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We investigate synchronizing fractional-order Volta chaotic systems with nonidentical orders in finite time. Firstly, the fractional
chaotic system with the same structure and different orders is changed to the chaotic systems with identical orders and different
structure according to the property of fractional differentiation. Secondly, based on the lemmas of fractional calculus, a controller
is designed according to the changed fractional chaotic system to synchronize fractional chaotic with nonidentical order in finite
time. Numerical simulations are performed to demonstrate the effectiveness of the method.

1. Introduction

Fractional calculus, starting from some speculations of G. W.
Leibniz (1695, 1697) and L. Euler (1730), has a history of over
300 years old. But its application to physics and engineering
has attracted lots of attention only in the recent decades.
Up until now, people have investigated and developed many
methods to synchronize fractional dynamical systems with
identical order, for example, one-way coupling method [1],
washout filter control [2], sliding mode [3], fuzzy control
[4, 5], pinning control [6], active control [7], adaptive control
[8–10], time-varying delays control [11–13], further fruits can
be found in [14–16], and so forth.

In general, the order of the drive fractional chaotic system
may not be equal with the order of the response fractional
chaotic system. It is necessary to study synchronizing frac-
tional chaotic system with nonidentical order. In [9], based
on the stability theorem of linear fractional order systems
and Laplace transform theory, synchronizing nonidentical
chaotic fractional order systems is realized. But the controller
designing schedule is intricate, and the process is also
difficult to understand. In [10], the authors utilize the integral
property of fractional differential function to synchronize
fractional chaotic system with nonidentical order. But the
authors neglect the result of fractional integration concerning

the initial value condition, and a different result can be gotten
under different initial value condition by integration, then the
approach cannot be effectively broaden.

Generally, synchronizing error systems converge to zero
in infinite time. But in some cases such as communication,
the synchronizing errors are usually demanded to converge
to zero in finite time. Finite-time synchronizing integer-
order chaotic has been studied [17, 18]. To the best of our
knowledge, synchronizing fractional-order in finite time has
rarely been reported.

Motivated by the above discussion, we propose a new
approach to design a controller to realize finite-time syn-
chronizing fractional order chaotic system with nonidentical
orders based on the properties of fractional differentiation.
The theorem is easy to understand.Numerical simulations are
used to verify the effectiveness of this approach.

The rest of the paper is organized as follows. In Section 2,
primary definitions and lemma about fractional-order differ-
entiation are introduced. In Section 3, based on the lemmas
of fractional calculus, a controller is designed to realize finite-
time synchronizing fractional-order chaotic Volta system
with nonidentical orders. Also, numerical simulation results
are presented in Section 4 to show the effectiveness of
the designed controller. Finally, the conclusion is made in
Section 5.
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2. Preliminaries

There are three commonly used definitions of the fractional-
order differential operator: Grunwald-Letnikov, Riemann-
Liouville, and Caputo definitions. In this paper, we study the
stability of fractional system based on the Caputo definition.

Definition 1. TheCaputo definition of fractional order can be
expressed as [19]
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where 𝑛 is the first integer which is not less than 𝛼, for
example, when 0 < 𝛼 ≤ 1, 𝑛 = 1, and Γ(⋅) is gamma function.
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Lemma 3 (see [20]). Consider
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Lemma 4 (see [21]). For 𝑎, 𝑏 > 0, 0 < 𝑐 < 1 (𝑎, 𝑏, 𝑐 ∈ 𝑅) the
following inequality holds:

(𝑎 + 𝑏)
𝑐
≤ 𝑎
𝑐
+ 𝑏
𝑐
. (4)

3. Finite-Time Synchronizing Nonidentical
Orders Fractional Chaotic Volta System

In this section, we investigate finite-time synchronizing
fractional-order chaotic Volta systems with nonidentical
orders.

The fractional-order Volta’s system is depicted by
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When system parameters (𝑎, 𝑏, 𝑐) = (19, 11, 0.73) and
order 𝛼 > 0.97, the system (5) has chaotic attractor [22].

Define the system (5) as the drive system, and the
response system is given as follows:
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controller to be designed.

According to Lemma 2, taking (𝛽 − 𝛼) derivative of both
sides of (5), we get
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Thus, the synchronizing system (5) and the system (6) with
nonidentical orders are transformed into the synchronizing
system (6) and system (7) with identical orders,

Define the error variables as
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Subtracting (7) from (6), we obtain the error dynamics
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The key problem is how to design the controller 𝑢(𝑡) to realize
chaotic synchronization in finite time.

Theorem 5. If the controller satisfies
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(10)

where −1 < 𝑟 < 1, 𝑘 > 0, and 𝜆 > 𝑐, the response system (6)
will synchronize with the derive system (7) in the finite time
𝑇 = (V𝛽−(1+𝑟)/2(0)(Γ(2)/𝑘Γ(2 + 𝛽))(Γ((1 − 𝑟)/2)Γ(1 + 𝛽)/Γ(𝛽 +

(1 − 𝑟)/2)))
1/𝛽.
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Figure 1: Time responses of state variables in the response system
and the drive system.

Proof. Substituting (10) into (9), we get
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Using Lemma 3, we have
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V(𝑇) = 0, that is to say, the synchronization is realized in
finite time𝑇 = (V𝛽−(1+𝑟)/2(0)(Γ(2)/𝑘Γ(2+𝛽))(Γ((1−𝑟)/2)Γ(1+
𝛽)/Γ(𝛽 + (1 − 𝑟)/2)))

1/𝛽. The proof is completed.
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4. Numerical Simulations

In this section, the simulation results are carried out to show
the effectiveness of the designed controller.

Take 𝜆 = 5, 𝑘 = 3, and 𝑟 = 0.8 and the order
of the drive system as 𝛼 = 0.975 and the order of the
response system as 𝛽 = 0.98; the initial values are selected
as (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (8, 2, 1) and (𝑦1(0), 𝑦2(0), 𝑦3(0)) =
(2, −10, −15). The numerical simulations are shown as Fig-
ures 1 and 2. We can see that the synchronization is achieved
in finite time from the simulation result.The response system
synchronizes with the drive system in finite time.

5. Conclusion

In this paper, we study the finite-time synchronization of
fractional chaotic systems with nonidentical orders. A new
approach is proposed to design the controller. The approach
is not only simple but also easy to understand, which
can broad the approach of synchronizing fractional chaotic
system. Numerical simulations show the effectiveness of the
approach.
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