-

-
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by CiteSeerX

Hardware cryptographic support of
IBM z Systems for OpenSSH
in RHEL 7.2 and SLES 12 SP1
Uwe Denneler, Harald Freudenberger, Paul Gallagher, Manfred Gnirss,

Guillaume Hoareau, Arwed Tschoeke, Ingo Tuchscherer, Arthur Winterling

August 18, 2016

||||||||
"I"
I
ln
.|l|
L
()

Abstract

This article summarizes our experiences with the configuration and usage of OpenSSH using
hardware cryptographic support of IBM z Systems. We report our findings in the areas of performance
and throughput improvement. Our positive experience indicates that you should make use of this

capability when using OpenSSH.

https://core.ac.uk/display/357262629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IBM Client Center, Germany

Contents

1

2

Introduction

Hardware cryptographic support of z Systems

2.1 Verification of installed LIC 3863 using the SE
2.2 Verification of installed LIC 3863 using a Linux command

Configuration of Crypto Express feature for Linux for IBM z Systems
HW- Support - Architecture for OpenSSH

Our environment

5.1 Installation of SLES 12 SP1
5.2 Installation of RHEL 7.2
5.3 Configuring ibmca engine oL oL L

CPACF Support for OpenSSH

6.1 General test using openssl speed L oL oo
6.2 First test with SCP of OpenSSH
6.3 Test with SSH client

Selection of cipher and MAC

7.1 Small comparison between SHA with CPACF support and MD5
7.2 Profiles for OpenSSH client and server
7.2.1 SSH client configuration o oL
7.2.2 SSHD server configuration L L oL

Crypto Express support for RSA with OpenSSH

Some more performance aspects

9.1 Choice of cipher algorithm L o
9.2 Choiceof key size L e
9.3 Choice of mode of operation L o
9.4 Choice of crypto key protection profile (optional)

10 Conclusion

The team who wrote this paper

Acronyms

References

Trademarks

Version 1.0 ii/32

24

25
25
26
27
28

28

29

29

31

31

©Copyright IBM Corporation 2016

IBM Client Center, Germany

1 Introduction

Access methods or protocols for Linux servers such as telnet, or FTP, should not only be avoided in
Internet environments but also in internal company networks. This is because sensitive information
such as passwords are transferred in clear text over the network. Using SSH and SCP increases the
security because the information sent using the network is encrypted. Not only passwords, but also data
is protected by encryption technologies. By nature, encryption of data is expensive and can heavily
impact performance, throughput, or CPU load of a system. BM® , Systems® provides hardware
encryption support that can be used to reduce the impact of expensive encryption operations. Starting
with OpenSSH version 4.4, OpenSSL dynamic engine loading is supported. This enables OpenSSH to
benefit from IBM z Systems'™ cryptographic hardware support, if a specific flag (——with—ssl—engine) is
used during the build of the OpenSSH package. This support has been available for six years, therefore we
describe our current experiences using hardware accelerated encryption for OpenSSH and how setup and
configuration have been simplified in this area, as well as our findings about performance and throughput
improvement over the last years (compare with (see also [1]).

For our tests, we used IBM z Systems z13™ and SUSE Linux Enterprise Server (SLES) 12 SP1 and
Red Hat Enterprise Server RHEL 7.2.

2 Hardware cryptographic support of z Systems

IBM z Systems provides two different types of hardware support for cryptoraphic operations: Central
Processor Assist for Cryptographic Function (CPACF) and Crypto Express® (CEX) features.

The first type, CPACF, is incorporated in the central processors that are shipped with IBM z Systems.
It has been introduced with z990 and z890. The CPACF incorporated in IBM 213® delivers support
for symmetric encryption algorithms Data Encryption Standard (DES), Triple DES (TDES), Advanced
Encryption Standard (AES), hashing algorithm SHA and Pseudo Random Number Generator (PRNG).
The algorithms in the CPACF are executed synchronously with enhanced performance. These algorithms
are for clear key operations (this means, the cryptographic key is provided by application software in
clear format).

The second type uses additional installable Crypto Express features. For IBM z Systems z13, it
is the Crypto Expressb feature (CEX5S). The Crypto Express feature can be configured as Accelerator
(CEX5A), or as Coprocessor (CEX5C), or in EP11 mode (CEX5P). If the feature is configured as CEX5A,
it can perform clear key RSA operations with very high speed. If configured as CEX5C, it can perform
asymmetric operations (RSA) in clear key mode and also in secure key mode. Note that the operations
executed by the Crypto Express feature are performed asynchronously outside of the central processor.
This means, work is off-loaded and CPU cycles are reduced (i.e. less load on the CPU).

And last but not least, there is a hybrid way: With Protected Key operations the high performance
for data encryption using the CPACF is used, while the privacy of the cryptographic key material is
guaranteed by using the CEX5C.

To benefit from the CPACF, you must install LIC internal feature 3863 (Crypto Enablement feature),
which is available free of charge (see also [2], [3]). By default, the IBM z Systems is delivered to customers
without this feature, unless it is ordered explicitly by the customer. The installation of this feature at a
future time is non-disruptive.

It is recommended to install the Crypto Enablement feature even if you do not intend to use the
Crypto Expressb feature, because there is already a considerable benefit from an active CPACF.

2.1 Verification of installed LIC 3863 using the SE

You can check if the CPACF is enabled in your environment using the dialogues provided on the Support
Element (SE). In the System Details panel you can find “CP Assist for Crypto functions: Installed” (see
Figure 1), or “CP Assist for Crypto functions: Not installed”.

Version 1.0 1/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Z13 Details - 213 i}
Acceptable
Instance Product CP/PCHID @ STP Energy
Information | Information | Status Information | Management
CP status: Operating Group: CPC
Channel status: Activation profile: Z13CC
Crypto status: Last profile used: DEFAULT
Flash status: Service state: false
Number of CPs: 48
Alternate SE status: Operating Number of ICFs: 2
IOCDS identifier: A0 Number of IFLs: 4
IOCDS name: iodf00_a Number of zlIPs: 4
System mode: Logically Dual AC power maintenance: Fully
Partitioned dundant
Lock out disruptive ©Yes @ Nomﬁrﬁm
| tasks: —
| _OK | Apply | Change Options... | | Cancel | Help |

Figure 1: IBM z13: LIC 3863 is installed

2.2 Verification of installed LIC 3863 using a Linux command

A Linux for z Systems user can easily check whether the Crypto Enablement feature is installed and
which algorithms are supported in hardware. The command icainfo displays which CPACF functions
are supported by the implementation inside the libica library. This command is available if the libica
package is installed on the Linux for z Systems server.

If the Crypto Enablement feature 3863 is not installed, you will see that only SHA is supported and
all other algorithms are not available in CPACF (see Example 1). For all other algorithms, you will find
a no in column # hardware in the output of the icainfo command.

gnirss@z1x14020:"> icainfo
The following CP Assist for Cryptographic Function (CPACF)
operations are supported by libica on this system:

function | # hardware | #software

SHA-1 | yes | yes
SHA—224 | yes | yes
SHA-256 | yes | yes
SHA—384 | yes | yes
SHA-512 | yes | yes
PRNG | no | yes
RSA ME | no | yes
RSA CRT | no | yes
DES ECB | no | yes
DES CBC | no | yes

x%% some lines not displayed xxx

Example 1: Response of icainfo, if LIC 3863 is not installed

Version 1.0 2/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

If the Crypto Enablement feature 3863 is installed, you will see that besides SHA, other algorithms
are available with hardware support!.

Example 2: Encryption algorithms supported in CPACF of IBM z Systems z13

If you find a no in column # software in the output of the icainfo command (see Example 2), there
is no software fallback implemented in libica (see also chapter 6 in [4]).

IThe no for RSA ME and RSA CRT support in the column # hardware of Example 2 indicates that there is no access
from the Linux server to a Crypto Express feature, or that the crypto device driver is not loaded.

Version 1.0 3/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

3 Configuration of Crypto Express feature for Linux for IBM z
Systems

If you have a Crypto Express5 (CEX5S) adapter in your z Systems, you can also benefit from hardware
support for the RSA handshake while opening a SSH session.

For information about how to configure the LPAR Activation Profile, see chapter 10 of [5] and chapter
6 of [6]. For details how to enable access to the CEX feature for a Linux system running in a z/VM
environment, see chapter 6 of [7] and [8]. In [9], information about how to work with the HMC can be
found.

4 HW- Support - Architecture for OpenSSH

Here is an overview of how OpenSSH accesses the hardware cryptographic support provided by IBM
System z (see Figure 2). OpenSSH uses OpenSSL to perform the cryptographic requests. If the OpenSSH
package is built using the option ——with—ssl—engine, the OpenSSL library can use available engines and
load them dynamically.

Linux
Privat key and Application
certificate storage
L L L
: i : Standard Crypto
y bl Interface
u u u _
X X X ibmca 2 Systems
HW Crypto
Libraries
zerypt Operating
device driver System

z/\V'M (optional)

;;’/ » R
CPACF| LCEXSAJC CEXSAIC | L CEXSA/C s
CPACE CEXSA/C CEX5A/C CEX5A/C HW Cryptographic

shared shared dedicated Coprocessors

Figure 2: Linux for z Systems environment for hardware cryptographic support for OpenSSH

In a z Systems environment, you can install the ibmca engine and configure OpenSSL for dynamic engine
loading. In this case, OpenSSL does not perform the encryption requests by itself, but passes them to the
ibmca engine. The ibmca engine uses the library libica to handle the requests. The libica library is aware
of which algorithms are supported via the underlying hardware CPACF or Crypto Express feature (if
installed and available). If an algorithm is supported by the underlying hardware, the libica library passes

Version 1.0 4/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

the request to the cryptographic hardware. If an algorithm is not supported by the underlying hardware,
the libica library executes the algorithm in software as a fallback?. The underlying virtualization layer of
z/VM has no impact on the cryptographic architecture inside the Linux server. The only consideration
here is that z/VM can dedicate or virtualize the access to the Crypto Express feature. You need to adapt
the z/VM directory, if you intend to access the Crypto Express feature from Linux (see chapter 6 of [7]).

If OpenSSL is not configured to use the ibmca engine, all cryptographic operations will be executed
inside of OpenSSL. The most recent releases of OpenSSL provide built-in support for some crypto algo-
rithms to be executed directly using CPACF instructions, providing LIC 3863 has been installed. Andy
Polyakov has implemented the support for the AES and SHA algorithms in inline-assembler inside of
OpenSSL. This means that even if the ibmca engine has not been installed or configured, as a minimum
AES and SHA will execute faster due to the use of CPACF.

5 Our environment

For our test, we use Linux servers as virtual guests® in a z/VM LPAR of a IBM z13.
The following software and driver packages are needed on Linux for z Systems to enable OpenSSH to
benefit from the complete hardware cryptographic support of IBM z Systems.

e openssh
e openssl
e openssl-ibmca

e libica

zerypt driver (device driver is part of system)

All these packages are part of the Linux for z Systems distributions. Depending on the distribution and
installation parameters, some or all of them might be already installed with your initial set up.

gnirss@z1x14020:”> lIscpu

Architektur: s390x

CPU op—mode(s): 32—bit , 64—Dbit
Byte—Reihenfolge: Big Endian
CPU(s): 2

On—line CPU(s) list: 0,1
Thread(s) pro Kern: 1

Kern(e) pro Socket: 1

Socket (s) per book: 1

Book (s): 2
Anbieterkennung : IBM/S390
BogoMIPS : 20325.00
Hypervisor: z/VM 6.3.0
Hypervisor—Anbieter: IBM
Virtualisierungstyp: voll
Dispatching—Modus: horizontal
L1d Cache: 128K

L1i Cache: 96K

L2d Cache: 2048K

L2i Cache: 2048K

Example 3: Our environment - hardware server

2Starting with libica V2, libica uses the OpenSSL library for execution of cryptographic requests for some algorithms, if
software fallback is necessary.

3The setup and configuration of Linux to use hardware cryptographic support is independent of whether the Linux is
running natively in an LPAR, or as a guest in z/VM

Version 1.0 5/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

We use two z/VM guests, one with SUSE SLES 12 SP1 and one with Red Hat RHEL 7.2 installed.
The z/VM directory contains the CRYPTO statement to assign a dedicated crypto queue for each of our
test Linux guests (see Example 4). For our first guest we use domain 5 and for the second we use domain

Example 4: Extract of z/VM directory entry for Linux guests with dedicated access to CEX5S

Note that when using Crypto Express for OpenSSH, we could also use a virtualized crypto card for
acceleration of the RSA handshake. Defining with CRYPTO APVIRT is sufficient for RSA (clear key)
acceleration.

Also note that in the following we do not discuss any aspects of SELinux configuration.

5.1 Installation of SLES 12 SP1

We use a default installation of SUSE SLES 12 SP1. During installation, we specify installation with
System z HW crypto support (see Figure 3).
The resulting software environment of our Linux server is shown below:

Example 5: Our environment (SLES) - system and kernel

Example 6: Our environment (SLES) - version/release of operating system

The following packages that are required for encryption, including hardware crypto support, are
already installed:

Version 1.0 6/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

gnirss@z1x14020:"> rpm —qa | grep ibmca
openssl—ibmca—32bit —1.2.0—-151.1.s390x
openssl—ibmca —1.2.0—-151.1.s390x

Example 7: Our environment (SLES) - required packages are already installed

ERRIE S o
m = 3‘,: o s o & D o 172.16.36.60:1 []

Pattern

Documentation

GNOME Desktop

Development

EIBSSIt

Mame

File Server

‘
[

Figure 3: Installation of SLES 12 SP1 with HW crypto support

A first check also indicates that dynamic engine loading support is enabled by default and the engine
ibmca is used in our installation

gnirss@zI1x14020:"> openssl engine

(dynamic) Dynamic engine loading support

(ibmca) Ibmca hardware engine support

gnirss@zI1x14020:"> openssl engine —c

(dynamic) Dynamic engine loading support

(ibmca) Ibmca hardware engine support

[RSA, DSA, DH, RAND, DES-ECB, DES-CBC, DES-OFB, DES-CFB, DES-EDE3, DES-EDE3-CBC,
DES-EDE3-OFB, DES-EDE3-CFB, AES—128—ECB, AES—128—-CBC, AES—128—CFB, AES—128—OFB,
AES—192—ECB, AES—192—CBC, AES—192—CFB, AES—192—0OFB, AES—256—ECB, AES—256—CBC,
AES—256—CFB, AES—256—OFB, SHA1l, SHA256]

Example 8: Dynamic engine support is enabled and ibmca engine is available

Now we check for the availability of the crypto queue by sending a command to the underlying z/VM,

Version 1.0 7/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

gnirss@z1x14020:”> sudo vmcp q v crypto
AP 000 CEX5C Domain 005 dedicated

Example 9: Access to a crypto queue is available (Domain 5)

and we see that access is available as has been defined in the z/VM directory (see Example 4). Up to
now we do not have the crypto device driver loaded (see Example 10), and therefore all RSA requests
will be executed as software fallback in libica.

gnirss@z1x14020:"> sudo lszcrypt
gnirss ’s password :
lszcrypt: error — cryptographic device driver zcrypt is not loaded!

Example 10: Crypto device driver not loaded

Note that in order to use the vimcp and Iszcrypt command, the package s390-tools-1.24.1-49.4.s390x
has to be installed. For our z/VM guest, the z/VM privilege class G has been assigned (see also Example
4).

To load the crypto device driver, use the modprobe command
gnirss@zI1x14020:"> sudo modprobe ap

Example 11: Load the crypto device driver

and verify whether it was successful (Ismod | grep ap). Ensure that the device driver will be re-loaded
after a re-IPL (re-boot)* of the Linux server.
Now the Iszcrypt command shows that access to the crypto device is available (see Example 12).

gnirss@z1x14020:"> sudo lszcrypt
card00: CEX5C

Example 12: Crypto device driver is loaded and accessible

Since the crypto device driver is now loaded, also indicated by the icastats command, the hardware
support for RSA ME and RSA CRT is now available (see Example 13 and compare with Example 2).

gnirss@z1x14020:"> icainfo
The following CP Assist for Cryptographic Function (CPACF)
operations are supported by libica on this system:

function | # hardware | # software

SHA-1 | yes | yes
SHA—224 | yes | yes
SHA—-256 | yes | yes
SHA—384 | yes | yes
SHA-512 | yes | yes
PRNG | yes | yes
RSA ME | yes | yes
RSA CRT | yes | yes
DES ECB | yes | yes
DES CBC | yes | yes

xx% some lines not displayed sxx
Example 13: RSA is available via hardware support
Remark: If you have installed SUSE SLES 12 SP1 without System z HW crypto support (see Figure

3), then you have to ensure that the required packages are installed manually, and you have to adapt the
OpenSSL configuration file manually.

4SLES 12 SP1 - to load the crypto device driver at boot time, the config file /etc/modules-load.d/ap.conf must be
executable (use command chmod +x ap.conf) and must contain the name of the load module:
load module module at boot time
ap

Version 1.0 8/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

5.2 Installation of RHEL 7.2

After the basic installation of Red Hat RHEL 7.2, including the Security Tools (see Figure 4),
= |15

w Red Hat Enterprise Linux 7.2 installation on host zIb14020.cc.ibm.com

EEXTHo@SCT

2 172.16.36.60:1

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.2 INSTALLATION

Base Environment Add-Ons for Selected Environment

inimal Install Debugging Tools

Virtualization Host ‘
Minim al virtualization host

or integrity and trust verificaticns

Server with GUI
Server for operating network infrastructure services, with a GUI

Figure 4: Installation of RHEL 7.2 with Security Tools

the packages for ibmca and libica have to be installed manually.

[gnirss@z1b14020 ~]$ rpm —qa | grep openssl
openssl—libs —1.0.1e—42.e17_1.9.s390x
openssl—ibmca—1.2.0—10.el7 .s390x

openssl —1.0.1e—42.el7_1.9.s390x

openssl098e —0.9.8e—29.el7_-0.2.s390x

[gnirss@z1b14020 ~]$ rpm —qa | grep libica
libica —2.4.2—-1.el7.5390x

[gnirss@z1b14020 ~]$ rpm —qa | grep ibmca
openssl—ibmca—1.2.0—-10.el7 .s390x

Example 14: Our environment (RHEL) - required packages

The resulting software environment of our Linux server is shown below:

[gnirss@z1b14020 ~]$ uname —a

Linux zlb14020.cc.ibm.com 3.10.0—-327.el7.s390x #1 SMP Thu Oct 29 17:32:48 EDT 2015

$390x s390x s390x GNU/Linux
Example 15: Our environment (RHEL) - system and kernel

[gnirss@zlb14020 ~]$ cat /etc/os—release
NAME="Red Hat Enterprise Linux Server”
VERSION="7.2 (Maipo)”

ID="rhel”

ID_LIKE="fedora”

VERSION_ID="17.2"

PRETTY NAME="Red Hat Enterprise Linux Server 7.2 (Maipo)”

ANSI.COLOR="0;31"

Version 1.0 9/32 ©Copyright IBM Corporation 2016

Help!

Basic functionality. Tools for debugging misbehaving applications and diagnosing performance

Infrastructure Server problems

Server for operating network infrastructure services v Compatibility Libraries

File and Print Server Compatibility libraries for applications built on previous versions of Red
File, print, and storage server for enterprises. Hat Enterprise Linux

Basic Web Server Development Tools

Server for serwing static and dynamic internet content A basic development environment.

IBM Client Center, Germany

CPENAME="cpe:/o:redhat:enterprise_linux :7.2:GA:server”
HOME.URL="https://www.redhat .com/”
BUGREPORT_URL="https://bugzilla.redhat .com/”

REDHAT BUGZILLA PRODUCT="Red Hat Enterprise Linux 77
REDHAT BUGZILLA PRODUCT_VERSION=7.2

REDHAT SUPPORT PRODUCT="Red Hat Enterprise Linux”
REDHAT_SUPPORT PRODUCT_VERSION=""7.2"

Example 16: Our environment (RHEL) - version/release of operating system

Now we check for the availability of the crypto queue by sending a command to the underlying z/VM

[gnirss@z1b14020 ~]$ sudo vmep q v crypto
AP 000 CEX5C Domain 006 dedicated

Example 17: Access to a crypto queue is available (Domain 6)

and whether the device driver is loaded:
[gnirss@z1b14020 ~]$ lszcrypt
lszcrypt: error — cryptographic device driver zcrypt is not loaded!

Example 18: Crypto device driver is not loaded

As expected, the device driver for acceleration of RSA is not yet loaded. Therefore, a first check for the
availability of the ibmca engine is negative (see Example 19).

[gnirss@zlb14020 ~]$ openssl engine
(dynamic) Dynamic engine loading support

[gnirss@zlb14020 ~|$ openssl engine —c
(dynamic) Dynamic engine loading support

Example 19: Engine ibmca is not yet available for OpenSSL

To make use of the ibmca engine to benefit from the implemented hardware support, you need to
modify the configuration file of OpenSSL. To enable the engine ibmca, the OpenSSL configuration file
has to be adapted. To customize the OpenSSL configuration to enable dynamic engine loading for ibmca,
perform the following 4 steps:

1. Ensure you take a backup of the configuration file before you change it.
2. Ensure that there is a ibmca_section at the end of the OpenSSL configuration file.
3. Insert the following line at the top of the configuration file.

openssl_conf = openssl_def

Ensure that this line appears only once in the config file. The configuration file looks now as shown
in Example 20.

4. You might check the value of the dynamic_path variable and, if necessary, change it to the correct
path.

[gnirss@z1b14020 ~]$ sudo vi /etc/pki/tls/openssl.cnf
sudo] password for gnirss:

#
OpenSSL example configuration file.
This is mostly being used for generation of certificate requests.

#

Version 1.0 10/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Version 1.0 11/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Example 20: OpenSSL configuration file with dynamic engine loading support for ibmca

A first check now shows that the ibmca engine is available (see also Example 21).

Example 21: Dynamic engine support for ibmca is enabled

As the crypto device driver is not yet loaded, the command icainfo still shows, that there is no hardware
support in libica for RSA (see Example 22).

Example 22: RSA support only as software fallback

This is consistent with the information available in sysfs: We see that up to now, there are no entries for
the crypto card (ap) support (see Example 23):

Example 23: sysfs without subdirectories for ap support

We have already verified that access to the crypto card is available (see Example 17). Therefore, we load
now the crypto device driver

Example 24: Loading crypto device driver ap

Version 1.0 12/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

and verify whether it was successful (Ismod | grep ap). Ensure that the device driver will be re-loaded
after a re-IPL (re-boot)® of the Linux server.
Now we can check again in sysfs for ap support.

Example 25: sysfs with support for crypto card

We see that the crypto card is online (”1” in Example 26)

Example 26: Crypto card is online

and that the card is a CEX5S (711”7 in Example 27), which is configured in coprocessor mode (" CEX5C”
in Example 27).

Example 27: Crypto Expressb card configured in coprocessor mode

Now we check for the number of executed requests in the crypto card (see Example 28). We will observe
a change of this counter when we execute RSA requests using the crypto card.

Example 28: Number of requests that are already processed by this device

Now we perform crypto operations which use the crypto card (i.e. RSA)

SRHEL 7.2 - to load the crypto device driver at boot time, the config file /etc/rc.modules must be executable (use
command chmod +x /etc/rc.modules) and must contain the command to load the module:
modprobe ap

Version 1.0 13/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

—DSHA1 ASM —DSHA256_ ASM —DSHA512_ ASM —DAES_ ASM —DAES CTR_ASM —DAES XTS_ASM
—DGHASH_ASM

sign verify sign/s verify/s
rsa 2048 bits 0.001606s 0.001509s 622.5 662.9

Example 29: Test for RSA requests
and we check for the counters after the test is completed. Now we see an increased number of requests
(see Example 30). This means, the Crypto Express feature has been used.

[gnirss@z1b14020 ~]$ cat /sys/devices/ap/card00/request_count
12859

Example 30: Number of requests that are processed by this device

Alternatively, we can verify whether RSA uses hardware crypto support via libica by using the icastats
command (see Example 31).

[gnirss@z1b14020 ~]$ icastats

function | # hardware | # software
| ENC CRYPT DEC | ENC CRYPT DEC

SHA-1 | 120 | 0
SHA-224 | 0 | 0
SHA-256 | 0 | 0
SHA-384 | 0 | 0
SHA-512 | 0 | 0
PRNG | 1 | 0
RSAME | 6375 | 0
RSA-CRT | 6512 | 0

x*x*% some lines not displayed xxx

Example 31: RSA requests performed with Hardware support in RHEL server

5.3 Configuring ibmca engine

In the ibmca section of the OpenSSL config file®, it is possible to approximately determine the scope of
the engine. You can either use the engine with its full capabilities (this is the default configuration), or
you can include/exclude RSA, MACs, or the symmetric ciphers.

We mentioned already in chapter 4 that there is now a full SHA implementation included in OpenSSL
which directly uses CPACF instructions. Therefore, we can exclude the calculation of SHA from ibmca.
We modify the ibmca section from the default (as shown in Example 20) to exclude all DIGESTS (see
Example 32).

%% some lines not displayed sxx

DIGESTS
— SHA1, SHA256 digests
#

#default_algorithms = ALL
default_algorithms = RAND,RSA, CIPHERS

Example 32: ibmca setion in OpenSSL configuration file without DIGESTS

The possibility to exclude algorithms might also be of interest if there is no access to a Crypto Express
feature in the Linux server. In this case, it is possible to use the RSA algorithm implemented inside of
OpenSSL instead of the software fallback of libica. The appropriate configuration is shown in Example
33. This might have a smaller path length.

SRHEL 7.2: /etc/pki/tls/openssl.cnf, SLES 12 SP1: /etc/ssl/openssl.cnf

Version 1.0 14/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

x%% some lines not displayed xxx

DIGESTS
— SHA1, SHA256 digests
#

#default_algorithms = ALL
default_algorithms = RAND, CIPHERS

Example 33: ibmca section in OpenSSL configuration file for an environment w/o access to CEX5S

If you wish to configure SSH clients and SSHD (as described in chapter 7.2.1 and 7.2.2) to ensure
that only AES (and not TDES) is used as cipher suite, it might be an option to use the AES implemen-
tation inside OpenSSL instead of the implementation inside libica (i.e. omit CIPHERS keyword in the
configuration for the ibmca engine).

For an environment with access toa CEX5S, we recommend that you have at least RSA and RAND
enabled for the ibmca engine (see Example 34).

x%% some lines not displayed xxx

DIGESTS
— SHA1, SHA256 digests
#

#default_algorithms = ALL
default_algorithms = RAND,RSA

Example 34: ibmca section in OpenSSL configuration file for an environment with access to CEX5S

6 CPACF Support for OpenSSH

Disclaimer:

All numbers presented in the following section are not the result of official benchmark tests. These results
might not be reproducible in any other environment, and they are not intended to be used for any sizing
estimates. Note that all our Linux servers run as guests in a shared z/VM environment.

In section 5.1 and 5.2, we described our environment and how to prepare it for using hardware crypto
support including using support from Crypto Express feature. We also showed how we can check that
RSA requests are executed in the crypto card. This was done to prove that hardware support of an
available Crypto Express feature is used by our Linux servers. Using a Crypto Express feature is an
optional possibility which might not be available for your Linux server. Therefore, we describe in the
following, how you can test and verify, whether the acceleration support for encryption of CPACF is
available in your Linux environment. The icastats command of libica shows whether the supported
algorithms of libica are performed using hardware support or as software fallback. For this purpose, we
use the default configuration of the ibmca engine with

default_algorithms = ALL

as shown in Example 20. In the following part, we describe how we can check that the hardware crypto
support of the CPACEF is used.

6.1 General test using openssl speed

For a first check of whether or not we can use the CPACF capabilities, we use the openssl speed command.
First, we reset the icastats counters, then we execute Tripel DES and AES encryption.

gnirss@z1x14020:”> icastats —r
gnirss@z1x14020:”"> openssl speed —evp des—ede3—cbc

xx*% some lines not displayed xxx
The ’numbers’ are in 1000s of bytes per second processed.

Version 1.0 15/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Example 35: Perform TDES and AES encryption using openssl speed -evp <cipher> with libica
We check the counters and see that AES and Triple DES are using CPACF support (see Example 36).

Example 36: Increased counters for TDES and AES encryption

This test demonstrates that in our environment, CPACF is working as expected. We summarize the
throughput results of this test in Table 1 and we observe that we doubled the throughput compared to

Version 1.0 16/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Server Cipher With dyn. engine ibmca
[MB/3]
z13 des-ede3-cbc 786368.77
z13 aes-128-cbc 1536445.34
z13 aes-192-cbce 1498835.35
z13 aes-256-cbc 1571415.28

Table 1: Throughput for 8 KB blocks encrypted with openssl speed -evp <cipher>

a IBM z10™ environment (see [1]) using a standard encryption tool.

6.2 First test with SCP of OpenSSH

Now we are interested in the question as to whether OpenSSH can use CPACF support in our test
environment. As a first test, we use the SCP (Secure Copy) command to check for the usage of the
underlying hardware crypto capabilities. We create a test file, which will be used to be copied with the
SCP command. The file has to be large enough to enable us to clearly observe the occuring effects.

gnirss@zIx14020:"> dd if=/dev/zero of=testdata.txt bs=1048576 count=200
200+0 Datensdtze ein

20040 Datensatze aus

209715200 Bytes (210 MB) kopiert, 0,227014 s, 924 MB/s

gnirss@z1x14020:"> 1Is —lh testdata.txt
—rw—r—r— 1 gnirss users 200M 13. Feb 18:39 testdata.txt

Example 37: Creation of a test file

Before we start the first test with SCP, we reset the counters to be able to determine after the test
whether CPACF has been used.

gnirss@z1x14020:"> icastats —r

gnirss@z1x14020:”> icastats

function | # hardware | # software
| ENC CRYPT DEC | ENC CRYPT DEC

SHA-1 | 0 | 0

SHA—224 | 0 | 0

SHA—256 | 0 | 0

x%% some lines not displayed xxx

Example 38: Reset icastats counters and verify the result

Now we start to copy the data to the localhost, because for this test it is not necessary to send the test
file via the network to any other server. We do not need to store the data after receiving them, therefore
we specify /dev/null as receiving device for this test. At first we use TDES encryption,

gnirss@zI1x14020:”> time scp —c 3des—cbc testdata.txt localhost:/dev/null

The authenticity of host ’'localhost (::1)’ can’t be established.

ECDSA key fingerprint is 15:4c:da:ae:11:09:77:7b:94:¢c6:f5:34:¢7:8f:b1:19 [MD5].
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’localhost’ (ECDSA) to the list of known hosts.
Password :

testdata . txt 100% 200MB 200.0MB/s 00:01

Version 1.0 17/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Example 39: Secure Copy of test data with TDES encryption

then we test with AES cipher.

Example 40: Secure Copy of test data with AES encryption

Again using the icastats command, we can see that the counter for TDES and AES counter has been
increased. This shows that the CPACF support has been used for these ciphers (see Example 41).

Example 41: Increased counters for TDES and AES after SCP of test data

We have now shown how easy it is to configure a Linux server on z Systems to use underlying
acceleration support of CPACF for Secure Copy file transfer (SCP via OpenSSH).

Version 1.0 18/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

6.3 Test with SSH client

Now we want to verify whether or not CPACF or CEX5S are also used during simple SSH session. To
establish a SSH session to our Linux servers, we uses the SSH command from a Linux” workstation and
specify the cipher and host key algorithm to be used. This allows us to check immediately whether
hardware encryption support is used.

In the SSH session to our Linux server, the encryption of the traffic for the host part is done via the
SSH daemon (SSHD)®. In our case, SSHD is running under the root userid and therefore we have to
check the icastats counter of the root userid. We can use either icastats -A or icastats -U root. First, we
reset the counters check and verify that all is zeroized (see Example 42) in an existing SSH session to our
SLES server.

gnirss@zI1x14020:"> sudo icastats —R
gnirss ’s password :

gnirss@zI1x14020:"> sudo icastats —U root
function | # hardware | # software

ENC CRYPT DEC | ENC CRYPT DEC

|
SHA-1 | |
SHA—224 | |
SHA—256 | |
SHA—384 | |
SHA-512 | |
PRNG | |
RSA-ME | |
RSA-CRT | |
DES ECB | 0 0 | 0 0
DES CBC | 0 0 |
x%% some lines not displayed xxx

oo ooe e e
oo ooe e

Example 42: Reset icatsts counters also for root and verify the result (on SLES)

Next, we open a second SSH session from the PC to our SLES server and we specify explicitly the Triple
DES as cipher and RSA as host key algorithm to be used (see Example 43).

gnirss@manfred—W541: " $ ssh —c 3des —o HostKeyAlgorithms=ssh—rsa
gnirss@<our_Linux_SLES_server>

Password :

Last login: Tue Mar 29 11:42:46 2016 from <my_PC_address>

Example 43: Open second SSH session to SLES server using Triple DES and RSA
In the first session to our SLES server, using the icastats command we we can now see, that SHA, RSA

as well as Triple DES counters for hardware have been increased (see Example 44). The activities with
SHA and RSA are based on the opening of the SSH session.

gnirss@z1x14020:"> sudo icastats —U root

function | # hardware | # software
| ENC CRYPT DEC | ENC CRYPT DEC

SHA-1 | 438 | 0

SHA—224 | 0 | 0

“From a Windows PC, the putty command could be used. We do not discuss specific aspects of using putty in this paper.
Especially for selecting specific ciphers, MACs and asymmetric algorithms, please refer to the documentation of putty.

8In our environment, the SSHD uses in any case the openssl config with dynamic engine support for ibmca enabled, as
we know, that we have already rebooted the Linux server or restarted the SSHD service.

Version 1.0 19/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Example 44: Check for increased counters for the root user (on SLES)

Further activities in the second SSH session (like ls command, ...) will lead to an increase of the Triple
DES counters.

In another test, we will now prove that in a SSH session, the AES algorithm also uses CPACF support.
For this purpose, we repeat the above short test with AES cipher using our Red Hat RHEL 7.2 server.
After reset and verification of the counters, we open a second SSH session to our RHEL server as described
in Example 45,

Example 45: Open second SSH session to RHEL server using AES and RSA

then we check for the icastats counters in the first session to our RHEL server and

Version 1.0 20/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

AES ECB | 0 0 |
AES CBC | 9 17 | 0 0

x%% some lines not displayed *xx

o
o

Example 46: Check for increased counters for the root user (on RHEL)

we see that AES is performed with the support of CPACF, but that RSA is executed as software fallback
(see Example 46). Even the device driver is loaded, and we know that RSA can be executed in the server
using support from Crypto Express features (see Example 31). At the time of writing this paper, SSH
session itself can not benefit from the underlying RSA hardware support in the current available version
of RHEL. This issue is known and already addressed. A fix will be provided with a later corrective service
or a later release of RHEL.

We have now shown, how easy it is to configure a Linux server on z Systems to use underlying
acceleration support of CPACF for SSH session (via OpenSSL).

7 Selection of cipher and MAC

The SSH protocol allows various algorithms to be used for the authentication part (during the handshake),
the encryption of the data (ciphers), and the integrity checking (Message Authentication Code).

Which cipher, Message Authentication Code (MAC) and asymmetric algorithms are used for an SSH
connection that can be determined manually by the user, or by an automatic selection during establish-
ment of the session partners (negotiation by the session partners depending on their configuration).

7.1 Small comparison between SHA with CPACF support and MD5

OpenSSH uses hash-based Message Authentication Codes (HMAC). CPACF provides support for SHA
Message Authentication Code. In a pure software environment, MD5 is usually faster than SHA?, and
therefore MD5 is very often used as default.

Independent of the selection of a MAC for protection of user data integrity, there are some hashing
operations during OpenSSH session negotiation. Mainly, there are SHA-1 and SHA-256 operations re-
quired for the key exchange. The MAC to be used for ensuring data integrity can be selected explicitly
or via the search order in the SSH and SSHD configuration.

In the following three Examples (47, 48 and 49) we show the positive effect of using CPACF support
for hashing.

gnirss@zI1x14020:"> time scp —c aesl28—cbc —o MACs=hmac—md5 testdata.txt
gnirss@localhost:/dev/null

Password :

testdata . txt 100% 200MB 200.0MB/s 00:01

real Om4.471s
user 0m0.442s
Sys 0m0.130s

Example 47: SCP: hashing with MD5 (software)

We can compare the effect of using MD5 (software only) versus SHA-1 (supported by CPACF)

gnirss@zI1x14020:"> time scp —c aesl28—cbc —o MACs=hmac—shal testdata.txt
gnirss@localhost:/dev/null

Password :

testdata . txt 100% 200MB 200.0MB/s 00:00

9SHA-1 can be considered weak in comparison with SHA-256 or SHA-512, but is still widely used for protecting data
integrity. NIST, as well as other organizations (like BSI), recommend to stop using SHA-1 and migrate to algorithms of
SHA-2 family.

Version 1.0 21/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

real 0m3.539 s
user 0m0.235s
Sys 0m0.128s

Example 48: SCP: hashing with SHA-1 (using CPACF support)

and also versus SHA-256 (supported by CPACF)

gnirss@z1x14020:"> time scp —c aesl28—cbc —o MACs=hmac—sha2 —256 testdata.txt
gnirss@localhost:/dev/null

Password :
testdata . txt 100% 200MB 200.0MB/s 00:01

real 0m3.764 s
user 0m0.214s
Sys 0m0.136s

Example 49: SCP: hashing with SHA-2 (using CPACF support)

and we see that when we transfer test data using SHA, we need less CPU time (user and sys) compared
to MD5. From a performance perspective, it has an advantage using SHA'Y with CPACF instead of
MD5. For compatibility reasons, you might want to keep the MD5 algorithm in the list of available
MACs. However, place the SHA algorithms in the first position of the search oder (see chapter 7.2.1).

7.2 Profiles for OpenSSH client and server

In most cases, it is not convenient to specify the desired ciphers and MACs with each SSH, SCP, SFTP, or
rsync request. A better method is to adapt the profiles for SSH or SSHD to determine which algorithms
are available and to determine the default search order. For performance reasons, it is recommended to
place those algorithms at the top of the search order, which benefit from CPACF or CEX5S support (see
also chapter 9.1 for more details). Note that in addition to performance aspects, enterprise policies and
compliance regulations have to be considered and also have priority.

Not all ciphers and message authentication code (MAC) algorithms are supported by CPACF. To
benefit from IBM z Systems CPACF support, an appropriate cipher and MAC should be selected when
a SSH session is established. The SSH client and SSH server negotiate which cipher and which MAC will
be used during the session. Both, client and server have a list of available ciphers and MACs. The client
determines which cipher and MAC will be used depending on the available algorithms on the server and
the client’s preferences, according to the search order in the client’s profile (see RFC4253 section 7.1).
The list and the default search order can be adapted according to your needs. If you want to benefit from
CPACF capability for the MAC, you should place SHA at the top of the default search order. From a
performance perspective, we recommend that you place AES and TDES at the top of the search order
for the symmetric ciphers.

The search order is important for all cases where a cipher or MAC is not explicitly specified when the
user issues an ssh command. We assume that this will be the common case, and explicitly specifying a
cipher or a MAC (as shown in Example 43 or 49) is an exception.

7.2.1 SSH client configuration

To determine which algorithms can be used by the SSH client and their search order, the configuration
file /etc/ssh/ssh_config of the SSH client (see Example 50) can be modified.

x%% some lines not displayed xxx
Protocol 2,1
Cipher 3des

10We do not see a big difference with our simple test between SHA-1 and SHA-256. Considering also performance aspects,
algorithms of SHA-2 family are to be preferred

Version 1.0 22/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Ciphers aesl128—ctr ,aesl92—ctr ,aes256—ctr ,arcfour256 ,arcfourl128 ,
aesl28—cbc,3des—cbc

MACs hmac—md5, hmac—shal ,umac—64@openssh .com , hmac—ripemd160

x+¥% some lines not displayed sxx

Example 50: Default search order in ssh_config file

According the man pages (man ssh_config), the default list of available symmetric ciphers and the default
search oder is:

aes128—ctr ,aes192—ctr ,aes256—ctr ,arcfour256 ,arcfour128 ,
aes128 —gecm@openssh . com, aes256 —gcm@openssh . com ,
chacha20—poly1305@Qopenssh .com,

aes128—cbc ,3des—cbc, blowfish —cbc , cast128 —cbc , aes192—cbc,
aes256—cbc , arcfour

The default list and search order for the MACs is:

hmac—md5—etm@openssh . com , hmac—shal —etm@openssh .com,
umac—64—etm@openssh . com , umac—128—etm@openssh . com,

hmac—sha2 —256—etm@openssh . com , hmac—sha2 —512—etm@openssh .com,
hmac—ripemd160—etm@openssh .com, hmac—shal —96—etm@openssh .com,
hmac—md5—96—etm@openssh . com

hmac—md5, hmac—shal ,umac—64@openssh .com,umac—128 Qopenssh .com,
hmac—sha2 —256 ,hmac—sha2 —512 hmac—ripemd160 ,

hmac—shal —96 ,hmac—md5—96

In Example 51, we have modified the default by using the keywords Ciphers and MACs to change the
search order and place algorithms at the top, which benefit from CPACF support.

x%% some lines not displayed xxx

Protocol 2,1

Cipher 3des

Ciphers aesl28—ctr ,aesl92—ctr ,aes256—ctr ,arcfour256 ,arcfourl28 ,

aesl28—cbc,3des—cbc

Ciphers aes256—ctr ,aesl92—ctr ,aesl28—ctr ,aes256—gcm@openssh .com,

aes128 —gcm@openssh . com, aes256—cbc , aes192—cbc ,aes128—cbc ,3 des—cbc,
chacha20—poly1305Q@Qopenssh.com, arcfour256 , arcfour128 , blowfish —cbc,
cast128—cbc,arcfour

MACs hmac—md5, hmac—shal ,umac—64@openssh .com , hmac—ripemd160

MACs hmac—sha2 —256—etm@openssh .com, hmac—sha2 —512—etm@openssh . com ,
hmac—shal —96—etm@openssh .com , hmac—shal—etm@openssh .com,

hmac—sha2 —256 ,hmac—sha2 —512,hmac—shal —96 ,hmac—shal ,

hmac—md5—etm@openssh . com , umac—64—etm@openssh . com , umac—128—etm@openssh . com
hmac—ripemd160—etm@openssh . com, hmac—md5—96—etm@openssh . com,

hmac—md5, umac—64@Qopenssh . com, umac—128 Qopenssh . com , hmac—ripemd160 , hmac—md5—96
%% some lines not displayed sxx

Example 51: Modified search order in ssh_config file to benefit from CPACF

7.2.2 SSHD server configuration

To determine which algorithms can be used by the SSHD server, the configuration file /etc/ssh/sshd_config
of the server can be modified.

To specify the ciphers permitted, the keyword Ciphers (for protocol version 2) can be used. To specify
the message authentication code algorithms permitted, which are used for data integrity protection, the
keyword MACs (for protocol version 2) can be used in the configuration file. Multiple algorithms must
be comma-separated. The order of the algorithms does not matter on the server side, as the client will
select the first method in the client’s search list that also appears on the server’s list.

Version 1.0 23/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

In our test environment, we modify the list of available algorithms in the sshd_config file using the
Ciphers and MACs keywords, to allow only those algorithms which benefit from CPACF support of z
Systems!! (see Example 52). Note that a modification of the sshd_config file will only take effect after a
restart of the SSHD daemon.

x%% some lines not displayed xxx

Ciphers aes256—ctr ,aesl92—ctr ,aesl28—ctr ,aes256—gcm@openssh.com,
aes128 —gecm@openssh .com, aes256—cbc , aes192—cbc ,aes128—cbc,3 des—cbc
MACs hmac—sha2 —256—etm@openssh . com , hmac—sha2 —512—etm@openssh . com
hmac—shal —96—etm@openssh .com ,hmac—shal —etm@openssh . com,

hmac—sha2 —256 ,hmac—sha2 —512 hmac—shal —96 ,hmac—shal

x+¥% some lines not displayed *xx

Example 52: sshd_config file: modification to use CPACF support

8 Crypto Express support for RSA with OpenSSH

In chapter 6.3 we showed that OpenSSH can utilize RSA hardware cryptographic support from a Crypto
Express feature. For OpenSSH, we expect a greater benefit from CPACF than from the Crypto Express
feature. Compared to common Web scenarios, the relationship between RSA handshakes and encrypted
data transmission is different for SSH sessions. Usually, there is only the RSA handshake at the beginning
of a long session with high data transfer volumes. Therefore, we do not spend much effort in studying
the effect of using hardware support for RSA in terms of performance and throughput.

For a rough test, we create a very short file and use this file for Secure Copy.

gnirss@z1x14020:"> 1ls —lh testdata_short
—rw—r—r— 1 gnirss users 2 29. Mar 18:38 testdata_short

Example 53: Small file to be used by SCP

After a reset of the icastats counters, we use the SCP command as indicated in Example 54 multiple
times.

gnirss@zI1x14020:"> time scp —c aesl28—cbc —o HostKeyAlgorithms=ssh—rsa
testdata_short localhost:/dev/null

Password :

testdata_short 100% 2 0.0KB/s 00:00

real 0m3.055 s
user Om0.011s
Sys 0m0.002 s

Example 54: Secure Copy of a small file using RSA

Then we verify using icastats that RSA is really executed in the hardware (see Example 55).

gnirss@z1x14020:”"> icastats

function | # hardware | # software
| ENC CRYPT DEC | ENC CRYPT DEC

SHA-1 | 164 | 0

SHA—224 | 0 | 0

SHA-256 | 56 | 0

SHA—384 | 0 | 0

11 Allowing only algorithms which benefit from CPACF support might, or might not be applicable for general environments.
There are regulations and other aspects to considered as well.

Version 1.0 24/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

SHA-512 | 0 | 0
PRNG | 4 | 0
RSAME | 4 | 0

RSA-CRT | 0 | 0

%% some lines not displayed sxx

Example 55: Secure Copy of a small file using RSA

To compare the effect of execution RSA with hardware support and pure software execution in OpenSSL,
we exclude RSA from the capabilities of the ibmca engine by adapting ibmca section in the configuration
file of OpenSSL (see also chapter 5.3). Instead of

default_algorithms = ALL
we reduce the default to
default_algorithms = RAND, CIPHERS
as shown in Example 33. This is an easy method for a fast switch between Crypto Express support and
software execution of RSA.

Next after resetting the icastats counters, we again repeatedly execute the SCP command as indicated
in Example 54, and verify with the icastats counter that RSA is not executed with the support of the

ibmca engine. As expected, after checking the execution time of user and sys, we cannot find any
significant difference with our test case for a single!? SCP request.

9 Some more performance aspects

Performance can be influenced by many factors that are related to cryptography dimensions. There are 4
cryptographic dimensions to take into account in order to secure services, and to guaranty data privacy.
A choice must be made for each of these dimensions:

Cipher Algorithm

e Mode of Operation
o Key Size
e Key Protection profile (No covered in this article).

OpenSSH obey the same laws, and we have to correctly read OpenSSH Cipher: aes256-cbc
1. Algorithm is AES

2. Key size is 256
3. Mode of Operation is CBC (Chain Block Cipher).

Let’s see the performance impact in OpenSSH in relation to the 4 crypto dimensions.

9.1 Choice of cipher algorithm

Also called cipher, a cipher algorithm is a process to convert ordinary information (called plaintext) into
unintelligible text (called ciphertext). An algorithm (a cipher) must be considered as secure and not
deprecated or compromised. In the same algorithm family, some perform better than other even if these
algorithms claim the same level of security.

Choice of cipher is important and choosing accelerated ciphers could lead to significant improvement
factor. This effect is shown in Table 2 using SCP with a file with a size of 5 GB.

With OpenSSH, we can claim an improvement factor of more than 4 choosing a cipher that uses
hardware-based acceleration (comparing cast128-cbc with aes128-gcm@openssh.com).

12Using RSA acceleration support of CEX5S will have a visible effect, when multiple requests are executed in parallel.
13non-standard non-RFC names have ” @openssh.com”

Version 1.0 25/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Average
Ciphers Throughput Times
[MB/s] [Seconds]
cast128-cbc 96.5 51.8
blowfish-cbc 103.8 48.2
chacha20-poly1305@Qopenssh.com’ 117.9 42.4
arcfour 202.4 24.7
3des-cbce 233.1 214
aes128-ctr 275.3 18.2
aesl92-ctr 279.6 17.9
aes256-ctr 280.1 17.9
aes256-cbc 282.0 17.7
aes128-cbce 315.1 15.9
aes192-cbc 315.2 15.9
aes256-gcm@openssh.com' 398.6 12.5
aes128-gcm@openssh.com™ 417.9 12.0

Table 2: SCP of a 5 GB file: Algorithm matters

Average
Ciphers Throughput Times
[MB/s] [Seconds]

Casel
aes128-ctr 275.3 18.2
aes192-ctr 279.6 17.9
aes256-ctr 280.1 17.9

Case2
aes128-cbc 315.1 15.9
aes128-cbc 315.2 15.9
aes256-cbc 282.0 17.7

Case3
aes128-qcm@openssh.com™ 417.9 12.0
aes256-qcm@openssh.com 398.6 12.5

Table 3: SCP of a 5 GB file: Key size matters

9.2 Choice of key size

The key size is usually a parameter of the algorithm, the longer is the key size, the stronger is the
encryption. Key size impacts performance, as it improve the level of security. Key size matters, and can
lead to significant degradation of performance.

Similar to Table 2, we have the focus in Table 3 on the key size.

e Casel: Changing key size for AES-CTR from 128 to 192 and 256.
e Case2: Changing key size for AES-CBC from 128 to 192 and 256.
e Case3: Changing key size for AES-GCM from 128 to 256.

With OpenSSH, choosing a bigger key could lead to performance degradation. In two of three cases,
switching from AES with 128 bits key size to AES with 256 bits key size can result in a moderate perfor-
mance degradation of about 10%. In case of doubt, please refer to your national key size recommendation
or other regulations.

Version 1.0 26/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

9.3 Choice of mode of operation

A mode of operation is an algorithm that uses a block cipher to provide an information service such
as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic
transformation (encryption or decryption) of one fixed-length group of bits called a block. A mode
of operation describes how to repeatedly apply a cipher’s single-block operation to securely transform
amounts of data larger than a block.

Original image Encrypted using ECB mode Modes other than ECB result
in pseudo-randomness

Figure 5: Influence of used Mode of Operation (source: Wikipedia, Block cipher mode of operation; Tux
the Penguin, the Linux mascot created in 1996 by Larry Ewing (lewing@isc.tamu.edu) with The GIMP.)

According Figure 5, we see the limits of the simplest of the encryption modes - the Electronic Codebook
(ECB) mode. The message is divided into blocks, and each block is encrypted separately. The weakness
with ECB is that according the nature of the data to be encrypted, it is possible to identify some repetitive
patterns (see also [10]).

There are alternative to ECB to provide encryption result in a pseudo-randomness. Each of these
mode of operation has a different logic. Here is a list of common Mode of Operation:

e Cipher Block Chaining (CBC)
e Propagating Cipher Block Chaining (PCBC)
e Cipher Feedback (CFB)
e Output Feedback (OFB)
e Counter (CTR)
Similar to Table 2 and Table 3, in Table 4 the focus is on the mode of operation:
e Casel: Changing mode of operation for AES128 from ctr, to cbc and gem.
e Case2: Changing mode of operation for AES192 from ctr, to cbc.
e Case3: Changing mode of operation for AES256 from ctr, to cbc and gem.

With OpenSSH, as you can see CBC perform better than CTR. The performance delta can exceed 10%.

Version 1.0 27/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Average
Ciphers Throughput Times
[MB/s] [Seconds]
Casel
aesl28-ctr 275.3 18.2
aes128-cbce 315.1 15.9
aes128-qgcm@openssh.com '™ 417.9 12.0
Case2
aesl92-ctr 279.6 17.9
aes192-cbce 315.2 15.9
Case3
aes25H6-ctr 280.1 17.9
aes256-cbce 282.0 17.7
aes256-qcm@openssh.com ™ 398.6 12.5

Table 4: SCP of a 5 GB file: Mode of Operation matters

9.4 Choice of crypto key protection profile (optional)

This section describes the mechanism that is chosen to secure the application key. Basically,the applica-
tion key appears in cleartext in the system memory (Clear Key). Using z Systems it is also possible to
use Protected Key and Secure Key protection profile in order to ensure that even briefly the application
key never appears in cleartext in the system memory. Protected Key uses a wrapped key to encrypt the
application key, and this wrapped key is stored in HSA, not accessible from the operating system. Secure
Key uses a Master Key to encrypt application key, and this master key is stored in an HSM (for z13:
CEX5C or CEX5P), a temper-proof area.
In this paper, we do not discuss this aspect in any detail.

10 Conclusion

Using modern Linux distributions on z Systems, relatively low effort is required in order to enable a
Linux Server to use existing hardware capabilities to accelerate encryption operations for OpenSSH. This
advantage applies not only to SSH sessions, but also to Secure Copy (SCP), SFTP and rsync. Using
hardware support for encryption, in particular the CPACF capabilities speeds up encryption operations
and saves a lot of cycles. To benefit from this advantage, either specify explicitly ciphers and MACs with
CPACEF support, or adapt SSH and SSHD profiles and place those algorithms supported by CPACF at
the top of the search order.

Version 1.0 28/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

The team who wrote this paper

This paper was produced during a workshop, and subsequent experiments and implementation, at the
IBM Client Center in the IBM Laboratory in Boeblingen, Germany.

Uwe Denneler is a Senior IT Specialist in the IBM Client Center in the IBM_ Boeblingen Lab,
Germany. He has more than 20 years of experience in the mainframe and IBM z/0OSY field. He works
with independent software vendor (ISV) and customer projects on z Systems (IBM z/0OS, IBM z/VM,
IBM Z/VSE®7 Linux on z Systems, and various subsystems). He also prepares demonstrations on IBM
z Systems.

Harald Freudenberger is a Senior IT Specialist at the IBM Lab in Boeblingen, Germany. He
works since more than 20 years in different areas around Linux development from the embedded world
up to Linux for z Systems mainframes. 3 years ago he joined the Linux for z Systems crypto team and
contributes to the platform crypto stack from Linux kernel up to higher crypto libraries like opencryptoki.

Paul Gallagher is a freelance Technical Writer who has worked in the IBM Lab in Boeblingen,
Germany for over 20 years. He is currently working in different areas of Linux development (mainly
KVM for IBM z Systems), but previously worked for many years on z/VSE development.

Manfred Gnirss is a Senior IT Specialist at the IBM Client Center, Boeblingen, Germany. He
holds a PhD in theoretical physics from the University of Tuebingen, Germany. Before joining the IBM
Client Center in 2000 he worked in z/VM and z/OS development for more than 12 years. Currently he is
involved in several Linux for z Systems Proof-of-Concept projects and customer projects running at the
IBM Client Center.

Guillaume Hoareau is a Certified IT Architect at the IBM Client Center, Montpellier, France.
Holding a Master Degree in Computer Science, Guillaume joined IBM in 2005 as security expert, accom-
panying his customers in their digital transformation and ambitious security projects. Currently he is
involved in several z Systems crypto Proof-of-Concept and Proof-of-Technology projects to promote fast
adoption of leading edge technology such as blockchain, elliptic curve cryptography and data tokenization.

Arwed Tschoeke is a member of zATS team located at the IBM Client Center in the Boeblingen
Lab. As Client Technical Architect his focus areas are LinuxONE, Cloud, virtualization solutions across
multiple platforms and Linux. He is located in Hamburg, Germany.

Ingo Tuchscherer is a Senior IT Specialist at the IBM Lab in Boeblingen, Germany. He has more
than 10 years of experience in the IBM mainframe environment. He started at IBM as a Software engineer
for smart card operation systems, before he changed to the mainframe area to work as a Performance
analyst. He continued his work as a software developer for Virtualization & Systems Management.
Currently he works as a Software engineer for Cryptography & Security on Linux for z Systems and he
is responsible for the crypto device driver and library.

Arthur Winterling is a Software Test Specialist working for more than 20 years in software test.
Arthur started as a tester for z/VSE, over the years testing in other areas such as z/OS and PC appli-
cations. He currently is a member of the test team for Linux on z Systems. He is one of the leaders in
the Boeblingen test community for years, teaching test fundamentals and he is now involved in the test
of cryptographic functionality and solutions for Linux on IBM z Systems.

Acknowledgement

Our very best acknowledgement for discussions and helpful hints belongs to

Reinhard Biindgen, Frank Heimes, Brian W. Hugenbruch, Elisabeth Puritscher, Patrick Steuer, Richard
Young,

as well as to Andy Polyakov and to Agnes Gnirss.

Acronyms

3DES 'Triple DES

Version 1.0 29/32 ©Copyright IBM Corporation 2016

AES
AP
CBC
CEX
CEX5A
CEX5C
CEXS5P
CEXS5S
CFB
CPACF
CPU
CTR
DES
EP11
ECB
FTP
HMC
HSA
HSM
IPL
LPAR
LIC
MAC
MD5
OFB
PCBC
PRNG
RHEL
RSA
scP
SE

IBM Client Center, Germany

Advanced Encryption Standard
Adjunct Processor
Cipher Block Chaining

Crypto Express feature

Crypto Express 5 feature configured in accelerator mode
Crypto Express 5 feature configured in coprocessor mode

Crypto Express 5 feature configured in EP11 mode

Crypto Express 5 feature
Cipher Feedback

Central Processor Assist for Cryptographic Functions

Central Processing Unit

Counter

Data Encryption Standard

IBM Enterprise PKCS#11
Electronic Codebook

File Transfer Protocol

Hardware Management Console
Hardware System Area

Hardware Security Module

Initial Program Load

Logical partition

Licensed Internal Code

Message Authentication Code
Message-Digest algorithm 5

Output Feedback

propagating Cipher Block Chaining
Pseudo Random Number Generator
Red Hat Enterprise Linux

Rivest, Shamir and Adleman algorithm
Secure Copy Protocol

Support Element

SELinux Security-Enhanced Linux

Version 1.0 30/32

©Copyright IBM Corporation 2016

IBM Client Center, Germany

SFTP Secure File Transfer Protocol, or also SSH File Transfer Protocol
SHA Secure Hash Algorithm

SLES SUSE Linux Enterprise Server

SP Service Pack

SSH Secure Shell

SSHD Secure Shell Daemon

SSL Secure Sockets Layer

TDES Triple DES

References

[1] First experiences with hardware Cryptographic Support for OpenSSH with Linux for z Systems, by
Manfred Gnirss, Winfried Miinch, Klaus Werner, and Arthur Winterling.
http://ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101690

[2] IBM z13, Features & Benefits
http://www.ibm.com/systems/z/hardware/z13_features.html

[3] z Systems, Processor Resource/Systems Manager Planning Guide, SB10-7162-01
[4] Linux on z Systems, libica Programmer’s Reference, Version 2.6, SC34-2602-07
[6] IBM z13 Configuration Setup SG24-8260-00, 2015

[6] IBM 2z13 Technical Guide SG24-8251-01, 2016

[7] Security on z/VM, SG24-7471, 2007

[8] z/VM V6.3 CP Planning and Administration, SC24-6178-09

[9] z Systems Hardware Management Console Operations Guide, Version 2.13.1
https://www-304.ibm.com/servers/resourcelink/1ib03010.nsf/pagesByDocid/
0351070EB1B67CD985257F7000487D1370penDocument
http://www.ibm.com/support/knowledgecenter/HW11P_2.13.1/213_kc_ditamaps/z13_
v2r13ml_welcome.html

[10] Wikipedia, Block cipher mode of operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United
States, or other countries, or both: Ex 1ress®7 IBM®7 IBM 213®_1BM 2 Systems®, System z®7
System ZIO®, z10™ 213™ 4 Systems® Z/OS®, z/VM®, z/VSEW.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

SUSE and SLES are registered trademarks of Novell, Inc. in the United States and other countries.

Version 1.0 31/32 ©Copyright IBM Corporation 2016

IBM Client Center, Germany

Red Hat, the Shadowman logo, Red Hat Enterprise Linux, RHEL, Red Hat Network, and RHN are
trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries.
Other company, product, or service names may be trademarks or service marks of others.

Version 1.0 32/32 ©Copyright IBM Corporation 2016

