

Multi-processor system-level synthesis for multiple
applications on platform FPGA
Citation for published version (APA):
Kumar, A., Fernando, S. D., Ha, Y., Mesman, B., & Corporaal, H. (2007). Multi-processor system-level synthesis
for multiple applications on platform FPGA. In K. Bertels (Ed.), International Conference on Field Programmable
Logic and Applications, 2007 : FPL 2007 ; 27 - 29 Aug. 2007, Amsterdam, The Netherlands (pp. 92-97).
Piscataway: Institute of Electrical and Electronics Engineers. DOI: 10.1109/FPL.2007.4380631

DOI:
10.1109/FPL.2007.4380631

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 01. Jul. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357262568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/FPL.2007.4380631
https://research.tue.nl/en/publications/multiprocessor-systemlevel-synthesis-for-multiple-applications-on-platform-fpga(e8ae6729-3889-492c-9cb9-3c126b04f23c).html

MULTI-PROCESSOR SYSTEM-LEVEL SYNTHESIS FOR MULTIPLE APPLICATIONS
ON PLATFORM FPGA

Akash Kumar1,2,∗ Shakith Fernando2, Yajun Ha2, Bart Mesman1 and Henk Corporaal1
1Eindhoven University of Technology, Eindhoven, The Netherlands

2ECE Department, National University of Singapore, Singapore
Email: a.kumar@tue.nl

ABSTRACT
Multiprocessor systems-on-chip (MPSoC) are being devel-

oped in increasing numbers to support the high number of

applications running on modern embedded systems. De-

signing and programming such systems prove to be a major

challenge. Most of the current design methodologies rely on

creating the design by hand, and are therefore error-prone

and time-consuming. This also limits the number of design

points that can be explored. While some efforts have been

made to automate the flow and raise the abstraction level,

these are still limited to single-application designs.

In this paper, we present a design methodology to gen-

erate and program MPSoC designs in a systematic and au-
tomated way for multiple applications. The architecture is
automatically inferred from the application specifications,

and customized for it. The flow is ideal for fast design space

exploration (DSE) in MPSoC systems. We present results of

a case study to compute the buffer-throughput trade-offs in

real-life applications, H263 and JPEG decoders. The gener-

ation of the entire project takes about 100ms, and the whole

DSE was completed in 45 minutes, including the FPGA

mapping and synthesis.

1. INTRODUCTION

New applications for embedded systems demand com-

plex multi-processor designs to meet real-time deadlines

while achieving other critical design constraints like low

power consumption and low area. With high consumer

demand, the time-to-market has significantly reduced [1].

Multi-Processor Systems-on-Chips (MPSoCs) have been

proposed as a promising solution for all such problems. But

one of the key design challenges that remain is the fast de-

sign exploration of software and hardware implementation

alternatives with accurate performance evaluation.

With the advent of multiple applications in embedded

systems (e.g. smart phones, PDA, set-top boxes), this de-

sign problem extends to performance evaluation of multiple

use-cases. A use-case is defined as the combination of ap-

plications that are active from all possible applications. Ex-

ploring their software and hardware implementation alter-

natives adds a new dimension to this design challenge. As

shown in Figure 1, the ideal design flow to overcome this

∗This research was supported by HiPEAC Institution grant

challenge is to extract the application specification from the

C-code, sequential or parallel, and then use that to generate

and synthesize the MPSoC platform. Unfortunately, the cur-

rent design tools available only allow for single application,

as shown by the shaded area in Figure 1. In addition, their

design automation is limited [2, 3, 4], forcing designers to

resort to manual architectural design which is time consum-

ing and error-prone. This makes design space exploration

(DSE) slow and often infeasible [3].

Application Profiling

MPSoC Synthesis Flow

Appl_0.xml

Multiprocessor System

Appl_1.xml

Appl_2.cAppl_1.cAppl_0.c

Appl_2.xml

Fig. 1. Overall design flow

In this paper, we present MAMPS (Multi-Application
Multi-Processor Synthesis) - a design-flow that takes in
application(s) specifications and generates the entire MP-

SoC, specific to the input application(s) together with cor-

responding software projects for automated synthesis. This

allows the design to be directly implemented on the target

architecture. Applications are specified in the form of Syn-

chronous Data Flow (SDF) graphs [5, 6]. SDF graphs are

often used for modeling modern DSP applications [6] and

for designing concurrent multimedia applications.

Our flow is unique in two aspects: (1) it allows fast

DSE by automating the design generation and exploration,

and (2) it supports multiple applications. To the best of our

knowledge, there is no other existing flow to automatically

map multiple applications to an MPSoC platform. The de-

sign space increases exponentially with increasing number

of applications running concurrently; our flow provides a

quick solution to that. To ensure multiple applications are

able to execute concurrently, (1) we use non-blocking reads

and writes that do not cause deadlock even with multiple

1-4244-1060-6/07/$25.00 ©2007 IEEE. 92

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 17, 2009 at 05:59 from IEEE Xplore. Restrictions apply.

applications, (2) we have an arbiter that ensures fairness and

skips non-ready actors, and (3) we map channels to individ-

ual FIFOs to avoid head-of-line blocking.

The flow is used to develop a tool to generate designs tar-

geting Xilinx platform FPGAs. This MAMPS tool is made
available online for use by research community at [7]. FP-

GAs were selected as the target architecture as they allow

rapid prototyping and testing. The tool is used to generate

several multiple-application designs that have been tested

on Xilinx University Virtex II Pro Board (XUPV2P) [8].

We present a case study on how our methodology can be

used for design space exploration using JPEG and H263 de-

coders. We were able to explore 24 buffer-throughput trade-

off points with both applications running concurrently on

real FPGA in about 45 minutes, including synthesis time.

The rest of the paper is organized as follows. Section

2 reviews the related work for architecture-generation and

synthesis flows for multiprocessor systems. Section 3 in-

troduces SDF Graphs. Section 4 gives an overview of our

flow, MAMPS, while Section 5 describes the tool imple-
mentation. Section 6 presents results of experiments done

to evaluate our methodology. Section 7 concludes the paper

and gives a direction for future work.

2. RELATED WORK

The problem of mapping an application to architecture

has been widely studied in literature. One of the recent

works that is most related to our research is ESPAM [2].

This uses Kahn Process Networks (KPN) [9] for application

specification. In our approach, we use SDF [5] for applica-

tion specification instead. Further, our approach supports

mapping of multiple applications, while ESPAM is limited

for single applications. This is imperative for developing

modern embedded systems which support more than tens

of applications on a single MPSoC. The same difference

can be seen between our approach and the one proposed in

[4] where an exploration framework to build efficient FPGA

multiprocessors is proposed.

The Compaan/Laura design-flow presented in [10] also

uses KPN specification for mapping applications to FPGAs.

However, their approach is limited to processor and a co-

processor. Our approach aims at synthesizing complete MP-

SoC designs. Another approach for generating application-

specific MPSoC architectures is presented in [3]. However,

most of the steps in this approach are done manually. Ex-

ploring multiple design iterations is therefore not feasible.

In our flow, the entire flow is automated, including the gen-

eration of the final bit file that runs directly on the FPGA.

Yet another flow for generating MPSoC for FPGA has

been presented in [11]. However, this flow focuses on ge-

neric MPSoC and not on application-specific architectures.

Further, the work in [11] uses networks-on-chip for com-

munication fabric, while in our approach dedicated links are

Table 1. Comparison of various approaches for providing
performance estimates

SDF
3 [12] POOSL [13] ESPAM [2] MAMPS

Approach Used Analysis Simulation FPGA FPGA

Model Used SDF SDF KPN SDF

Single Appl Yes Yes Yes Yes

Multiple Appl No Yes No Yes

Speed Fastest Slow Fast Fast

Accuracy Less High Highest Highest

Dedicated FIFO N. A. No No Yes

Arbiter Support N. A. Yes N. A. Yes

used for communication to remove resource contention.

Xilinx provides a tool-chain as well to generate designs

with multiple processors and peripherals [8]. However, most

of the features are limited to designs with only a bus-based

processor-coprocessor pair with shared-memory. It is very

time-consuming and error-prone to generate an MPSoC ar-

chitecture and the corresponding software projects to run

on the system. In our approach, MPSoC architecture is au-

tomatically generated together with the respective software

projects for each core.

Table 1 shows the various design approaches that pro-

vide estimates of application performance by variousmeans.

The first method uses SDFmodels and computes the through-

put of the application by analyzing the application graph.

However, it is only able to predict the performance of sin-

gle applications. The simulation approach presented in [13]

uses POOSL [14] for providing application performance es-

timates. This is more accurate than analysis since more de-

tails can be modeled and their effects are measured using

simulations. ESPAM is closest to our approach as they also

use FPGA, but they do not support multiple applications.

MAMPS supports multiple applications, and provides fast
and accurate results.

3. SYNCHRONOUS DATA FLOWGRAPHS

1

A

B

C
D

5 7 6

10

4 2

4

4

11

3

3

1

Fig. 2. Example of an SDF Graph

Figure 2 shows an example of an SDF Graph. There are

four actors in this graph. As in a typical data flow graph,

a directed edge represents the dependency between tasks.

Tasks also need some input data (or control information)

before they can start and usually also produce some output

93

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 17, 2009 at 05:59 from IEEE Xplore. Restrictions apply.

data; such information is referred to as tokens. Actor exe-
cution is also called firing. An actor is called ready when
it has sufficient input tokens on all its input edges and suf-

ficient buffer space on all its output channels; an actor can

only fire when it is ready.

The edges may also contain initial tokens, indicated by
bullets on the edges, as seen on the edge from actor C to A

in Figure 2. Buffers may be modeled as an edge with initial

tokens. In such cases, the number of tokens on that edge in-

dicates the buffer size available. When an actor writes data

to such channels, the available size reduces; when the re-

ceiving actor consumes this data, the available buffer i.e. the

token count, increases.

In the above example, only A can start execution from

the initial state, since the required number of tokens are

present on all of its incoming edges. Once A has finished

execution it will produce 3 tokens on the edge to B. B can

then proceed as it has enough tokens and upon completion

produce 4 tokens on the edge to C.

4. MAMPS FLOW OVERVIEW

Topology
Software Project
for Processors

Design
Project

A1 FIFO

A0 FIFO

1

1

2

1 2
1

1

11

2

a0

c0

b0

d0

SDF

2

2

22

2

2
a1

b1c1

Proc 0

b0, b1

Proc 1

c0, c1

Proc 2Proc 3

d0

a0, a1

MPSoC Platform

Application Specification

Appl0 Appl1

Hardware

Platform Description

Fig. 3. Design flow

In this section, we present an overviewofMulti-Applica-

tion Multi-Processor Synthesis (MAMPS). Figure 3 shows
an overviewof our design flow. The application-descriptions

are specified in the form of SDF graphs, which are used to

generate the hardware topology. The software project for

each core is produced to model the application(s) behavior.

The project files specific to the target architecture are also

produced to link the software and hardware topology. The

desired MPSoC platform is then generated.

For example, in Figure 3, two example applications

Appl0 and Appl1 are shown with 4 and 3 actors respec-

tively. From these graphs, MAMPS generates the desired
software and hardware components. The generated design

in this example, has four processors with actors a0 and a1

sharing Proc0, while d0 being the only actor executing on

Proc3. The corresponding edges in the graphs are mapped

to FIFO (first-in-first-out) channels as shown.

The flow can be used to design multiprocessor systems

that support multiple applications. The target platform can

be either FPGA or even an ASIC design. The current tool

implemented uses Xilinx tool-chain (explainedmore in Sec-

tion 5). The target architecture in this tool is Xilinx Virtex

II Pro FPGAs. Even for designs that target ASIC platforms,

our tool is useful for doing rapid prototyping and perfor-

mance evaluation.

4.1. Application Specification

<application id="H263">
<actor name="VLD">

<port name="Recon" type="in" rate="1"/>
<port name="IQ" type="out" rate="2376"/>
<executionTime time="120000"/>

</actor>
<actor name="IQ">

<port name="VLD" type="in" rate="1188"/>
<port name="IDCT" type="out" rate="1188"/>
<executionTime time="9600"/>

</actor>

Fig. 4. Snippet of H263 application specification.

9,600

30,000

28,800

VLD

IQ

Reconstruction

2376

1

1

2

1188

1188

1188

2376

IDCT

1188

120,000

Fig. 5. SDF graph for H263 application

Application specification forms an important part of the

flow. The applications for our flow are specified in xml for-
mat. A snippet of application specification file for H263 de-

coder is shown in Figure 4. The corresponding SDF graph is

shown in Figure 5. The application here has been modeled

from the data presented in [15]. The figures illustrate how

easy it is to write the application-specification.

While the specification above is obtained through applica-

tion profiling, it is also possible to use tools to obtain the

SDF description for an application from its code directly.

Compaan [10] is one such example that converts sequential

description of an application into concurrent tasks1. These
can then be converted into SDF graphs easily.

1It actually converts a sequential application into a limited set of KPN
graph, namely graphs that are also cyclo-static data flow graphs (CDFG).

94

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 17, 2009 at 05:59 from IEEE Xplore. Restrictions apply.

The specification file contains details about how many

actors are present in the application, and how they are con-

nected to the other actors. The execution time of the actors

and their memory usage on the processing core is also speci-

fied. For each channel present in the graph, the file describes

if there are any initial tokens present on it. The buffer capac-

ity of a particular channel is specified as well.

When multiple applications are to be mapped to a com-

mon architecture, our flow allows use-case depiction. Very

often in a given system, the system might support multiple

applications, but only a few of them might be active at a

given point in time. The use-case information may be sup-

plied at design time together with application specification.

4.2. Platform Generation

From the xml descriptions, the platform description is
generated. For single application, each actor is mapped on

a separate processor node, while for multiple applications,

nodes are shared among actors of different applications. The

total number of processors in the final architecture corre-

sponds to the maximum number of actors in any application.

For example, in Figure 3, a total of 4 processors are used in

the design. For processors that have multiple actors mapped

onto them, an arbitration scheme is also generated.

All the edges in an application are mapped on a unique

FIFO channel. This creates an architecture that mimics the

applications directly. Unlike processor sharing for multiple

applications, the FIFO links are dedicated as can be seen in

Figure 3. As opposed to a network or a bus-based infras-

tructure, the dedicated links remove the possible sources of

contention that can limit the performance.

Since we have multiple applications running concur-

rently, there is often more than one link between some pro-

cessors. Even in such cases, multiple FIFO channels are cre-

ated. This avoids head-of-line blocking that can occur if one

FIFO is shared for multiple channels [16]. Further, multiple

channels reduce the sources of contention in the system.

As mentioned in Section 3, firing of an actor requires

sufficient input tokens to be present on all incoming edges.

This implies that an actor might not be able to execute if

the incoming buffers underflow. The same holds when the

output buffers of an actor fill up. While this does not cause

any problem when only one actor is mapped on a node, in

the case of multiple actors, the other possibly ready actors
might not be able to execute while the processor sits idle.

To avoid this, non-blocking reads and writes are carried out,

and if any read or write is unsuccessful, the processor is not

blocked, but simply executes the other actor for which there

are sufficient input tokens and space on all output edges.

5. TOOL IMPLEMENTATION

In this section, we describe the tool we developed based

on our flow to target Xilinx FPGA architecture. The pro-

cessors in the MPSoC flow are mapped to microblaze pro-

cessors [8]. The FIFO links are mapped on to Fast Simplex

Links (FSL). These are uni-directional point-to-point com-

munication channels used to perform fast communication2.
The FSL depth is set according to the buffer-size specified

in the application.

MB 1

Timer UART DDR

RAM

SysACE

CF Card

OPB

FSL Links

Recon

MB 0

VLD IDCT

MB 2 MB 3
IQ

Fig. 6. Hardware topology of the generated design for H263

Example architecture for H263 application platform is

shown in Figure 6. This consists of several microblazes

with each actor mapped to a unique processor with addi-

tional peripherals such as Timer, UART, SysACE and DDR-

RAM. While the UART is useful for debugging the system,

SysACE Compact Flash card allows for convenient perfor-

mance evaluation for multiple use-cases by running contin-

uously without external user interaction. Timer Module and

DDR RAM are used for profiling the application and for ex-

ternal memory access respectively.

In our tool, in addition to the hardware topology, the cor-

responding software for each processing core is also gener-

ated automatically. For each software project, appropriate

functions are inserted that model the behavior of the task

mapped on the processor. This can be a simple delay func-

tion if the behavior is not specified. If the actual source code

for the function is provided, the same can be easily inserted

to the project. This also allows functional verification of ap-

plications on a real hardware platform. Routines for measur-

ing performance, and sending results to the serial-port and

to the CF card on-board are also generated forMB0.
Our software generation ensures that the tokens are read

from (and written to) the appropriate FSL link in order to

maintain progress, and to ensure correct functionality. Writ-

ing data to the wrong link can easily throw the system in

deadlock. XPS project files are also automatically gener-

ated to provide the necessary interface between hardware

and software components.

6. EXPERIMENTS AND RESULTS

In this section, we present some of the results that

were obtained by implementing several real and randomly-

generated application SDF graphs using our design flow de-

scribed in Section 4. The main objective of this experiment

2Current version of MicroBlaze from Xilinx supports up to 8 FSL links

95

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 17, 2009 at 05:59 from IEEE Xplore. Restrictions apply.

is to show that our flow reduces the implementation gap be-

tween system level and RTL level design. We show that our

flow allows for more accurate performance evaluation us-

ing an emulation platform compared to simulation [14] and

analysis. In addition, we present a case study using JPEG

and H263 applications to show how our tool can be used for

efficient design space exploration for multiple application

use-cases. Our implementation platform is the Xilinx XUP

Virtex II Pro Development Board with an xc2vp30 FPGA
on-board. Xilinx EDK 7.1i and ISE 7.1i were used for syn-

thesis and implementation. The newer versions of the corre-

sponding tools can also use the generated designs by auto-

matically upgrading them. All tools run on a Pentium Core

at 3GHz with 1GB of RAM.

Table 2. Comparison of throughput for different applica-
tions obtained on FPGA with simulation

Appl 0 Appl 1

Use-case Sim FPGA Var % Sim FPGA Var %

A 3.96 3.30 -20.05 1.99 2.15 7.49
B 3.59 3.31 -8.63 1.80 1.61 -11.90

C 2.64 2.74 3.67 1.88 1.60 -17.37

D 3.82 3.59 -6.32 0.85 0.77 -10.51

E 4.31 4.04 -6.82 1.44 1.35 -6.80

F 5.10 4.73 -7.75 0.51 0.48 -5.79

G 4.45 4.25 -4.55 1.11 0.97 -14.66

H 4.63 4.18 -10.65 1.16 1.05 -10.29

I 4.54 4.03 -12.48 2.27 2.13 -6.51

J 4.33 3.97 -8.92 1.08 1.00 -8.41

In order to verify our design flow, we generated 10 ran-

dom application graphs with 8 to 10 actors each using the

tool SDF 3 [12], and generated designs with 2 applications

running concurrently. Results of 10 such random combi-

nations have been summarized in Table 2. The results are

compared with those obtained through simulation. We ob-

serve that in general, the application throughput measured

on FPGA is lower than simulation by about 8%. This is

because our simulation model does not take into account

the communication overhead. However, in some cases we

observe that performance of some applications improved

(shown in bold in Table 2). This is rather unexpected, but

easily explained when going into a bit of detail.

Communication overhead leads to the actor execution

taking somewhat longer than expected thereby delaying the

start of the successive actor. This causes the performance of

that application to drop. However, since we are dealing with

multiple application use-cases, this late arrival of one actor

might cause the other application to execute earlier than that

in simulation. This is exactly what we see in the results.

For the two use-cases in which this happens - namely A and

C, the throughput of the other applications is significantly

lower: 20 and 17 percent respectively. This also proves that

the use-cases of multiple applications concurrently execut-

ing is more complex to analyze and reason about than a sin-

gle application case.

6.1. DSE Case Study

Here we present a case study of using our design

methodology for doing a design space exploration and com-

puting the optimal buffer requirement. Minimizing buffer-

size is an important objective when designing embedded

systems. We explore the trade-off between buffer-size used

and throughput obtained for multiple applications. For sin-

gle applications, the analysis is easier and has been pre-

sented earlier [17]. Formultiple applications, it is non-trivial

to predict resource usage and performance, because multi-

ple applications cause interference when they compete for

resources. This has been proven as shown in Table 2 above.

The case study is performed for JPEG and H263 decoder

applications. The SDF models of the two applications were

obtained from the description in [18] and [15] respectively.

In this case study, the buffer size has been modeled by the

initial tokens present on the incoming edge of the first ac-

tor. The higher this initial-token count, the higher the buffer

needed to store the output data. In the case of H263, each

token corresponds to an entire decoded frame, while in the

case of JPEG, it is the complete image.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

T
hr

ou
gh

pu
t o

f J
P

E
G

 (
x

10
0)

Number of initial tokens in JPEG

H263: not active

H263: 1 token

H263: 2, 3 tokens

Fig. 7. Effect of varying initial tokens on JPEG throughput

Figure 7 shows how the throughput of JPEG decoder

varies with increasing number of tokens in the graph. A cou-

ple of observations can be made from this figure. When the

number of tokens (i.e. buffer-size in real application) is in-

creased, the throughput also increases until a certain point,

after which it saturates. When JPEG decoder is the only

application running (obtained by setting the initial tokens in

H263 to zero), we observe that its throughput increases al-

96

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 17, 2009 at 05:59 from IEEE Xplore. Restrictions apply.

Table 3. Time spent on DSE of JPEG-H263 combination
Manual Generating Complete

Design Single Design DSE

Hardware Generation ∼ 2 days 40ms 40ms

Software Generation ∼ 3 days 60ms 60ms

Hardware Synthesis 35:40 35:40 35:40

Software Synthesis 0:25 0:25 10:00

Total Time ∼ 5 days 36:05 45:40

Iterations 1 1 24

Average Time ∼ 5 days 36:05 1:54

Speedup – 1 19

most linearly till 3. We further observe that increasing the

initial tokens of H263 worsens the performance of JPEG,

but only until a certain point.

Design Time

The time spent on the exploration is an important aspect

when estimating the performance of big designs. The JPEG-

H263 system was also designed by hand to estimate the time

gained by using our tool. The hardware and software devel-

opment took about 5 days in total to obtain an operational

system. In contrast, our tool takes a mere 100ms to generate

the complete design. Table 3 shows the time spent on vari-

ous parts of the flow. The Xilinx tools take about 36 min to

generate the bit file together with the appropriate instruction

and data memories for each core in the design.

Our approach is very fast and is further optimized by

modifying only the relevant software and keeping the same

hardware design for different use-cases. Since software syn-

thesis step takes only about 25 sec in our case study, the en-

tire DSE for 24 design points was carried out in about 45

min. This hardware-software co-design approach results in

a speed-up of about 19 when compared to generating a new

hardware for each iteration. As the number of design points

are increased, the cost of generating the hardware becomes

negligible and each iteration takes only 25 seconds. The de-

sign occupies about 40% of logic resources on FPGA and

close to 50% of available memory. This study is only an

illustration of the usefulness of our approach for DSE for

multiprocessor systems.

7. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose a design-flow to generate

application-specific architecture designs. Our approach

takes the description of the application(s) and produces the

corresponding MPSoC platform. This is the first flow that

allows mapping of multiple applications on a single plat-

form. The tool developed using this flow is made available

online for the benefit of research community [7]. The flow

allows the designers to traverse the design space quickly,

thus making DSE of even concurrently executing applica-

tions feasible. A case study is presented to find the trade-

offs between buffer-size and performance when JPEG and

H263 run together on a platform.

However, the number of applications that can be con-

currently mapped on the FPGA is limited by the hardware

resources present. When synthesizing designs with applica-

tions of 8-10 actors and 12-15 channels, we found that it was

difficult to map more than four applications simultaneously

due to resource constraints, namely block RAMs. A bigger

FPGA would certainly allow bigger designs to be tested.

For future work, we would like to develop and automate

more ways of design space exploration, for example trying

different partitions of applications. We would also like to try

different kinds of arbiters in the design to improve fairness

and allow for load-balancing between multiple applications.

We also wish to extend MAMPS to include support for gen-

erating heterogeneous platforms in our flow.

8. REFERENCES
[1] A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips. Morgan
Kaufmann, 2004.

[2] H. Nikolov et al., “Multi-processor system design with ESPAM,” 4th
CODES+ISSS, pp. 211–216, 2006.

[3] D. Lyonnard et al., “Automatic generation of application-specific ar-
chitectures for heterogeneous multiprocessor system-on-chip,” 38th
DAC, pp. 518–523, 2001.

[4] Y. Jin et al., “An automated exploration framework for FPGA-
based soft multiprocessor systems,” 3rd CODES+ISSS, pp. 273–
278, 2005.

[5] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-

chronous dataflow programs for digital signal processing,” IEEE
Transactions on Computers, 1987.

[6] S. Siram and S. Bhattacharyya, Embedded Multiprocessors;
Scheduling and Synchronization. Marcel Dekker, 2000.

[7] “Application-Specific MPSoC Architecture Synthesis,” Available

from: Username: guest, Password: fpl
http://www.ics.ele.tue.nl/˜akash/mamps/ , 2007.

[8] “Xilinx,” Available from: http://www.xilinx.com, 2007.

[9] G. Kahn, “The semantics of a simple language for parallel program-

ming,” Information Processing, vol. 74, pp. 471–475, 1974.
[10] T. Stefanov et al., “System design using Kahn process networks: the

Compaan/Laura approach,” DATE, pp. 340–345, 2004.
[11] A. Kumar et al., “An FPGA Design Flow For Reconfigurable

Network-Based Multi-Processor Systems On Chip,” DATE, pp. 117–
122, 2007.

[12] S. Stuijk et al., “SDF3: SDF For Free,” 6th ACSD, pp. 276–278,
2006.

[13] A. Kumar et al., “Resource manager for non-preemptive heteroge-
neous multiprocessor system-on-chip,” 4th Workshop on Estimedia,
pp. 33–38, 2006.

[14] B. Theelen et al., “Software/Hardware Engineering with the Parallel
Object-Oriented Specification Langauge,” in 5th MEMOCODE, pp.
139–148, 2007.

[15] R. Hoes, “Predictable Dynamic Behavior in NoC-based MPSoC,”

Available from: www.es.ele.tue.nl/epicurus/, 2004.

[16] “Head-of-line blocking,” Available from:

http://en.wikipedia.org/wiki/Head-of-line blocking, 2007.

[17] S. Stuijk et al., “Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs,” 43rd DAC,
pp. 899–904, 2006.

[18] E. de Kock, “Multiprocessor mapping of process networks: a JPEG

decoding case study,” 15th ISSS, pp. 68–73, 2002.

97

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 17, 2009 at 05:59 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

