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Multiple state transition interface sampling of alanine dipeptide
in explicit solvent

Wei-Na Du, Kristen A. Marino, and Peter G. Bolhuisa)

Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam,
The Netherlands

(Received 13 July 2011; accepted 9 September 2011; published online 10 October 2011)

We have applied the recently developed multiple state transition interface sampling approach to
alanine dipeptide in explicit water. We extract the rate constant matrix for configurational changes
between each pair of metastable states. The results are comparable with values from previous
literature and show that the method is applicable to biomolecular systems. © 2011 American
Institute of Physics. [doi:10.1063/1.3644344]

I. INTRODUCTION

Investigating the long time scale dynamics of rare events
in complex biomolecular systems provides a challenge for
molecular dynamics simulations. Typically, a biomolecular
system spends most of the time in (meta)stable states and
only occasionally jumps between these states. When using
straightforward molecular dynamics simulation to investigate
such rare events, a large amount of computer time will be
wasted on sampling the metastable states. In the case of
protein folding and unfolding, this waiting time can easily
becomes microseconds to seconds, a time beyond even the ca-
pability of the most powerful modern super computer. There-
fore, the investigation of the dynamics of such rare events
necessitates the application of novel simulation algorithms.
In the past decades, many algorithms have been developed
to assess rare protein conformational transitions, for instance
by umbrella sampling,1 flooding,2 local elevation,3 adaptive
bias force,4 metadynamics,5 replica exchange,6 milestoning,7

string method,8 and many others. One such approach, transi-
tion path sampling (TPS) (Refs. 9–12) resolves the rare event
problem by focusing only on the transition paths between
stable states. TPS does this by generating an ensemble of
unbiased dynamical trajectories connecting an initial with
a final stable state. The advantage of TPS is the relative
independence from an a priori choice of order parameters
or reaction coordinate that describing the transition. Rather,
the reaction coordinate can be extracted from the simulation
results. The method has been successfully applied to various
two-state systems11, 13, 14 previously (see, e.g., Ref. 15 for a
review). One drawback of the regular two state version of
TPS is that, once there are more than two (meta)stable or
intermediate states, trajectories will be attracted to those ad-
ditional states and become trapped, which severely decreases
the efficiency of the method. A remedy for this drawback is
the recently developed multiple state transition path sampling
(MSTPS),16 which extends TPS by including all possible

a)Author to whom correspondence should be addressed. Electronic mail:
p.g.bolhuis@uva.nl.

transition paths between any two stable or intermediate
states in the path ensemble. In Ref. 16, it is shown that the
MSTPS method is more efficient than the two state TPS
method.

While TPS samples dynamical paths, information about
rate constants is only available through a reversible work
calculation of slowly constricting pathways leaving the ini-
tial stable to end at the final state.9 Introduction of the
transition interface sampling (TIS) method accelerated this
computation considerably by measuring the effective posi-
tive flux through a series of interfaces between the initial
and final states.17 Reference 16 also introduced a multiple
state version of TIS (MSTIS) and applied it to a simple 2D
system.

The aim of this work is to show that the MSTPS/MSTIS
framework can be applied to biomolecular systems and
allows the evaluation of the full rate matrix. To that end, we
apply the MSTIS method to a small prototypical biomolecule,
the alanine dipeptide. Alanine dipeptide in aqueous solution
has been widely used to test new simulation and sampling
algorithms.18–23 Despite its simplicity, it exhibits several
multiple metastable states when solvated in explicit water,
with transition rates between these states on the order of
nanoseconds.

Chodera et al.18 computed the transition matrix of
alanine dipeptide conformational changes directly using
straightforward molecular dynamics. The authors found that
the alanine peptide configuration space could best be divided
into 6 metastable states. This division in states leads to a
Markov state model (MSM) in which the molecular kinetics
can be summarized as stochastic transitions between the
states.24 Using the same division into six states, we compute
the rate matrix using MSTIS, and compare it with these
previous results. As some transition are much more abundant
than others, one can combine states, to reduce the complexity
of the rate matrix.

The paper is organized as follows. We first describe the
theoretical background in Sec. II. In Sec. III, we present and
discuss our MSTPS/MSTIS results. We end with concluding
remarks.

0021-9606/2011/135(14)/145102/10/$30.00 © 2011 American Institute of Physics135, 145102-1
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II. METHODS

A. Multiple state transition path sampling

1. Two-state transition path sampling

In this section, we briefly review the TPS method-
ology. A TPS simulation performs a Monte Carlo ran-
dom walk in trajectory space. A dynamical trajectory x(L)
= {x0, x1, . . . , xL} is discretized in time by a time-step �t

into L + 1 slices xτ . Each time slice xτ = {rτ , pτ } contains
all positions r and momenta p of all N particles in the system
at time t = τ�t . The probability PAB[x(L)] for a path of a
fixed length L connecting the initial state A and the final state
B is given by

PAB[x(L)] = Z−1
ABhA(x0)P[x(L)]hB(xL). (1)

P[x(L)] is the dynamical probability of the discretized path
x(L), while h�(x) denotes an indicator function that is unity
when x ∈ �, i.e., x is inside a stable state � and zero oth-
erwise. The product hA(x0)hB(xL) thus guarantees that the
probability is non-zero only when a path starts from A and
ends in B. The normalization factor ZAB is akin to a partition
function. The dynamical path probability P[x(L)] is given by

P[x(L)] = ρ(x0)
L−1∏
τ=0

p(xτ → x(τ+1)), (2)

where p(xτ → x(τ+1)) represents the Markovian probability
for transitions from a phase point at time τ to one at time
τ + 1 (e.g., a delta function for molecular dynamics, or a
Gaussian for Langevin dynamics9). All trajectories that con-
nect the two defined stable states form the path ensemble,
which plays a key role in TPS as the representation of the
system’s rare event. A definition of reaction coordinate is not
necessary in TPS, but the reactant A and product B should be
defined properly by order parameters. These order parameters
should be chosen such that the two states can not only be dis-
tinguished from each other, but also that each state lies inside
the basin of attraction of that stable state.15

The shooting algorithm9 can efficiently sample the path
ensemble by selecting a random slice, changing the momenta
slightly and shooting off a new direction forward and back-
ward in time. Each path that still connects A with B can be
accepted in the Monte Carlo procedure.

Based on TPS, the TIS algorithm for calculating rate con-
stants between two states requires the definition of a series of
hyper-surfaces or “interfaces” {x : λ(x) = λs} with λs ∈ R.17

TIS thus requires an order parameter λ that parametrizes the
rare event. The definition of this order parameter here is not
as strict as a reaction coordinate, but it has to vary monoton-
ically from reactant to product. In TIS, the rate constant kAB

for the A → B transition is then expressed as

kAB = 〈φ1〉PA(λB |λ1) = 〈φ1〉
n−1∏
s=1

PA(λs+1|λs). (3)

Here, 〈φ1〉 is the average flux out of state A through inter-
face λ1, which, in practice, can be obtained from an MD
simulation by establishing the number of times the system
crosses λ1, coming directly from A, per unit time. PA(λB |λ1)

is the conditional “crossing” probability that a path from A

has crossed interface λ1 and reaches state B before returning
to A. This crossing probability, which is naturally very small
as we are considering a rare event, can be replaced with the
product of n crossing probabilities in Eq. (3). One can com-
pute PA(λs+1|λs) for a particular TIS interface λs as the frac-
tion of paths coming out of state A and crossing λs , that also
cross the next interface λs+1 before going back to λs . Note
that the final interface λn = λB .

2. Multiple state TPS/TIS

The standard TPS scheme assumes the presence of only
two stable states. Many complex systems might have addi-
tional (meta)stable states that can trap the trial trajectories
during the shooting move, thus making it difficult to sample
paths between two specific stable states. The multiple state
TPS/TIS method16 resolves this problem by sampling the en-
semble of pathways that connect any two of the stable states
in the system instead of focusing on only two of the stables
states. The path sampling algorithm simply accepts any path
between two valid metastable states i �= j . (For a detailed de-
scription see Ref. 16).

Reference 16 also introduces a scheme to compute the
rate constants kij between any pair of stable states in the sys-
tem. Each of the stable states i is assigned a set of m λsi-
interfaces, with 0 ≤ s ≤ m. λmi is thus the “outermost” inter-
face for stable state i. The multiple state TIS ensemble for
paths between state i and any other state j is then

PTIS
ij [x(L)]

≡ Z−1
TIS

∏
k

h̄k [x(L)] hi(x0)P[x(L)]hj (xL)ĥm
i [x(L)],

(4)

where ZTIS is a normalization factor. The indicator functions
hi(x0) and hj (xL) ensure again that the paths begin in state i

and end in j , respectively. The product over h̄k [x(L)] is unity
only when each configuration x along the path is outside each
of the stable state definitions and zero otherwise, thus guaran-
teeing that except for the end points, the paths do not visit any
of the stable states. This requirement is necessary, because
we use the TIS flexible path length convention, i.e., the path
length is determined by the first entering point of any stable
state. The function ĥm

i [x(L)] is unity for paths that cross the
outermost interface λmi and vanishes otherwise. Note that the
initial and final state can also be the same, i.e. i = j as long
as λmi is crossed. Analogous to Eq. (3) the rate constant kij

for transitions from a state i to a state j is

kij = 〈φmi〉Pi(λ0j |λmi). (5)

Here, the flux through the outermost λmi-interface 〈φmi〉 fol-
lows from a “regular” TIS simulation using the set of λ-
interfaces for a given state i

〈φmi〉 = 〈φ1i〉Pi(λmi |λ1i) = 〈φ1i〉
m−1∏
s=1

Pi(λ(s+1)i |λsi). (6)

Downloaded 31 Jan 2012 to 145.18.109.227. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Pi(λ0j |λmi) is the crossing probability for a path that crosses
λmi coming directly from i to reach state j before returning to
i, and follows directly from the multiple state transition path
sampling ensemble

Pi(λ0j |λmi) =
∫
Dx(L)PTIS

ij [x(L)]∫
Dx(L)

∑
j PTIS

ij [x(L)]
≈ nij∑

j nij

, (7)

where the integrals are over all paths regardless of length. This
probability can be estimated from the number of pathways
nij starting in i, crossing λmi and ending in j , divided by all
pathways starting in i and crossing λmi .

From the expression for the rate constants for transitions
between all stable states i and j in Eq. (5) it follows that the
flux 〈φmi〉 in Eq. (6) only has to be calculated once for each
stable state i. All remaining crossing probabilities can be ob-
tained simultaneously within one multiple state TIS simula-
tion.

The rate constant matrix hence consists of 3 factors,

kij = 〈φ1i〉Pi(λmi |λ1i)Pi(λ0j |λmi), (8)

that are determined, respectively, by a straightforward MD
simulation, a TIS for each state, and a multiple state TIS sim-
ulation.

The shooting move for MSTIS is done in the regular way,
by accepting any path that connects two stable states i and j ,
provided it crosses the interface λsi .

3. Combining stable states

A potential problem with a multiple state approach is that
the free energy barriers between pairs i and j might be differ-
ent in height. This will favor paths between the pairs i and
j that have the lowest free energy barrier. When the barriers
are roughly of the same height, this is not a problem as then
all possible paths are equally represented in the ensemble.
However, for widely varying barriers, one transition might
dominate the ensemble. This dominance might be avoided
by applying the Wang-Landau scheme advocated in Ref. 16
and explored in Ref. 25 (Recently this Wang-Landau scheme
was also applied in the TPS framework26). Another possibil-
ity is to exclude the most dominant transition, i.e., those with
very low barriers. Ideally, this should be done automatically
based on the frequency of sampling. Alternatively, we can
view the sets of states separated by low barriers as a single
combined state, as interconversion between these states will
be fast compared to the higher barriers. For instance, state
α′ and α′′ can be combined into one state α with an indica-
tor function hα[x] which is unity if x ∈ α = α′ ∪ α′′ and zero
otherwise. Special care needs to be taken for defining the TIS
interfaces for such combined states. One possible combined
interface definition is shown in Fig. 1. The order parame-
ters λ′

s , λ
′′
s denote the distance to the center of respectively

α′ and α′′ in some metric. These distances define interfaces
{x : λ′(x) = λ′

s} and {x : λ′′(x) = λ′′
s } for both states. We can

combine these interfaces through the envelope of the hyper-
surface, i.e., {x : λ(x) = min[λ′(x), λ′′(x)] = λs}, where the
min function returns the smaller of its argument. The com-

FIG. 1. Top: Schematic picture of acceptable (solid lines) and unaccept-
able (dashed lines) trajectories in the MSTIS path ensemble, using the com-
bined states α and β. Bottom: Schematic picture for regular TIS with com-
bined states. Again, acceptable paths (solid) cross the combined interface λmβ

(black solid dumbbell), while unacceptable paths (dashed lines) do not.

bined interface is thus defined by the distance λs to the center
of the nearest sub-state in the combined state.

The shooting move using the combined state interface
and state definitions is straightforward. Each path has to
start in α = α′ ∪ α′′, end in any state, and cross the com-
bined interface, i.e., at least one time slice x should obey
min[λ′(x), λ′′(x)] > λs .

Note the combination rule can be easily generalized to a
set of l sub-states and corresponding distance order parame-
ters λ(x) = {λ1(x), λ2(x), ...., λl(x)} leading to the interface
definition {x : min[λ(x)] = λs}.

B. Simulation details

1. System setup and equilibration

All energy minimization and molecular dynamics sim-
ulations were performed with the GROMACS package (ver-
sion 4.0.5) (Refs. 27–30) using the AMBER96 force field.31 A

FIG. 2. The molecular structure of alanine dipeptide rendered in licorice rep-
resentation. Carbons in cyan, oxygen in red, nitrogen in blue, and hydrogen
white. The two order parameters describing the metastable states are the di-
hedral angles φ and ψ . Figure made with VMD (Ref. 38).
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single alanine dipeptide molecule (Ace-Ale-NME, see Fig. 2)
was solvated by 620 TIP3P water molecules32 in a truncated
octahedral periodic box. The non-bonded van der Waals cut-
off radius was 1.1 nm. The LINCS algorithm handled bond
constraints,33 and fast Particle-Mesh Ewald method treated
long-distance electrostatic interactions.34, 35 The system was
energy minimized using steepest descent energy minimiza-
tion followed by conjugate gradient optimization. A 10 ps
position restricted MD simulation was performed, followed
by a 1 ns equilibration run at constant temperature and con-
stant pressure of respectively, 300 K and 1 atm. The time step
was 2 fs. The temperature was kept constant with the Nose-
Hoover thermostat,36, 37 and the pressure was maintained by
a Parrinello-Rahman barostat. The average box size from this
constant pressure simulation provided the proper box size (d
= 2.92160 Å) to run the constant volume simulations.

2. Replica exchange molecular dynamics

To initialize MSTPS, we need definitions of the vari-
ous metastable states of the alanine dipeptide. One way to
obtain these beforehand, is by performing a very long MD
simulation, or by accelerating methods such as replica ex-
change MD. Replica exchange molecular dynamics (REMD)
(Ref. 39) can enhance the sampling of biomolecules with
rough free energy surfaces by simulating n replicas at differ-
ent temperatures and occasionally exchanging the replicas. In
each replica, the velocity rescaling thermostat with a stochas-
tic term is employed for temperature coupling. Every 1 ps,
n(n − 1) exchanges between any random pair of replicas were
attempted. The acceptance rule for exchanging each pair of
selected replicas (1 and 2) is given by

Pacc[1 → 2] = min
[
1, e

(E1−E2)
(

1
kB T1

− 1
kB T2

)]
,

where kB represents Boltzmann constant, T1 and T2 are tem-
peratures of the two selected replicas, while E1 and E2 are
their potential energies. The configurations of alanine dipep-
tide and system potential energy were written to disk every
0.1 ps.

To explore the free energy surface we ran a 20 ns REMD
simulation with 24 replicas. The temperatures in these 24
replicas were chosen from a exponential distribution from 300
K to 500 K. The exchange move had an average acceptance
ratio of 46%, based on first neighbor exchanges only (the to-
tal number of exchange trials is of course much larger). The
free energy (in units of kBT ) is the negative logarithm of the
probability histogram obtained by projecting the REMD tra-
jectory data to suitable order parameters. We use the virtual
move Monte Carlo method for better statistics.40

3. Path sampling simulation

The path sampling is performed by a perl-script wrap-
per around the GROMACS package. We employed the two-way
shooting algorithm with flexible path length. Shooting points
for generating trial paths are picked randomly from the pre-
vious accepted path with length L(o) and a new velocity will
be assigned randomly for each atom at that point. The trial

trajectories are generated with the Gromacs MD engine by in-
tegrating both forward and backward in time. The integration
is stopped when a path reaches one of the stable states. When
crossing the current interface, the trial path with a length L(n)

can be accepted with the Metropolis rule

Pacc[o → n] = min

[
1,

L(o)

L(n)

]
(9)

in order to obey detailed balance.17

III. RESULTS AND DISCUSSION

A. Stable states and interfaces from REMD simulation

The free energy was obtained by projecting the REMD
trajectory data onto two slow degrees of freedom, the dihedral
angles φ and ψ , which have been widely used to investigate
the free energy surface of the alanine dipeptide system.19–23

The resulting free energy landscape is shown in Fig. 3 and
shows six distinct energy minima. The landscape agrees
well with a previous investigation employing the same force
field and water type.18 In Ref. 18, six metastable states were
identified by defining boxes in φ − ψ phase space, where
each box contains one of the six minima. These six distinct
energy minima will be used to define the metastable states
in this work but now are based on the “core” definition. This
definition is based on the distance in φ,ψ space to the free
energy minimum. The order parameter for the stable states

is thus λi =
√

(φ − φref
i )2 + (ψ − ψ ref

i )2, where (φref
i , ψ ref

i )
denotes the location of the minima in the free energy
landscape. Based on the REMD free energy landscape,
we locate the six minima A, B, C, D, E, and F at, respec-
tively, (−150, 150), (−70, 135), (−150,−65), (−70,−50),
(50,−100), and (40, 65) (in degrees), see Fig. 3. The
stables state i is defined by the set {x : λi < λ0i}. For
simplicity, we set all stable state boundaries identical
(λ0A = λ0B = λ0C = λ0D = λ0E = λ0F =10), i.e., a circle
with a 10-degree radius. At first sight, this might seem unfit
for a proper stable state definition. However, the most impor-
tant criterion for a stable state definition is that trajectories
should have a high probability of hitting the stable state
definition when in the basin of attraction, not that they always
have to stay within this definition.12, 15 For each state, we

FIG. 3. The free energy surface from the REMD simulation obtained by pro-
jecting the logarithm of the probability to find a (φ, ψ) pair.
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TABLE I. Definition of interfaces (in degrees) for the six states A-F. Also
included are the combined β and α states for the 4-state computation.

A B C D E F β α

λ0 10 10 10 10 10 10 10 10
λ1 20 20 20 20 20 20 20 20
λ2 45 45 45 45 45 45 45 40
λ3 65 65 60 60 65 65 55 45
λ4 80 75 80 80 65 50
λ5 75 60

can use this order parameter to define a series of interfaces,
from the zeroth interface (the stable state boundaries λ0i) up
to the outermost one (λmi). These interfaces are summarized
in Table I. While the order parameter for each state is here
defined in the same way, we stress that, in principle, one is
free to a use different order parameter set for each state and
its interfaces, provided that they separate and distinguish the
stable states.

Note that we assume, similar to previous studies, that
the minima are sufficiently deep to cause a separation of time
scales, and hence a meaningful rate constant for each tran-
sition. However, the barriers between states A and B as well
as between states C and D are so low that crossings are very
frequent, and the assumption of exponential kinetics might be
invalidated. We therefore also consider a 4-state description
with the combined states α = C ∪ D and β = A ∪ B. The in-
terfaces for the combined states are constructed as described
in Sec. II, and are located at positions listed in Table I.

B. Flux factor from MD

Ten blocks of 10 ns MD simulations are carried out
to compute the effective positive flux for each of the six
stable states at its first interface λ1i , a 20-degree-radius
circle centering on the state’s central point(λ1A = λ1B

= λ1C = λ1D = λ1E = λ1F =20). The calculated fluxes out
of the first interfaces of stable states are given in the second
column of Table II. In this effective positive flux computation,
we only count the first crossing of λ1i after the trajectory
has escaped from the stable state i. The trajectory then first
has to return to the stable state i before a new crossing
can be counted.17 The effective positive flux through the
first interface is thus φ1i = N1i/ti where N1i is the number
of times that the system crosses λ1i when directly coming
from state i, and ti is the total residence time of state i, i.e.,
the total time the system stays in the basin of attraction of
state i during the simulation. Note that this definition is
slightly different from that of Ref. 17, because for the alanine
dipeptide system a MD simulation can relatively easily leave
a state spontaneously, e.g., from state A to B. Fluxes for state
A, B, C, and D are extracted from straightforward MD, while
fluxes for state E and F are from paths biased to those two
states as they are so rarely visited in regular MD.

From the straightforward MD, we also extracted the
fluxes for the 4-state MSM at their respective first interfaces.
For the combined states, for example β, the flux at the first in-
terface is simply the number of transitions out of β = A ∪ B

TABLE II. Flux at the first interface (second column), the crossing proba-
bility from the first to the outermost interface (third column) and the flux at
the outermost interface (last column). The subscript value is the error in the
last two reported digits.

State φ1i (ps−1) Pi (λmi |λ1i ) φmi (ps−1)

A 2.03133 0.078182 0.15917

B 2.42221 0.07515 0.18237

C 1.48359 0.22923 0.33938

D 2.29081 0.09015 0.20535

E 1.37954 0.071956 0.099180

F 2.2511 0.026641 0.059787

β 2.21421 0.025936 0.057379

α 1.96858 0.072563 0.14211

divided by the total time tβ the system stays in β. Because the
average residence times are additive 〈tβ〉 = 〈tA〉 + 〈tB〉, the
flux is

〈φ1β〉 = N1β/tβ = (N1A + N1B)/(tA + tB), (10)

provided the combined interfaces do not overlap.

C. Rate constants from MD

From the straightforward MD simulations, rate constants
can be extracted directly by keeping track of the transitions
between any pair of states. The rate constant i → j is then
approximated by dividing the number of transitions between
i and j by the total time the system spent in state i. This latter
quantity is the time between first entering a stable state i com-
ing from any other state, and entering any other state coming
from i. Rate constants for transitions involving E and F are
not available in this way, as these states are hardly visited.

In the same way, we also extracted the rate constants for
the transitions involving the combined states α or β from the
MD results.

D. Crossing probabilities Pi (λmi |λ1i ) by TIS

We performed ten blocks of TIS simulations consisting
of around 12000 shooting moves each, for all the stable state
interfaces listed in Table I. The average acceptance ratio is
47%.

For each TIS simulation, we collected the crossing prob-
ability histograms Pi(λ|λsi) for interface λs by averaging over
the path ensemble:

Pi(λ|λsi) = 〈θ (λmax
i (x(L)) − λsi)〉si , (11)

where θ (x) is a step function, the 〈. . .〉si denotes the aver-
age over the TIS path ensemble starting in state i and cross-
ing interface λsi , and the λmax

i function returns the maximum
value of the order parameter belonging to state i along the
path x(L). In Fig. 4, we plot these histograms for state A, for
each TIS simulation block. The histograms of the other states
are shown in Appendix A. Note that the crossing probabil-
ity histograms for each interface start at unity, as all paths
in the ensemble have to cross that interface. Joining these his-
tograms using weighted histogram analysis method (WHAM)
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FIG. 4. Top: Crossing probability histograms P (λ) = PA(λ|λsA) for state
A. Note that for each TIS simulation the probability starts at unity. Bottom:
The joint histograms P (λ) = PA(λ|λ1A) for each TIS block obtained using
WHAM.

(Ref. 41) results in master histograms for each state. The joint
histogram for state A is shown in Fig. 4, whereas for the other
states, the histograms are shown in the right column Fig. 5 in
Appendix A. These crossing probabilities all start at unity at

the first interface, and quickly monotonically decay for higher
values of λ. From these histograms follows the second factor
in Eq. (8), the outer interface crossing probability Pi(λmi |λ1i).
The crossing probabilities from the first interface to the out-
ermost interface are listed for all states in the third column of
Table II.

E. The crossing probability Pi (λ0j |λmi ) by MSTIS

The last term in Eq. (8) Pi(λ0j |λmi) is the crossing prob-
ability from the outermost interface λmi of state i to any other
stable state j in the system. To establish these terms, we carry
out multiple state TIS. To initialize the MSTIS simulation,
we took a valid path crossing the λmi interface. The MSTIS
simulation consisted of 10 blocks of around 18000 shooting
moves each. Paths that connect any pair of different stable
state pair i �= j are accepted. Paths that leave i and return to
i are accepted as long as they cross the outermost interface of
the state. As usual, the flexible path length algorithm requires
the path not become longer than a maximum length, to obey
detailed balance. The average acceptance ratio is 27%.

From the MSTIS path ensemble, we can extract the cross-
ing probability matrix Pi(λ0j |λmi) using Eq. (7). The path
counts are summarized in Table III, where each line in the
matrix lists the number of transition paths from one stable
state to others. As the transition to E and F are rare due to the
high barriers involved, we performed two MSTIS runs that bi-
ased the sampling towards the E and F states. The first run ex-
cludes the A→A, A→B, B→A, B→B and the C→C, C→D,
D→C, D→D paths, while the second one only includes paths
involving E or F. The path counts are summarized in Table III.
The three matrices can be combined using WHAM. The

TABLE III. Left column: averaged MSTIS path counts over 10 blocks for the 6-state simulation rounded to the nearest integer. Right column: MSTIS path
counts for the 4-state simulations. Top row: unbiased MSTIS. Middle and bottom row: biased MSTIS by excluding paths. The rows denote the leaving state,
the columns the arriving state.

A B C D E F β α E F

A 2335 6036 161 69 1 1 β 12448 729 0 28
B 5917 1816 38 36 0 16 α 764 3207 3 0
C 172 46 665 599 0 0 E 1 6 26 2
D 58 38 616 626 4 0 F 25 0 2 1
E 1 0 1 3 141 19
F 1 15 0 0 17 16

A B C D E F β α E F

A 0 0 4516 1621 8 19 β 0 8182 10 306
B 0 0 1094 951 2 286 α 8280 0 282 0
C 4586 1043 0 0 5 0 E 16 230 705 91
D 1702 948 0 0 277 0 F 327 2 80 93
E 14 2 6 223 705 91
F 10 318 1 2 80 93

A B C D E F β α E F

A 0 0 0 0 69 90 β 0 0 96 2960
B 0 0 0 0 27 2870 α 0 0 1447 7
C 0 0 0 0 37 2 E 97 1470 6079 651
D 0 0 0 0 1410 5 F 2918 9 642 880
E 73 23 30 1441 6079 651
F 109 2809 3 5 642 880
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TABLE IV. MSTIS Crossing Probability matrices obtained by combining
the path counts using WHAM and normalizing. Top: 6-state. Bottom: 4 state.
The subscript value indicates the error in the last two digits. Rows denote
leaving, columns arriving states.

A B C D E F

A 0.26925 0.69827 0.023648 0.008619 0.00005012 0.00007233

B 0.75414 0.23214 0.006315 0.005616 0.000021378 0.0022166

C 0.14443 0.03311 0.43445 0.38850 0.00016778 0.000009770

D 0.06224 0.03414 0.44365 0.45448 0.007237 0.00002314

E 0.009129 0.002811 0.003911 0.17144 0.73343 0.08011

F 0.02313 0.61085 0.001315 0.001824 0.15846 0.20747

β α E F

β 0.944490 0.053292 0.00007613 0.0023370

α 0.18125 0.81525 0.004218 0.00002112

E 0.012037 0.17850 0.73148 0.07912

F 0.63586 0.003236 0.15645 0.20548

resulting crossing probability matrices are given in Table IV,
where each row in the matrix lists the probabilities from the
outermost interface of a certain stable state to all other stable
states in the system.

The 4-state crossing probability matrix required an addi-
tional MSTIS simulation as the state definitions are different.
However, no additional simulation was needed to obtain the
two biased matrices. We simply can extract a 4 × 4 matrix
for states β, α,E and F from the 6-situation calculations by
adding the path counts contributed by the different substates,
as there are no transitions between A and B or C and D in
those runs anyway. The 4 × 4 transition matrices are given
in Table III, where each row in the matrices lists number of
transitions starting from a certain stable state. Using WHAM
on the three matrices, a transition probability matrix for the
4-state calculation is obtained, given in Table IV.

F. Rate constants

The rate constant matrix kij was calculated from
Eq. (8), where φ1i was taken from the straightforward MD
runs, while Pi(λmi |λ1i) from TIS calculations and Pi(λ0j |λmi)
from MSTIS calculations. As we have ten blocks of data for
each of the three factors in Eq. (8), the rate constant can be
evaluated in two different ways. The first is to compute the
rate constants for each data set followed by averaging those
10 rate matrices. The resulting rate constants are summarized
in Table V. The rate matrices of the 4-state division can be
obtained via two routes: either directly using Eq. (8), or by a
reduction of the 6-state rate matrix using the procedure out-
lined in Appendix B. These two matrices are also given in
Table V.

Alternatively, we can first average each of the three
factors separately, and then compute the rate constant kij

by taking the product. The resulting matrices are given in
Appendix C. The differences between the taking the av-
erage of the product and the product of the averages is
within the reported error bar, indicating that the data sets are
uncorrelated.

While the rates for the different computations are within
each others error bar, there seems to be a significant differ-
ence between the rates in the middle and bottom matrices of
Table V for transitions leaving state α or β. This difference
might be due to the fact that that the barrier between A and B

is probably not sufficiently high to have exponential kinetics
and avoid correlations.

Note that while the MSTIS simulations success-
fully improved the sampling of (E,F)→(E,F) transitions,
(E,F)→(β,α) transitions are still relatively rare, which some-
times makes the standard deviation of the rate constant signif-
icant (or even of the same order) compared to the rate constant
itself.

Still, MSTIS is more efficient in calculating the rate con-
stant at a fixed accuracy compared to straightforward MD.

TABLE V. Rate constant matrix from the average of products in Eq. (8). Top: 6-state computation. Middle: reduction of 6-states to 4-states using
Eqs. (B2) and (B3). Bottom: direct 4-state calculation from Eq. (8). Rows denote leaving, columns arriving states. All rates in ps−1.

A B C D E F

A 0.11114 0.0037797 0.0013629 0.000007818 0.000011553

B 0.13727 0.0011433 0.0010240 0.000003916 0.0004014

C 0.04914 0.011136 0.13225 0.00005830 0.000003325

D 0.012447 0.006925 0.09225 0.0014573 0.000004830

E 0.0008824 0.0002710 0.0003811 0.017050 0.008016

F 0.0013686 0.036693 0.00007478 0.0001115 0.009327

β α E F

β 0.0037675 0.0000060094 0.00019264

α 0.03510 0.0009245 0.000004219

E 0.0011529 0.017450 0.008016

F 0.038094 0.0001921 0.009327

β α E F

β 0.0030573 0.0000043799 0.00013347

α 0.025637 0.0006027 0.000003019

E 0.0011731 0.017755 0.007916

F 0.038193 0.0001921 0.009227
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TABLE VI. Comparison of our results with Ref. 18.

RESOURCE kβ→α kα→β kα→E kE→α

Ref. 18 0.0046 0.0335 0.0001 0.0185
MD runs 0.0031850 0.026567

MSTIS 6-state 0.0037675 0.03510 0.0009245 0.017450

MSTIS 4-state 0.0030573 0.025637 0.0006027 0.017755

For each set of our 10-set calculation, MSTIS required a total
of 402 ns (this includes 10 ns MD, 260 ns TIS and 131 ns
MSTIS). A conventional MD simulation aiming for the same
accuracy of the rare C-F transition, e.g., would need to sample
at least a few tens of microseconds. Moreover, we did not at-
tempt to optimize the computation, for instance, by changing
the location of the interfaces.42, 43

For alanine dipeptide, MSTIS is also more efficient than
two state TIS because the switching of transitions induces
faster decorrelation between paths.16, 25 Moreover, MSTIS
avoids the trapping of paths. Also, for two state TIS, the sec-
ond and third terms of Eq. (8) need to be computed indepen-
dently for each pair of states.

G. Comparison with previous work

As most studies within the existing literature on the
rate constants for alanine dipeptide conformational change,
e.g., Refs. 18–23, employ different force fields, set-up, state
definitions or thermodynamic conditions, a direct comparison
with our results is not very useful. The exception is the
work of Chodera et al.,18 which we took as a basis for this
work. Because we use the same force field, conditions, and
moreover (more or less) the same stable state definitions, our
rate constant estimates and free energy differences should be
identical to those of Ref. 18, as illustrated for several transi-

TABLE VII. Comparison of the transition matrix based on our rate ma-
trix(top) with that from Ref. 18 (bottom) for τ = 10 ps.

A B C D E F

A 0.5677 0.4903 0.2194 0.1514 0.0221 0.1128
B 0.3972 0.4813 0.1336 0.0925 0.0190 0.1863
C 0.0170 0.0130 0.2813 0.2518 0.0318 0.0038
D 0.0169 0.0131 0.3613 0.4951 0.1011 0.0075
E 0.0002 0.0002 0.0039 0.0086 0.7704 0.0646
F 0.0010 0.0020 0.0004 0.0005 0.0555 0.6251

A B C D E F
A 0.5730 0.4590 0.2320 0.1570 0.0220 0.1380
B 0.3850 0.5200 0.1100 0.0720 0.0330 0.3330
C 0.0180 0.0130 0.2860 0.2350 0.0300 0.0050
D 0.0220 0.0080 0.3710 0.5350 0.1110 0.0090
E 0.0000 0.0000 0.0010 0.0010 0.7450 0.1270
F 0.0020 0.0000 0.0000 0.0000 0.0590 0.3880

tions in Table VI. However, the authors actually report not
the rate but the transition matrix after a certain lag time. To
compare, we can translate our rate matrix K into a transition
matrix T by using the expression T = exp(Kτ ), where τ

is a lag time. For τ = 10 ps, the resulting transition matrix
together with results from Ref. 18, are given in Table VII.
The two matrices agree quite well, except for the transitions
to state F. This difference also shows up in the equilibrium
population which is the first eigenvector of the transition
matrix. Our rate matrix yields a population vector peq

= {0.4953, 0.4009, 0.0388, 0.0558, 0.0048, 0.0043}, for
state A-F, whereas the population vector from Ref. 18
is peq = {0.4852, 0.4090, 0.0403, 0.0625, 0.0013, 0.0017}.
Again, these results are quite reasonable for the populated
states, but do not agree for the states E and F.

TABLE VIII. Rate constant matrices as product of averages in Eq. (8). Top: 6-state computation. Middle: reduction of 6-states to 4-states using
Eqs. (B2) and (B3). Bottom: direct 4-state calculation from Eq. (8). All rates in ps−1.

A B C D E F

A 0.11113 0.0037486 0.0013734 0.000007921 0.000011553

B 0.13728 0.0011536 0.0010136 0.000003916 0.0004014

C 0.04916 0.011240 0.13222 0.00005727 0.000003324

D 0.012654 0.007031 0.09121 0.0014879 0.000004729

E 0.0009030 0.0002711 0.0003812 0.016946 0.008013

F 0.0013681 0.036578 0.00007890 0.0001114 0.009431

β α E F

β 0.0037598 0.000006019 0.00019269

α 0.03513 0.0009450 0.000004227

E 0.0011741 0.017347 0.008013

F 0.037886 0.0001923 0.009431

β α E F

β 0.0030568 0.0000043797 0.00013344

α 0.025843 0.0006027 0.000002917

E 0.0011938 0.017652 0.007913

F 0.038080 0.0001922 0.009331
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IV. CONCLUSION

In this paper, we computed the rate matrix for the sol-
vated alanine dipeptide system by MSTIS simulations. To our
knowledge, this is the first report of a complete kinetic rate
constant matrix of the solvated alanine dipeptide.

A current limitation of MSTIS is that all states should be
defined prior to starting the simulation. In systems more com-
plex than alanine dipeptide with possibly many (meta)stable
states this might be a challenge. A way to improve the algo-
rithm such that previously undefined states can be defined “on
the fly”. Another possible improvement of the method might
be the combination with replica exchange TIS.44, 45

While the aim of this paper was to provide a reasonably
realistic application of a biomolecular system, we realize that
the solvated alanine dipeptide is extremely simple. Neverthe-
less, we hope that MSTIS can enhance the sampling of kinet-
ics in larger biomolecular systems, and open up sampling of
processes such as the folding of small polypeptides.
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APPENDIX A: CROSSING PROBABILITY
HISTOGRAMS FOR ALL STATE DEFINITIONS

Figure 5 shows the crossing probability histograms ob-
tained from the TIS simulations as explained in Sec. III D,
as well as the joint histograms resulting from the WHAM
analysis.

APPENDIX B: REDUCTION OF THE RATE MATRIX

We can extract the 4-state (β, α, E, F) rate constant ma-
trix from a 6-state (A, B, C, D, E, F) rate constant matrix as
follows. First, we focus on the rates between the combined
states β and α. Because α = C ∪ D,β = A ∪ B according to
our definition, the calculation of kβ→α can be divided into four
parts: transitions A → C and A → D for paths that start in A,
transitions B → C and B → D for paths that start in B. The
individual rates for these transition follow from application of
Eq. (8).

Combining two rates from the same initial state towards
different final states, e.g., kAC and kAD can be done by simply
adding them

kAα = 〈φ1A〉PA(λmA|λ1A)(PA(λ0C |λmA) + PA(λ0D|λmA))

= kAC + kAD. (B1)

The combination of two rates from two different initial states
toward the same final states, e.g., kAC and kBC , is slightly
more involved. The combined rate is equal to the number of
paths that leave the combined state and go on to reach the fi-
nal state C in a total time tβ = tA + tB . The combined rate is

FIG. 5. Left column: Crossing probability histograms for all states, for all
TIS blocks. Each line denotes a single TIS simulation. Right column: Com-
bined histograms for each block obtained using WHAM.
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thus obtained similar to the combined flux, Eq (10):

kβC = NA

tA + tB
PA(λmA|λ1A)PA(λ0C |λmA)

+ NB

tA + tB
PB(λmB |λ1B)PB(λ0C |λmB)

= tA

tA + tB
kAC + tB

tA + tB
kBC. (B2)

The rate constant can be considered as a weighted sum of the
two rates, with the weight being the relative residence times.
States A and B are close enough to each other to be treated
as one combined state, thus the ratio between the total time
spent in those two states, tA and tB , could be easily obtained
from short MD simulations. kβ→α can now be obtained by
combining (B1) and (B2)

kβα = tA

tA + tB
(kAC + kAD) + tB

tA + tB
(kBC + kBD).

(B3)

kαβ was generated in the same way. Rate constants for tran-
sitions between α, β and E or F can be calculated as in
Eq (B2).

Using the algorithm described above, we can, based on
the 6 × 6 matrices obtained from the 6-state simulation, com-
pute two 4 × 4 matrices corresponding to the average of prod-
ucts and product of averages for states β, α, E, and F (see
Tables V and VIII).

APPENDIX C: RATE CONSTANT MATRICES USING
THE PRODUCT OF AVERAGES

In addition to applying Eq. (8) for the individual data sets,
we can take the average of each of the three factors separately,
and then compute the rate constant kij by taking the product.
An average φ1i can be obtained from ten blocks of MD data.
Similarly, we get the average P (λmi |λ1i) and P (λ0j |λmi) for
all i → j transitions. Subsequent application of Eq. (8), re-
sults in the rate matrices shown in Table VIII. The difference
between these results and the ones in Table V are minimal,
indicating that the different data sets are uncorrelated.
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