℓ. One can easily

see that this holds when choosing ℓ̃ := αℓ1 + βℓ2, which

confirms that there exists a linear mapping X . Because w ∈
H+

2 and ℓ ∈ H+
2 , we can choose X ∈ H+

∞ as a multiplicative

operator from H+
2 to H+

2 .

To verify that this operator is rational, we write the latent

system behavior as:

Bℓ = {(w, ℓ) ∈ H+
2 | 〈w,P ∗

1 v〉+ 〈ℓ, P ∗
2 v〉 = 0, ∀v ∈ H+

2 },

where the introduction of ℓ = Xw yields:

Bind = {w ∈ H+
2 | 〈w, (P ∗

1 +X∗P ∗
2 )v〉 = 0, ∀v ∈ H+

2 },

implying that X needs to be rational. The found expression

for the induced behavior is therefore given as:

Bind = {w ∈ H+
2 | (P1 + P2X)w ∈ H−

2 }

= kerΠ+(P1 + P2X) := kerΠ+P̃ .

When combining the partitioning in (12) with the found

linear mapping X , the induced behavior can be written as:

Bind = kerΠ+UP̃ = kerΠ+

[
P11 + P12X

P21

]
,

where the output cardinality is given by:

p(Bind) = rowrank

([
P11 + P12X

P21

])
≥ rowrank(P21),

since we know that P has full row rank, and so P12 and P21

also have full row rank. Because we know rowrank(P21) =
p(Bℓ)− rowrank(P2), we can see that p(Bind) ≥ p(Bℓ)−
rowrank(P2). To complete this part of the proof, we have

to show that p(Bind) 6> p(Bℓ)− rowrank(P2).
Since we are interested in the projected induced behavior

acting on w, we focus on the upper-part in the decomposition

of the latent variable behavior, namely

kerΠ+[P11 P12],

where we would like to make an input/output partition using

the output cardinality p1 = p(kerΠ+[P11 P12]), which is

calculated using the row rank, and the input cardinality m1 =
m(kerΠ+[P11 P12]) = w + ℓ − p1. Since we know that

[P11 P12] as well as P12 have full row rank, we must make

the partition such that the outputs are some of the variables

in ℓ:

[
u

y

]
=




w

ℓ′

ℓ′′



 , where u =

[
w

ℓ′

]
and y = ℓ′′.

Therefore, we know that w is part of the input, which implies

that there are no restrictions on it, and is therefore free.

Therefore, the upper-part of the partitioned full behavior does

not restrict the variable w and hence we can see that:

p(Bind) = p(Bℓ)− rowrank(P2),

which completes the proof.

Moreover, we know that a minimal representation of the

manifest behavior can be given by:

Bind = kerΠ+P21.
(⇐):

We claim that, given the existence of X ∈ RH+
∞ such that

Q ∈ RH−
∞ and that the row rank condition is fulfilled, there

holds that Bind = kerΠ+P21.

Take any w ∈ Bind, so there exists a ℓ such that (w, ℓ) ∈
Bℓ, which implies using (12) that P11w + P12ℓ ∈ H−

2

and P21w ∈ H−
2 , so w ∈ kerΠ+P21. Therefore, Bind ⊂

kerΠ+P21, so we have to show that Bind ⊃ kerΠ+P21.

Take w ∈ kerΠ+P21 and define ℓ := Xw, with the given

X ∈ RH+
∞. We then claim that (w, ℓ) ∈ Bℓ, so:

[
P11 P12

P21 0

] [
w

ℓ

]
=

[
P11 P12

P21 0

] [
I

X

]
w

=

[
P11 + P12X

P21

]
w = Qw,

which should be in H−
2 . We know that the row rank of Q

equals p(Bℓ) − rowrank(P2) = rowrank(P21), hence there

exists a unit U ∈ UH−
∞ such that

U

[
P11 + P12X

P21

]
=

[
0
P21

]
.

Multiplications with units do not change behaviors, so

U

[
P11 + P12X

P21

]
w =

[
0
P21

]
w ∈ H−

2 ,

because w ∈ kerΠ+P21. Therefore we have

Bind ⊃ kerΠ+P21 and we have shown that for P̃min := P21,

Bind = kerΠ+P21, which concludes the proof. �
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