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Abstract
The term sequential I/O is widely used in systems re-
search with the intuitive understanding that it means con-
secutive access. From a survey of the literature, though,
this intuitive understanding has translated into numerous,
inconsistent definitions. Since sequential I/O is such a
fundamental concept in systems research, we believe that
a sequentiality metric should allow us to compare access
patterns in a meaningful way.

We explore access properties that could be incorpo-
rated into potential metrics for sequential I/O including:
access size, gaps between accesses, multi-stream, and
inter-arrival time. We then analyze hundreds of large-
scale storage traces and discuss how potential metrics
compare. Interestingly, we find I/O traces considered
highly sequential by one metric can be highly random
to another metric. We further demonstrate that many
plausible metrics are weakly correlated, though metrics
weighted by size have more consistency. While there
may not be a single metric for sequential I/O that is best
in all cases, we believe systems researchers should more
carefully consider, and state, which definition they use.

1 Introduction
Sequential access is one of the most fundamental con-
cepts in systems research. As anecdotal evidence,
searching publications for variations of the term “sequen-
tial access” turned up tens of thousands of results. In
particular, storage researchers have proposed numerous
optimizations based on access patterns. Many storage
systems leverage sequentiality to reduce the random seek
overhead in hard disk drive (HDD) systems [14, 15]. As
straightforward as it sounds, however, the notion of se-
quential I/O has multiple definitions and interpretations.
The lack of clarity of the meaning of sequential I/O leads
to biased system design and incomparable results.

A strict, though limited, definition of sequential I/O
compares the number of consecutive addresses accessed
to the count of all accesses, which we call the Consec-
utive Access Ratio (CAR). However, consider accesses
to random addresses where the accesses in one trace are
always a few hundred bytes, while a second trace always
accesses hundreds of kilobytes at each randomly selected
location. Intuitively, the trace with more Consecutive
Bytes Accessed (CBA) is more sequential than the trace

with smaller accesses, which a simplistic metric would
fail to distinguish. A definition of sequential I/O should
be able to handle the complexity of real-world access pat-
terns and allow us to state that one pattern is more or less
sequential than another. Also, while hardware character-
istics such as sector reallocations ultimately determine
whether an access is sequential or not, it is useful to an-
alyze I/O patterns at higher system levels, such as the
patterns received by a storage server.

From surveying the literature, we have found multiple
definitions of sequential I/O (e.g., [3, 4, 5, 9, 11, 14, 15])
without much discussion of why a particular definition
was used. For example, if we use a metric based on
CAR [5, 6, 15], a particular trace we analyzed is ranked
4th out of 94 traces, but using CBA [9, 13] changes the
rank to 93rd. See §4.3 for details and examples.

The contributions of our work include 1) pointing out
the imprecise definition of sequential I/O; 2) a large-scale
analysis of sequentiality properties on hundreds of stor-
age traces; and 3) a recommendation that CBA should be
incorporated into a sequentiality metric.

2 Properties of Sequential I/O
To cover the wide range of real-world access patterns,
multiple properties affecting sequential access should be
considered. From the literature and based on our own
experiences, we present a set of properties that can be
classified along spatial and temporal dimensions, with a
sampling of citations included with each property. Along
the spatial dimension, we focus on the Logical Block Ad-
dress (LBA) of accesses and I/O size. For the tempo-
ral dimension, we focus on multi-stream interactions and
inter-arrival time. In the process, we consider sequential-
ity over time as well as the sequentiality of reads relative
to all accesses. We then present a set of metrics based
on combinations of these properties. We are not aware
of any previous work comparing sequentiality metrics,
though several memory cache pattern metrics have been
shown to be algebraically related [16].
Consecutive addresses. A common definition is that
the logical block address of an access is consecutive, or
nearly consecutive (within a specified range), with the
previous access; i.e. LBAi− (LBAi−1 + sizei−1) ∈ range.
We can further classify consecutive addresses into the
following cases:
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Figure 1: Four streams with different I/O sizes and access pat-
terns highlight different interpretations of sequentiality.

• Strictly consecutive. The range is set to zero,
which serves as the canonical definition of sequen-
tial access [5, 6, 15]. Because of device size limits,
a large request may be split into several consecutive
requests within a short time interval.
• Strided accesses1. The range includes small posi-

tive or negative values, allowing gaps, small back-
ward seeks, and re-access of an address to still be
considered sequential [7, 11]. Such patterns are
common, such as database join operations inside of
a nested-loop [14]. For hard disk storage, the range
could be a track size or a file system prefetch size.

CBA. The size of I/Os affects the amount of consecutive
bytes accessed, which the previous property ignores. We
measure how much data are accessed, on average, after
seeking to a non-consecutive address [9, 13].

We now switch to discussing temporal properties:
Interleaved streams. Multi-threaded programs leverage
multi-core architectures to overlap computation with I/O
accesses, and virtualization increases application consol-
idation. If accesses are interleaved, a multi-stream detec-
tor can help separate the accesses into potentially sequen-
tial, parallel streams. We implemented a multi-stream
detector that can handle up to k streams [3].
Inter-arrival time. If the inter-arrival time is longer
than a threshold, even for consecutive LBAs, we con-
sider them as non-sequential [4, 6]. For example, as the
inter-arrival time grows, there is an increased chance that
background tasks will issue I/O not recorded in a trace.

We explore two further aspects of access patterns:
Sequentiality over time. Access patterns may change,
so sequentiality can be calculated periodically. For ex-
ample, a workload in the near past can be used to predict
a workload in the near future [7, 15].
Segregate reads or writes. Since modern storage sys-
tems often use large write-buffers to service writes off
of the critical path, it is worth exploring sequentiality by
distinguishing reads from writes [3]. We analyzed the
mixture of reads and writes and then separately analyzed
the reads without writes.

1Strided access is sometimes defined as fixed address jumps, but we
use a broader definition including uneven jumps between addresses.

Family Metric SR MS IT Metric Family

F1
CAR-
based

M1 M9

F2
CBA-
based

M2 x M10
M3 x M11
M4 x M12
M5 x x M13
M6 x x M14
M7 x x M15
M8 x x x M16

Table 1: Sequentiality metrics based on CAR (F1 ) and CBA
(F2 ). CAR = Consecutive Access Ratio, CBA = Consecutive
Bytes Accessed, SR = stride range, MS = multi-stream, and
IT = inter-arrival time.

Examples. Figure 1 shows examples to illustrate how
sequentiality can be interpreted in different ways. There
are four streams (A, B, C, and D) issuing I/Os of size 1,
4, 3, and 2 units respectively. Virtual time increases from
left to right, and addresses increase vertically. Horizontal
arrows connect consecutive accesses for a stream, while
arrows with an elbow connect accesses with a stride.
Consider streams A and B from time 1-12. The canoni-
cal definition of consecutive access over all accesses is
the same (50% ignoring the start position). However,
if we consider CBA, the sequentiality metrics are 3 and
12, respectively, highlighting that large accesses could
be considered more sequential than small accesses. If
we consider an inter-arrival time constraint, the access at
time 50 for stream A might not be counted as sequential
to the previous access at time 9, because a background
task may intervene. Stream C re-accesses addresses 11-
13 and seeks backward at time 11, which complicates
the accounting of sequentiality. Stream D issues an I/O
with a 2-unit stride distance between each access. More-
over, if all 4 streams are serviced according to their vir-
tual time, then cycling between streams results in none
of the I/Os being strictly consecutive.
Sequentiality metrics. Table 1 summarizes the main se-
quentiality metrics we explored. Metric 1 (M1) is the
fraction of the number of consecutive accesses over all
accesses, with scores in the range [0,1]. M2-M8 add
properties to M1. Specifically, the stride range property
means that non-consecutive accesses will be counted as
sequential if the stride is within a threshold. The multi-
stream property assigns I/Os to one of k streams when
determining consecutive patterns. The inter-arrival time
property causes consecutive accesses to be counted as
non-consecutive if the inter-arrival time is more than a
threshold. In §4, we explain how appropriate values are
determined for stride range, multi-stream detection, and
inter-arrival time. M9 is defined as CBA, which takes
into account the size of consecutive accesses, and has
scores in the range (0,∞). M10-M16 are based on M9,
with additional properties. M1-M8 are called family 1
(F1 ) since M2-M8 are derived from M1. Similarly, M9-

2



M16 are collectively called F2 . For purely random I/O,
F1 metrics will have scores of zero, and F2 metrics will
have scores equal to the averaged I/O size.

3 Methodology and Traces
Our methodology to understand the impact of sequential-
ity properties is driven by analyzing I/O traces. We first
describe our approach to statistical analysis, followed by
our experimental traces.

3.1 Methodology

For each metric, we calculate the sequentiality of all
traces and then rank order the traces. Each metric, there-
fore, has an ordered list of traces, and we expect con-
sistent metrics to have consistently ordered lists. We
consider the rank order instead of the metric value itself
since our metrics have different ranges.

To measure the consistency of the rank-ordered lists,
we calculate Spearman’s ρ [12]. Spearman’s ρ ranges
from 1 to -1, indicating positive to negative correlation
between two ranked lists. Highly consistent metrics have
values near 1, values close to 0 indicate no correlation,
and negative values indicates large changes to the or-
dered lists. We also check the consistency of the most
sequential or random traces (top and bottom of the or-
dered lists) by using Kendall’s τ [12], which handles
ranked lists with non-overlapping values. Kendall’s τ

has the same range and interpretation as Spearman’s ρ .
If metrics are strongly correlated, then it is reasonable
to use the simplest metric. Otherwise, using a more
complicated metric that incorporates important proper-
ties should be considered.

3.2 Experimental Traces

The traces we studied include block-level storage traces,
both private [13] and publicly accessible [2], to enable
others to reproduce our results. Our analysis focuses on
block traces as compared to file system traces, since the
sequentiality of block I/O is simplest to understand.
Private traces: We selected 294 traces of EMC VMAX
primary storage servers that spanned at least 24 hours
and had at least 1GB of both reads and writes [13].
Public traces: We created a set of 94 public traces from
4 repositories. The repositories are:
• MS Production Server: 50 storage traces from

a diverse set of Microsoft Corporation production
servers captured using event tracing for windows in-
strumentation with at least 700k accesses [2, 7].
• MSR-Cambridge: 36 block level traces for 168

hours on 13 servers, representing a typical enter-
prise data center [2, 10].
• HP-IBM: Two I/O traces from OLTP applications

running at two large financial institutions and three
I/O traces from a popular search engine [1].
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Figure 2: Determining appropriate values for stride range,
multi-stream detection, and inter-arrival time properties.

• FIU: Florida International University collected 3
storage traces across multiple weeks for web server
VMs, an email server, and home directories [2, 8].

An important question is whether our traces span se-
quential and random access patterns. For this analysis,
we present results with M5 and M13 because they al-
low small strides and multiple streams. Using the default
parameters (§4.1), for private traces, M5 scores are .03-
.99 and M13 scores are 9KB-423MB. For public traces,
M5 scores are .05-.98 and M13 scores are 5KB-2.8MB.
These results suggest that our traces include highly se-
quential and highly random patterns for analysis.

4 Evaluation
In this section, we analyze (1) the appropriate values for
sequentiality properties, (2) our proposed metrics on all
of the traces, (3) the consistency of the most and least se-
quential traces across metrics, and (4) temporal sequen-
tiality across metrics.

4.1 Property Values

Since the parameter space is large, before presenting
overall results, we determine appropriate values for rel-
evant properties to classify an I/O as sequential. We ex-
plored a large range of possible values for each property:
stride distance including back-seeks from [-1MB, 1MB]
(11 values), multi-stream detector history list size from 1
to 32 (5 values), and inter-arrival time threshold from 1us
to 1s (5 values). For each, we used both the CAR (M1)
and CBA (M9) metrics, for both all-accesses and only
reads. The cross-product of these parameters results in
over 1000 different combinations that we explored.

Figure 2 shows selected experiments to determine ap-
propriate values for stride range, multi-stream number,
and inter-access time. M1 increases as the values for
stride range or multi-stream detection increase. We pick
a point above the area of rapid increase in the figures as
the appropriate value: [-64KB, 64KB] for stride range
and 16 for multi-stream detector. Note that the stride
range is much larger than a sector size (usually 512B,
though new disks use 4KB); this large value is likely
related to the file system prefetch size or read-ahead
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Figure 3: Spearman’s ρ rank correlation of sequentiality met-
rics for read accesses (top-left) and all-accesses (bottom-right).

size. For inter-arrival time, there is a sizable differ-
ence between 100ms and disabling the inter-arrival time
threshold (n/a), however there is less difference from
100ms to 1s, so we selected 100ms. All results are con-
sistent with M9. While these values worked well for
both the public and private traces, the values should be
updated when domain-specific information is available
(e.g., background task schedules, degree of parallelism).

4.2 Ranking Comparison

Figure 3 shows the Spearman’s ρ rank correlation coef-
ficient for the private and public block traces. Since cor-
relation is symmetric, we split the figure into top-left and
bottom-right regions, representing results for read-only
accesses and all-accesses, respectively. As an example
from the public traces, <row 3, column 4> shows a cor-
relation score of 0.63 for M3 and M4 for all-accesses,
while <4, 3> shows a correlation score of 0.94 for read-
only accesses using the same pair of metrics.

First, for both private and public traces, most of the
metrics are positively correlated within families. The
correlation of metrics across families (F1 and F2 ) is
weaker. Within metric family F2 , the correlation is high
(≥ 0.65), which indicates I/O size is a strong factor
when considering sequentiality. Specifically, for both
data sets, there is a low correlation in F1 when stride
range was introduced. The multi-stream and inter-arrival
time properties are largely correlated when not including
the presence of stride range for F1 . Second, the average
correlation for F1 is lower than in F2 . Considering
all-accesses, the average correlation for F1 is 0.21
versus 0.58 for F2 for private traces and 0.09 versus 0.92
for public traces. The read-access results have similar
trends, though correlation scores are lower. Third, 96
of the 256 pairs of metrics have a negative correlation,
suggesting their rankings were at least partially reversed.
M3 and M9 have the most negative correlation (-0.53).
This is because the MS Production traces have large
I/Os per seek (sequential for M9 but not M3), and the
MSR-Cambridge traces have multi-stream accesses
(sequential for M3 but not M9).
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Figure 4: Kendall’s τ rank correlation of sequentiality met-
rics for the 25% most sequential (top-left) and most random
(bottom-right) traces.

Several metrics in the F2 family, based on CBA, are
highly correlated (> 0.99), and we verified that the rank-
ings were nearly identical. This shows the stability of
incorporating CBA and that M9 is a good default metric
unless domain-specific knowledge justifies adding spe-
cific properties such as multi-stream detection.

Besides measuring correlation between metrics, we
also analyzed the sequentiality scores directly. The high-
est average sequentiality metric is obtained when all
properties except inter-arrival time are considered, be-
cause inter-arrival time breaks sequential accesses into
non-sequential accesses.

To summarize, this experiment shows that the order of
ranking can vary significantly when metrics are config-
ured with different sequential properties, but incorporat-
ing CBA leads to generally stable results.

4.3 Most/Least Sequential Comparison

Since many storage systems are optimized for highly se-
quential or highly random patterns (as compared to a
broad range of patterns), we next focus on the top 25%
most sequential and most random ranking lists to deter-
mine if they are consistent across metrics. One might
hope that sequentiality metrics are at least consistent for
extremely sequential or random traces.

Figure 4 plots Kendall’s τ for both data sets (recall
from §3.1 that Spearman’s ρ cannot be used in this com-
parison). Correlations for the 25% most sequential and
most random ranking lists are plotted in the top-left and
bottom-right triangles, respectively. Although the results
are not directly comparable to the Spearman’s ρ exper-
iments, the overall correlation trend is similar: the F2
family is more internally consistent than F1 , and there is
low correlation between the metric families. Correlation
scores were lower overall, indicating that sequentiality
metrics are not consistent, even for the most sequential
or random traces.

Consider a few examples from the 94 public traces.
Comparing M1 and M2 shows the impact of stride range:
only a few of the most sequential traces are in common
between the metrics, “web 2” [2, 10] moved from 73rd
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Figure 5: Temporal sequentiality. F2 is significantly more
consistent than F1 . The y-axis is logscale and truncated at 32.

to 6th, and the largest move was 69 positions. Com-
paring M1 and M3, “rsrch 1” [2, 10] moved from 75th
to 21st when adding multi-stream detection. Comparing
M1 and M9 (CBA), 0% of the most sequential traces were
in common, and “Financial1” [1] moved from 4th to 93rd
because there were many consecutive, small I/Os.

4.4 Temporal Sequentiality

Next we study the variation of sequentiality over time,
since access patterns may vary within a trace. For this
experiment, we calculate the sequentiality metrics ev-
ery 10 minutes. (We also studied larger time granular-
ities, which smoothed results.) Then we use the max-
to-median ratio of the sampled data as an indication of
the sequentiality variability of one trace. The larger the
ratio, the greater the variability. Similar to our previous
analysis, if the definition of sequential I/O is consistent,
then metrics will have similar max-to-median ratios. Fig-
ure 5 shows the temporal sequentiality distribution with
a box and whiskers plot including min, 1st quartile, me-
dian, 3rd quartile, and max (ordered bottom to top) of
each metric for both private and public traces.

Clearly, metrics from F1 provide an inconsistent view
of sequentiality variation, because they vary significantly
in terms of quartile, median and max values. For the pri-
vate traces, the std. dev. of the median is 0.29 for F1 and
0.04 for F2 . Metrics in F2 show a more consistent dis-
tribution, which again shows the importance of incorpo-
rating CBA into a sequentiality metric. We truncate the
Y-axis at 32 for better visualization, because the maxi-
mum value for F1 is 384. The maximum for F2 is less
than 52, and the maximum values are clustered around
20 for the private traces and 8 for the public traces.

5 Discussion and Future Work
Our work demonstrates the challenges of designing a
consistent definition of sequentiality from both spatial
and temporal perspectives. We further suggest systems
researchers consider the following principles if possible:
I/O size matters. The canonical sequentiality defini-
tion fails to capture the impact of I/O size: M1 considers
small, consecutive I/Os more sequential than large, non-
consecutive I/Os, even if the CBA values are identical.
Because I/Os can be split or merged at various storage

layers, we feel that CBA is more indicative of sequen-
tial patterns than I/O addresses. As we demonstrated in
§4, when including I/O size in sequentiality metrics (F2 )
there is greater consistency to quantify access patterns.
Stride range matters. The strictly consecutive defini-
tion of sequentiality is too restrictive in practice. Since
many storage systems have internal read-ahead units
(e.g. tracks), non-consecutive accesses with small strides
are effectively treated as sequential.
Incorporate domain knowledge. When a metric for se-
quential access is based on a single formula, it cannot
perfectly represent all workloads and all situations. Sys-
tem designers should therefore apply domain knowledge
(e.g. specific prefetch scheme in a file system) and define
their sequentiality metrics accordingly.

In conclusion, this paper demonstrates the controversy
of sequentiality properties and its impact on sequentiality
metrics. While our analysis has been on storage access
patterns, sequentiality is important in other domains such
as for DRAM access or synthetic I/O generation, which
we leave to future work. Finally, while we have focused
on sequentiality, there are other access pattern attributes
that deserve a more rigorous definition.
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